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ABSTRACT To investigate the pedestrian flow behavior in corridors, a microscopic simulation model of
pedestrian flow is proposed in this paper based on the desired-direction-decision learning and social force
model. The proposed model is composed of two parts: direction-decision and walking behavior decision.
First, the decision tree model is proposed to predict the walking direction of pedestrians by comparing
the prediction and simulation performance of three different models. Then, to avoid collisions between
pedestrians and obstacles, the acceleration model and the collision avoidance model are proposed to compute
the walking speed. Finally, an computational experiment is conducted to simulate crowd movement in
corridors. The experimental results show that the proposed model can suggest the shortest overtaking route
for individual pedestrians among four models, and the speed-density relationship fits the experimental data
well. The sensitive analysis shows that the lanes in bidirectional pedestrian flow can be formed much more
easily if the pedestrians have higher direction changing frequency, and there is an optimal visibility field
(2.8) to realize the highest traffic efficiency.

INDEX TERMS Pedestrian flow, simulation, direction decision learning, decision tree.

I. INTRODUCTION
The mathematical modeling of pedestrian flow has gained
much scientific interest in recent decades because pedestrian
movement is an important component in both fields of safety
and capacity assessment of walking facilities [1], [2]. Previ-
ous studies have focused on investigating the characteristics
of pedestrian flow by simulation. Several microscopicmodels
have been proposed in the past to provide a more detailed
description of individual behavior and interactions. Gener-
ally, the existing microscopic models can be categorized as
discrete and continuum models [3].

The most popular discrete models used in recent research
include the lattice gas model (LGM) [4], [5] and the cellular
automata model (CAM) [6]–[9], in which the space is dis-
cretized to approximate real pedestrian movement. The evo-
lution of the pedestrians in time is determined by physical and
social laws that describe the interaction among the particles
as well as their interactions with the physical surroundings.
Collision avoidance can be realized by defining mandatory
movement rules in these models [10]. The floor field is
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defined in CAM to lead the pedestrians to the targets, and
game theory is employed to solve the competition behavior
of pedestrians in LGM [11]. Compared to the continuum
models, the discrete models can be computed efficiently.
However, the discrete models have low capability to address
various walking speeds because the update scheme depends
on the walking speed of pedestrians. For example, only three
values of walking speed are considered in CAM [12], and four
update schemes are introduced into CAM [13]. In addition
to the limitation of walking speed, the number of walking
directions of pedestrians in discrete models is also limited.
For example, at most 8 direction choices exist when the walk-
ing space is discretized into square cells, while the number
is 6 when the walking space is discretized into hexagonal
cells [14]. Therefore, it is difficult to describe the variety
of pedestrian movement directions and speeds using discrete
models.

Because of the limitation of discrete models, continuum
models have been developed. The typical models include the
social force model (SFM) and velocity models (VM). How-
ever, the VM is not suitable for simulation of crowd move-
ment because it does not consider the interaction between
pedestrians [15], [16] except [17]. Therefore, the most
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popular continuum model is the SFM. The SFM was pro-
posed by Helbing [18] to simulate crowd evacuation and self-
organization, and then the extended or modified SFM was
developed by considering many more real-life factors [19].
These extensions can be found in [20]. However, if repulsive
forces from other pedestrians exceed the acceptable level,
the pedestrian may move backward, which is unrealistic [21].
Moreover, many parameters of SFM need to be calibrated
based on video data [22]–[24].

In fact, the pedestrian can choose the walking direction
or route based on the neighboring environment, and thus,
the desired direction should be updated in the pedestrian
flow simulation model. The route choice model has been
developed based on the utility theory [25], [26]. However,
it may not be suitable for pedestrian traffic because the
direction choice of pedestrians is approximately continu-
ous. A linear model was also proposed to determine the
walking direction of pedestrians in real time [27]; however,
the movement rules in the proposed method did not consider
collision avoidance to improve simulation efficiency. Sim-
ilarly, the heuristic method was also proposed to compute
the desired walking direction, which was a trade-off between
avoiding obstacles and minimizing detours from the most
direct route [28], [29]. With the development of artificial
intelligence, the machine learning method has been used to
simulate pedestrian flow due to the development of pedes-
trian detection [9]. For example, a multiagent reinforcement
learning-based framework was proposed to simulate pedes-
trian groups [30], and a data-driven neural network approach
and an artificial intelligence-based approach were proposed
to simulate the pedestrian flow [16], [31]. The social long
short-term memory model was also proposed to predict the
pedestrian trajectory [32], [33]. They used the trajectory data
to train the neural network model, and the trained model
produced the real-time velocity in the simulation environ-
ment. However, the conflicts between pedestrians cannot be
avoided if the predicted velocity is not sufficiently accurate,
and the model performance relies much on the prediction
performance.

To overcome this shortcoming, we proposed a new sim-
ulation model of pedestrian flow by combining the advan-
tages of the artificial intelligence method and SFM in this
paper. Within this approach, the desired direction is pro-
duced by the prediction model. The prediction models are
trained using real-life data, and the best model is selected
based on the prediction and simulation performance. First,
the desired direction model learns the complex relationship
between the direction decision and the neighboring environ-
ment, which can be represented by a number of features.
The psychological behavior of pedestrians can be simulated.
Second, the proposed model is calibrated by a large quantity
of trajectory data, and thus, can be incorporated into other
simulation models. Finally, the social force model is used to
solve the collision problem, which may not be solved by only
the machine learning method.

FIGURE 1. General structure of the model.

II. MODEL FRAMEWORK
As shown in Fig.1, the general structure of the model is based
on the decision-making level of the psychological process.
The first level is the strategic level, at which pedestrians make
a decision of the intended direction. The second level is the
operational level, which is the second step for pedestrians
to adjust their walking behavior in the corridors. Pedestrians
adjust their speeds and directions dynamically when interact-
ing with other pedestrians and obstacles.

III. DIRECTION DECISION MODEL
A. FEATURE SELECTION
The desired direction of pedestrians is affected by the local
environment and their destination. The desired direction of
pedestrians is affected by the pedestrians and obstacles in
his/her visual field because the pedestrians try to keep dis-
tance from each other and avoid potential collision with
others in the walking direction. Each pedestrian desires to
arrive at his/her destination and thus the desired direction
is also determined by the location of destination. Therefore,
the relative distance and speed are selected as features to
predict the desired direction. The pedestrians flow in bidi-
rectional corridors as shown in Fig.2 will be investigated in
this paper and the distance features influencing the desired
walking direction can be calculated as follows:

D = [xi − xj, yi − yj,
yi
W
,
L − xi
L

] (1)
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FIGURE 2. Feature selection.

in which (xi, yi) and (xj, yj) are the coordinates of pedestrians,
and L andW denote the length and width of the corridor. xi−
xj, yi − yj denote the relative horizontal distance and vertical
distance between pedestrians i and neighboring pedestrian j.
L−xi
L denotes the distance to the end point of corridor and

yi
W denotes the distance to the wall. In order to reduce the
number of used features, the distance between pedestrian i
and walls is normalized so that the distance to only one wall
can represent the relative position to the two walls. Further,
the trained model can be used to predict the desired direction
of pedestrians in corridors with various lengths and widths
due to the normalized distance.

Pedestrian does not change his/her current walking direc-
tion abruptly and frequently and the current movement direc-
tion can be represented by the horizontal and vertical speed.
The relative speed between pedestrians also affects the direc-
tion decision of pedestrians [34] because the relative speed
represents the change rate of relative distance. Therefore,
the speed features influencing the desired walking direction
can be formulated as follows:

V = [vxi , v
y
i , v

x
i − v

x
j , v

y
i − v

y
j ] (2)

where vxi and vyi are the horizontal and vertical speeds of
pedestrian i. vxi −v

x
j and v

y
i −v

y
j denote the relative horizontal

and vertical speed. As shown in Fig.2, there are 9 pedestrians
in the visibility field of the yellow pedestrian; however, only
7 pedestrians are selected to produce the features to efficiently
predict the walking direction in this paper because more
features reduce the computing efficiency. Finally, 32 features
are selected to train the prediction model. Let β denote the
set of features. The relative distance and speed features are
listed in ascending order of distance. Based on the trajectory
data, we can obtain the position vector −→η from the position
at time t to the position at time t +1t . The desired walking
direction α is represented by the angle between −→η and the
vector −→υ = [0,−1]. Therefore, α can be formulated as
follows:

α = arccos(
−→η −→υ

‖
−→η ‖

) (3)

Finally, we obtain the output and input of the direction deci-
sion model and the relationship between the desired walking
direction and features can be built and examined.

FIGURE 3. The common structure of the neural network model.

B. MODEL SELECTION
There are many popular models, such as regression models,
neural network models and decision tree models, that build
the link between the walking direction and features [35].
To select the best prediction model. The performance evalua-
tion method is proposed in this section. The model selection
method is inspired by [36]; however, we introduce more
indicators to measure the model performance.

1) LINEAR REGRESSION (LR) MODEL
Regression analysis is one of the most popular techniques
for predictive modeling because it assumes that there is a
linear relationship between outputs and inputs. A multiple
regression model with more than one input feature can be
formulated as follows:

α = AβT + B (4)

where A and B are the regression parameters. The
least-squares method is generally used for estimating the
parameters in the regression model. Once the regression
parameters are obtained, a prediction equation can then be
used to predict the walking direction as a linear function of
distance and speed features.

2) NEURAL NETWORK (NN) MODEL
The neural network model is also a popular prediction model
when the prior knowledge on the relationship between the
output variables and input features is unknown; it was origi-
nally developed by researchers attempting to mimic the neu-
rophysiology of the human brain. The common structure of
the neural network model is depicted in Fig.3. The neural
network consists of three layers: input layer, hidden layers
and output layer. In our model, one hidden layer network is
adequate. Each layer has a number of neurons. The numbers
of neurons in the input layer (Nin) and output layer (Nout )
are determined by the number of input features and output
variables, which are equal to 32 and 1 in our application,
respectively. Because too many hidden neurons reduce the
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training efficiency, and too few hidden neurons may result
in low prediction accuracy, many approaches have been
proposed to determine the number of hidden neurons. The
method proposed by Ward System [37] is used to set the
number of hidden neurons Nh, that is:

Nh =
Nin + Nout

2
+

√
Ns (5)

where Ns is the number of training samples.
The feed-forward neural network is applied in this paper.

The input layer performs the following computation of the
inputs, the inputs β1, β2, ...βn are multiplied by the weight
before it reaches the node. Once the weighted signals are col-
lected at the node, these values are added to be the weighted
sum. The equation of the weighted sum can be written with
matrices as

Vh = ωhβ + bh (6)

Where Vh, ωh and bh denote the activation, weight and
bias, respectively. The node enters the weighted sum into
the activation function and yields its output. The activation
function determines the behavior of the node.

Z = ϕ(Vh) (7)

ϕ(·) of this equation is the activation function. The most
used activation function is the sigmoid [38]. Similar with
the input layer, the hidden units are combined to give the
activations Vo of the output layer:

Vo = ωoZ + bo (8)

Finally, the activation function H is applied to obtain the
output, which, in this case, is the value of walking direction α

α = H (Vo) (9)

Given the inputs β and the output α, the proposed neural
network model can be trained to minimize the loss function
in supervised way [38].

3) DECISION TREE (DT) MODEL
The decision tree model is also a popular prediction method
because a series of simple rules is usually developed to
divide the outputs into a number of segments. The walking
direction can be predicted by the repetitive process of split-
ting. The most common tree methods include chi squared
automatic interaction detection (CHAID), classification and
regression trees (CART), and C4.5 and C5.0 [39]. The CART
is used to create the decision tree, and the least squared
method is used to produce the decision tree [40]. For each
feature, the splitting node can be obtained by solving the
problem:

min
l,s

(min
c1

∑
βk∈R1(l,s)

(αk − c1)2 +min
c2

∑
βk∈R2(l,s)

(αk − c2)2)

(10)

where l denotes the splitting feature and s denotes the value
of splitting the node. βk denotes the kth feature. c1 and c2 are

the average values of the desired walking direction belonging
to the two areas. R1(l, s) and R2(l, s) denote the two areas
divided by the splitting node:

R1(l, s) = {β|βk ≤ s},R2(l, s) = {β|βk > s} (11)

For the obtained two areas, the same procedure as described
above is conducted. The model stops splitting nodes when the
mean squared error per node drops below the the threshold,
the default threshold is 1e-6. Finally, we obtain a tree that
divides the space into N areas R1,R2,R3, ...RN .

In this paper, we focus on pedestrian flow model develop-
ment; therefore, we use the MATLAB software, which has a
machine learning and deep learning toolbox, to build the lin-
ear regression, neural network and decision tree models [41].
The default parameters are selected so that we can compare
the model performance under the same condition.

4) PREDICTION MODEL SELECTION CRITERIA
The errors of the prediction model can be defined as:

ek = αk − α̂k (12)

where αk and α̂k are the true value and predicted value
of walking direction, respectively. The mean absolute error
(MAE), root mean square error (RMSE) and R squared are
used as performance measures in our model comparison. The
three indicators are defined as follows:

MAE =
1
K

K∑
k=1

|em| (13)

RMSE =

√√√√ 1
K

K∑
k=1

(ek )2 (14)

R2 = 1−

K∑
k=1

(ek )2

K∑
k=1

(αk − α)2
(15)

where K is the number of observations and α is the average
value of the walking direction.

Because the three indicators only present the prediction
performance, however, the direction decision model (DDM)
is incorporated into the simulation model; therefore,
the model capability to describe the pedestrian flow behav-
ior should be compared to select the best DDM. In our
experiment, the individual trajectory and the collective
pattern of different models are presented in a simulated
environment.

IV. ACCELERATION AND BODY COLLISION MODEL
After predicting the value of α, the desired walking direction
−→κ = (sin(α),−cos(α)). However, the desired walking direc-
tion of all pedestrians is produced using the same prediction
model, which cannot reflect the crowd heterogeneity. To solve
this problem, we add random noise to the desired walking
direction in order to describe the variety of direction choice.
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The random noise ξ is produced from the normal distribu-
tion N (σ,µ). σ and µ are equal to the standard derivation
and the average value of the errors of the prediction model
em,m = 1, 2, 3...M . Therefore, the desired walking direction
of pedestrian i is defined as:

−→κ i = (sin(αi + ξi),−cos(αi + ξi)), ξi ∼ N (σ,µ) (16)

The pedestrians accelerate and walk at their desired speed.
The acceleration is defined as:

d−→vi
dt
=

(vfi
−→κ i −

−→vi )

τ
(17)

where τ is the pedestrian relaxation time, −→vi is the walking

speed of pedestrian i and
−→

vfi is the desired walking speed
of pedestrian i. Assume that the body of a pedestrian is a
circle. Let ri denote the radius of pedestrian i. To avoid
collisions with neighboring pedestrians and walls, the repul-
sive force from neighboring pedestrians can be defined as
follows:

fij = ωg(rij − dij) Enij (18)

where rij = ri + rj, dij is the distance between pedestrian i
and j. If the pedestrians touch each other, rij − dij > 0, then
g(x) = x, otherwise, g(x) = 0. Enij is the normalized vector
pointing from pedestrian j to i. Similarly, the repulsive force
from neighboring walls can be defined as:

fiw = ωg(ri − diw) Eniw (19)

where diw is the distance between pedestrian i and wall w. Eniw
is the normalized vector pointing from wall w to pedestrian i.
In summary, the pedestrian can be regarded as an agent who
is driven by the force

d−→vi
dt
=

(vfi
−→e −−→vi )

τ
+

∑
fij

mi
+

∑
fiw
mi

(20)

where mi is the mass of pedestrian i. Therefore, the location
of pedestrian i can be updated as follows:

d−→pi
dt
=
−→vi (21)

Because the model is proposed by integrating the three pre-
diction models and the social force model, we can obtain
three pedestrian flow models named LR-SFM, NN-SFM and
DT-SFM.

V. RESULTS
A. DATA DESCRIPTION
The data used in this paper comes from the bidirectional
pedestrian flow experiment [42]. The pedestrian trajectories
are recorded using PeTrack software and a marker-based
tracking algorithm [43]. Fig.4 shows the snapshot and the
corresponding trajectories. The features are extracted from
the trajectories and 166725 samples are obtained finally.

FIGURE 4. Snapshot and pedestrian trajectories.

FIGURE 5. Correlation coefficient of each two different features.

FIGURE 6. Desired direction calculation.

B. PREDICTION PERFORMANCE COMPARISON
The correlation of the selected features is depicted in Fig.5.
We found that the correlation coefficient of each of the
two different features ranges from -0.71 to 0.4926. There-
fore, we believe that the 32 selected features are indepen-
dent and thus can be used to predict the desired walking
direction.

The time interval for collecting data in the experiment
is 0.0625 s, which is so small that the desired walk-
ing direction decision cannot be reflected. Furthermore,
the walking direction in real life will change if a body
collision occurs; therefore, we adopt a larger time interval
to reduce the effect of collisions on the desired walking
direction, and then the desired walking direction can be
obtained as indicated by Fig.6. The time interval is set to
30 times of 0.0625 s (1.875 s) s in our experiment because
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FIGURE 7. The relationship between direction decision and relative distance, (a)(b)left-going pedestrians, (c)(d)right-going pedestrians.

the performance of the three models is acceptable in this
case.

Fig.7 shows the relationship between direction decision
and relative distance. Fig.7a and Fig.7b show the relation-
ship between direction decision and relative distance derived
from the trajectories of left-going pedestrians. Fig.7c and
Fig.7d show the relationship between direction decision and
relative distance derived from the trajectories of right-going
pedestrians. The standard deviation is used to denote the
direction diversity as shown in Fig.7b and Fig.7d. If the
relative distance is shorter, the pedestrian prefers to change
his/her walking direction in a larger range as shown in Fig.7a
and Fig.7c. As a result, the standard deviation of direction
choice of left-going pedestrians decreases from 0.50 to 0 as
the relative distance increases from 0.5 m to 4 m, the stan-
dard deviation of direction choice of right-going pedestrians
decreases from 0.40 to 0.04 as the relative distance increases
from 0.90 m to 4.90 m.

The longer relative distance means less congestion in the
pedestrians’ vision, therefore the pedestrians can walk with
a free walking speed and thus have no need to adjust their
direction if the relative distance is long enough. The results

show that the relative distance can affect the direction
decision behavior of pedestrians and the relative distance
features should be used to determine the desired walking
direction.

Fig.8 shows the relationship between direction decision
and relative speed. Fig.8a and Fig.8b show the relationship
between direction decision and relative speed derived from
the trajectories of left-going pedestrians. Fig.8c and Fig.8d
show the relationship between direction decision and relative
speed derived from the trajectories of right-going pedestri-
ans. The standard deviation is used to denote the direction
diversity as shown in Fig.8b and Fig.8d. If the relative speed
is smaller, the pedestrian prefers to change his/her walking
direction in a larger range as shown in Fig.8a and Fig.8c. As a
result, the standard deviation of direction choice of left-going
pedestrians decreases from 0.50 to 0.027 as the relative speed
increases from 0.259 m/s to 1.6 m/s, the standard deviation
of direction choice of right-going pedestrians decreases from
0.40 to 0.05 as the relative distance increases from 0.29 m/s
to 1.6 m/s. The longer relative distance means less congestion
in the pedestrians’ vision, therefore the pedestrians can walk
with a free walking speed and thus have no need to adjust
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FIGURE 8. The relationship between direction decision and relative speed, (a)(b)left-going pedestrians, (c)(d)right-going pedestrians.

TABLE 1. Prediction performance of the DDM.

their direction if the relative distance is long enough. The
results show that the relative speed can affect the direction
decision behavior of pedestrians and the relative speed
features should be used to determine the desired walking
direction.

The performance of the three prediction models is com-
pared when the vision field of pedestrians θ = π . Table.1
lists the MAE, RMSE and R squared of the three prediction
models. As seen in Table.1, the DT model performs much
better than the other two models because it has the lowest
MAE, the lowest RMSE and the highest R squared. There-
fore, the DTmodel is the best model for predicting the desired
walking direction of pedestrians.

The effect of the number of neighboring pedestrians on
the RMSE is depicted in Fig.9. As described in section III-A,

FIGURE 9. Effect of number of neighboring pedestrians on the RMSE.

more neighboring pedestrians produce more features. how-
ever, the DT model has the best prediction performance
when the number of neighboring pedestrians is equal to 7.
The result shows that the pedestrians make direction deci-
sion based on the state of 7 neighboring pedestrians at
most. Therefore, 7 neighboring pedestrians are selected
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TABLE 2. The number of corresponding features.

FIGURE 10. Feature importance measure.

FIGURE 11. Trajectories recorded in the simulation.

FIGURE 12. The initial state of the bidirectional corridor.

to produce the features to efficiently predict the walking
direction.

We did’t present the tree graph because the decision
tree has 2653 nodes (1327 leaf nodes and 1326 branch
nodes). We estimate importance values of features by sum-
ming changes in the risk due to splits on every feature and
dividing the sum by the number of branch nodes. A bar
graph is depicted in Fig.10 to compare the estimates. The
number and the corresponding features in Fig.10 is listed
in Table.2. The top two features influencing the desired
walking direction prediction are the distance to the target
and wall because the pedestrians want to walk to the des-
tination in the physical space restricted by the walls. The
relative distance to the neighboring pedestrians are also con-
sidered as important features in the DT model. It can be
found that the importance of relative distance to the nearer
neighbors is much more than the counterpart to the farther
neighbors which accords with the perceptual characteristics
of pedestrians. We also found that the relative speed fea-
tures have the least importance. The fact reveals that the
pedestrians prefer to make direction decision based on the
relative distance because the pedestrians can sense the relative
distance features much more easily than the relative speed
features.

C. MODEL PERFORMANCE COMPARISON
The prediction models are also evaluated by predict-
ing the desired walking direction in a simulation environ-
ment. The performances of different models, including the
proposed model with different prediction models (LR-SFM,
NN-SFM, DT-SFM) and the original social force model,
are compared. The parameters are defined as follows: the
time step of the simulation model is 0.0625 s, the desired
walking speed vfi = 1.1 m/s based on the experimen-
tal data and the relaxation time τ = 0.5 s in Eq.17,
the pedestrian radius ri = 0.25m and ω = 2000 N in
Eq.18 and 19.

FIGURE 13. The traffic state of the corridor at time=5.625 s.

15034 VOLUME 8, 2020



Z. Zhang, L. Jia: Direction-Decision Learning Based Pedestrian Flow Behavior Investigation

FIGURE 14. Collision force in SFM and DT-SFM.

1) INDIVIDUAL TRAJECTORIES
First, we tested the model in the context of simple interac-
tion situations involving two pedestrians avoiding each other.
One pedestrian passed the other pedestrian standing in the
corridor with a width of 3 m and a length of 20 m. The
trajectories resulting from the DT-SFM, SFM and LR-SFM
were recorded in Fig.11. The pedestrian in SFM changed
his/her direction only when he/she encountered standing
pedestrians; however, the pedestrian in DT-SFM, LR-SFM
and NN-SFM selected the direction in which the collision
could be avoided in advance. As shown in Fig.11, the length
of the trajectory produced by the SFM, NN-SFM, LR-SFM
and DT-SFM is 20.07 m, 19.45 m, 19.11 m and 19.05 m;
therefore, the DT-SFM produced the shortest path for the
pedestrians. Furthermore, the LR-SFM produced the desired
walking direction, which caused the moving pedestrian to
hit the wall after the moving pedestrian passed the standing
pedestrian.

2) COLLECTIVE PATTERN OF MOTION
We compared the performance of the proposed model in
the simulation of bidirectional pedestrian flow. The initial
state is depicted in Fig.12. The length and width of the
bidirectional corridor were 20 m and 4 m, respectively.
There were 43 pedestrians walking to the right end of the
corridor and 40 pedestrians walking to the left end of the
corridor.

The pedestrian traffic state of the corridor at time=5.625 s
is depicted in Fig.13. Fig.13a shows the pedestrian

traffic state of the SFM model; Lane formation is one
typical phenomenon in pedestrian counter flow, how-
ever, the lanes are not formed clearly in the bidirec-
tional pedestrian flow because the pedestrians in the SFM
cannot change their desired walking direction based on
the neighboring environment. Fig.13b shows the pedes-
trian traffic state of the NN-SFM model; some pedestri-
ans in the NN-SFM cannot realize their destination clearly,
and the lane formation phenomenon also was not found
in the bidirectional pedestrian flow because the NN-SFM
had poor prediction performance. The pedestrian traffic
state of the LR-SFM model shows that pedestrians could
walk to their destination; however, the lane formation
phenomenon was not found in Fig.13c due to the poor
prediction performance of the linear regression model.
The pedestrian traffic state of the DT-SFM model shows
that pedestrians could walk to their destination, and the
clear lane formation phenomenon was shown in Fig.13d
because the decision tree model had the best prediction
performance.

The collision force (Eq.18 and 19) experienced by
pedestrians in SFM and DT-SFM is depicted in Fig.14.
As shown in Fig.14, the collision force of SFM and
DT-SFM increased largely when the two pedestrian streams
met; however, the collision force of DT-SFM increased
much less than the SFM. The sum of the collision force
of SFM was 16876 N, while the sum of the colli-
sion force of DT-SFM was 13658 N. Therefore, the pro-
posed direction decision model reduced the collision level
largely, which meets the expectation of pedestrians. The
results show that pedestrians tend to walk in uncongested
conditions.

Fig.15 compared the simulation performance of our model
and the artificial intelligence model proposed by [16]. It can
be seen that some pedestrians in Fig.15a overlap with neigh-
boring pedestrians, and some pedestrians hit the wall; there-
fore, the collision avoidance problem cannot be solved if only
the data-driven velocity prediction model is used. We believe
that the collision avoidance problem can be solved if enough
data are used to train the AIM; however, it will require
considerable time and money to collect data. No conflicts
in Fig.15b occur because the collision avoidance model is
applied; therefore, our model solved the collision avoidance
problem.

FIGURE 15. The traffic state of the corridor at time=5.625 s.
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FIGURE 16. Fundamental diagram comparison.

FIGURE 17. Effect of visibility field on the walking time.

The speed-density relationship resulting from the DT-SFM
and experiment is shown in Fig.16. The R squared is
0.998 and the root mean squared error is 0.0099, therefore,
the obtained fundamental diagram fit well with the experi-
mental data. The speed is a linear decreasing function with
respect to density.

D. SENSITIVITY ANALYSIS
In the proposedmodel, it is difficult to determine the visibility
field and the desire to change direction, therefore, the effect

of visibility field and the desire to change direction on the
pedestrian flow is investigated in this section.

1) VISIBILITY FIELD (θ)
Fig.17 depicts the relationship between the visibility field
and walking time. The walking time decreased from 24.5s
to 19.13s as the visibility field of pedestrians increased from
1.92 to 2.8, and then the walking time increased from 19.13s
to 20.56s as the visibility field of pedestrians increased
from 2.8 to 3.316. Therefore, there is an optimal visibil-
ity field to realize the highest traffic efficiency. The results
show that the traffic efficiency can be improved by con-
sidering the effect of neighboring pedestrians in a larger
visibility range when the visibility field θ < 2.8, however,
when the visibility field θ ≥ 2.8, the traffic efficiency
can not be improved although a larger visibility range is
adopted.

2) DIRECTION CHANGING FREQUENCY
We defined the time interval of desired walking direction
as the time from the start to the end of desired walk-
ing direction α. The time interval of the desired walking
direction reflects the direction changing frequency and is
determined by the neighborhood environment. For exam-
ple, if the time interval of the desired walking direction is
0.5 s, the pedestrians change their direction 2 times every
1 second. Therefore, we analyzed the effect of direction
changing frequency on pedestrian flow. Fig.18 depicts the
pedestrians’ trajectory when the time interval of direction
changing was equal to 0.0625 s, 0.625 s, 1.25 s, and 1.875 s.
It can be seen that pedestrians with higher direction changing
frequency avoided conflicts from the counterflow in a timely
manner; thus, fewer trajectories intersected in Fig.18c and
18d and thus the corresponding collision forces are lower
(13658 N, 14532 N); however, the pedestrians with low
direction changing frequency could not avoid conflicts from
the counterflow, and more trajectories intersected in Fig.18a
and 18b and thus the corresponding collision forces are
larger (17722 N, 23319 N).

FIGURE 18. The trajectories of pedestrians and collision force under various direction changing frequencies.
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VI. CONCLUSION AND EXTENSION
We proposed a microscopic simulation model of pedestrian
flow by combining the direction decision and social force
model. First, the trajectory of pedestrians from video was
collected to train the prediction models, and the model with
the best performance was used to predict the desired walking
direction of pedestrians in simulation. Second, the accelera-
tion and collision avoidance model was proposed to simulate
the crowd movement in corridors. Finally, an experiment was
conducted to prove the efficiency of the model.

The feature importance, which reflects the effect of each
feature on the desired direction, was measured. The corri-
dor geometry was the most important factor influencing the
desired walking direction, and the relative distance features
were much more important than the relative velocity features.
The relative distance features to the nearer pedestrian were
more important than the counterpart to farther pedestrians.

The proposed model can be used to simulate the pedestrian
counterflow in corridors with various widths and lengths.
The DT-SFM performs better in simulating the individual
trajectory and lane formation of bidirectional pedestrian flow
than the other models. Compared to the AIM, which uses
only the machine learning-based prediction model, the pro-
posed DT-SFM can simulate the collision avoidance behav-
ior of pedestrians. Compared to the SFM, collisions can
be largely reduced by the DDM. The speed-density rela-
tionship from the simulation model fits the experimental
data well.

The sensitivity analysis shows that there is an optimal
visibility field to realize the highest traffic efficiency. The
direction changing frequency has effects on the lane forma-
tion of bidirectional pedestrian flow. The simulation results
show that pedestrians with high direction changing frequency
prefer to avoid conflicts from the counterflow and that pedes-
trians with similar directions prefer to flock together. How-
ever, there are more trajectory conflicts if the pedestrians do
not change their desired walking direction frequently accord-
ing to the dynamic neighboring environment. In the future,
the trajectory data of pedestrians in corridors with various
geometries can also be used to train the desired walking
direction model, and the desired walking direction model
will be combined with other microscopic pedestrian flow
models, such as the cellular automata model, to simulate the
pedestrian flow.
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