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ABSTRACT This paper considers the consensus control problem of multi-agent systems (MAS) with
second-order hyperbolic distributed parameter models. Based on the framework of network topologies, a PI-
type iterative learning control protocol is proposed by using the nearest neighbor knowledge. Using Gronwall
inequality, a sufficient condition for the convergence of the consensus errors with respect to the iteration
index is obtained. Finally, the validity of the proposed method is verified by two numerical examples.

INDEX TERMS Multi-agent systems, iterative learning control, Gronwall inequality, hyperbolic distributed
parameter system.

I. INTRODUCTION
Iterative learning control (ILC) is an effective technique of
tracking control aiming at improving system tracking per-
formance from trial to trial in a repetitive mode [1], [2].
The basic idea is to use information collected from previous
executions of the same task repetitively to form the control
action for the current operation in order to improve tracking
performances from iteration to iteration [3]–[5]. In the last
three decades, it has been widely applied in many fields and
applications [6]–[8].

One of the major analysis tools have been used in the
design of ILC is the contraction mapping method [8]–[10].
A frequency-domain criteria for the convergence of ILC was
derived in [9]. In [10], a PI controller combined with a simple
ILC algorithm was designed for mechanical ventilator topol-
ogy with periodic disturbance. The two dimension (2D) ana-
lytical model is often utilized to investigate the convergence
of ILC. Several robust ILC schemes in time domain were pro-
posed in [11]–[13] by using an equivalent 2D system model.
A 2D delay compensation based ILC for batch processes with
both input and state delays was investigated in [14]. Compos-
ite energy function (CEF) is another useful method for the
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design of ILC [15]. On the basis of CEF, a boundary ILC law
was proposed in [16] to guarantee the learning convergence.
A norm-optimal ILC algorithm incorporating variable cycle
durations was developed in [17]. The results confirmed that
the algorithm is able to prevent the dilatation of the ventricle
and adapt to varying cycle lengths.

Distributed parameter systems (DPS) are described by
partial differential equations, such as heat transfer and dif-
fusion, vibration and fluid dynamical models, whose states
depend on spatial position and time [18], [19]. In recent
years, the application of ILC to distributed parameter systems
has become a new topic. To attenuate the unknown periodic
speed variation for a stretched string system on a transporter,
a differential-difference type ILC was augmented in [20].
In [21], an ILC of flow rate was considered in a center pivot
irrigator used in dry-land farming. The similar ILC scheme
was combined to compensate the unknown periodic motion
for axially moving material systems in [22]. The convergence
condition and robustness of the P-type ILC for parabolic heat
conduction DPS were discussed in [23]. In [24], ILC with
forgetting factor was proposed and the conditions for conver-
gence of algorithm were established. In [25], a P-type ILC
scheme was proposed for a class of second-order hyperbolic
DPSs with uncertainties. The robust boundary ILC for the
output tracking and disturbance attenuation of the nonlinear
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hyperbolic system was addressed in [26]. For dynamical
systems governed by partial differential inclusions, a numer-
ical solution for finite time tracking problem based on ILC
technique was presented in [27].

Multi-agent systems (MAS) are a collection of mutiple
computable agents, in which the agents have communication,
sensing and execution capabilities [28]. Nowadays, is widely
used in satellite attitude control, multi-mobile robots and self-
organized underwater fleet. In very recent years, ILC-based
consensus control of MAS has attracted much attention.
A new distributed adaptive ILC scheme for nonlinear MAS
with uncertainties was presented in [29]. In [30], the learning
consensus problem for heterogenous high-order nonlinear
MAS with output constraints was considered with the help of
a novel barrier Lyapunov function. In [31], a PI-type ILC was
applied to both linear and nonlinear fractional-order MAS to
solve consensus tacking problem. In very recently, the study
on the consensus control via ILC for MAS with DPS has
also received considerable attention [32], [33]. Based on the
framework of network topologies, a consensus-based ILC
protocol was proposed for a class ofMASdescribedwithDPS
in [32]. The consensus control problem of distributed param-
eter models MAS with time-delay was considered in [33],
and the conclusions were also extended to Lipschitz nonlinear
case. In [34], [35], a second-order iterative learning consensus
control protocol was proposed for MAS with parabolic DPS
or hyperbolic DPS.

The study of this paper is motivated by the following facts.
Firstly, up to the present, most of the references that address
ILC of MASs are focusing on P-type ILC, where the accu-
mulated errors were neglected. Secondly, many ILC control
of MAS for DPS, the identical initialization condition was
used, where the output of each follower agent was required to
start from the same initial value of the leader. In fact, not all
the follower agents can obtain the information of the leader,
therefore, the identical initialization condition is not practical.
Thirdly, all the above literatures that discussed the consensus
of MAS were described by ordinary differential equations
or first order partial differential equation (PDE). However,
in practice, the spatial dynamics of MAS is related to second-
order PDE is often exists.

The main contributions are as follows. 1) Extending to
the consensus control of MAS for second-order hyperbolic
distributed parameter models, and using the nearest neighbor
knowledge and the prior information of the control input,
a PI-type ILC protocol with initial state learning is proposed
and the existing result is generalized. 2) Using Cauchy-
Schwarz inequality and Gronwall inequality, the convergence
analysis for consensus errors is given in detail. The obtained
condition is less conservative than the existing one.

The rest of this paper is organized as follows: Some prelim-
inaries and problem formulation are presented in Section II.
The main results are derived in Section III. Section IV
present two numerical examples that demonstrates the effec-
tiveness of the method. Finally, some conclusions are drawn
in Section V.

Throughout this paper, Rn denotes an n-dimensional
Euclidean space, Im means an m × m dimensional
identity matrix. For the n dimensional vector W =

(w1,w2, · · · ,wn)T , its 2-norm for the n-dimensional vector
w = (w1, w2, · · · , wn) is defined as ‖w‖ =

√∑n
i=1 w

2
i

and the spectrum norm of the n × n -order square matrix A
is ‖A‖ =

√
λmax(ATA), where λmax represents the maximum

eigenvalue. Let L2(�) be Hilbert space. If Qi ∈ L2(�)(i =
1, 2, · · · , n), we define Q = (Q1, Q2, · · · , Qn) ∈
Rn⋂L2(�), then ‖Q‖L2 = {

∫
�
(Q(x)TQ(x))dx}

1
2 . For

the function f (x, t) : � × [0,T ] → Rn, f (x, t) ∈
Rn⋂L2(�), t ∈ [0,T ], we define the norm of (L2, λ) as

‖f (x, t)‖(L2, λ) = sup
t∈[0, T ]

{‖f (x, t)‖L2e
−λt
}, λ > 0.

II. PRELIMINARIES AND PROBLEM FORMULATION
Some basic properties are first introduced, which will be used
in the following sections.
Lemma 1 [36]: Let M ∈ Rn×m, N ∈ Rn×l , ζ ∈ Rm,

η ∈ Rl . Then

2ζ TMTNη ≤ εζ TMTMζ +
1
ε
ηTNTNη.

Lemma 2 (Gronwall Inequality [37]): Let M ∈ R, u(t),
a ≥ 0 and w(t) be continuous functions on t ∈ [t0,∞). If

u(t) ≤ M +
∫ t

0

[
au(s)+ bw(s)

]
ds,

then

u(t) ≤ Meat +
∫ t

0
ea(t−s)bw(s)ds.

In order to describe the connection among these agents,
a directed graph G = (V,E,A) will be used, where V =
{1, 2, · · · ,N } and E ⊆ V × V are the sets of vertices and
edges of the graph G, respectively. In G, we use the ith vertex
to represent the ith agent, and use a directed edge from i
to j to represent an ordered pair (i, j) ∈ E, which means
that agent j can directly receive information from agent i.
The communication graph can be represented by two types
of matrices: the adjacency matrix A = (ai,j) ∈ RN×N with
ai,j = 1 if (i, j) ∈ E and ai,j = 0, otherwise. The Laplacian
matrix L = [lij] ∈ RN×N is denoted as L = D−A,where D =
diag {d1, d2, · · · , dN } is the degree matrix whose diagonal
elements are defined by di =

∑N
j=1 aij, i ∈ {1, 2, · · · ,N }.

It is well known that Laplace matrix L has a simple zero
eigenvalue and all the other eigenvalues have positive real
parts if and only if G has a directed spanning tree.
In this paper, we consider a set of N agents, whose dynam-

ics are described by the following second-order hyperbolic
distributed parameter systems
∂2qi,k (x, t)

∂t2
=D4qi,k (x, t)+Aqi,k (x, t)+Bui,k (x, t),

yi,k (x, t) = Cqi,k (x, t)+ Gui,k (x, t),
(1)

where i ∈ {1, 2, . . . ,N } = N̄ , subscript k denotes the
iterative number of the process; x and t respectively denote
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space and time variables, (x, t) ∈ � × [0,T ]; � = [a, b]
is a bounded open subset with smooth boundary ∂�; 1 =
∂2

∂x2
is a Laplace operator on �. qi,k (·, ·) ∈ Rn, ui,k (·, ·) ∈

Rp, yi,k (·, ·) ∈ Rm are the state, input and output of the ith
agent at the kth iteration, respectively. d > 0 denotes the
constant time-delay. A, B, C, D, G are constant matrices of
appropriate dimensions and D > 0, G 6= 0.

The corresponding boundary condition of system (1) is
given as

qi,k (a, t) = fi,1(t), qi,k (b, t) = fi,2(t), (2)∥∥∥∂qi,k+1(x, 0)
∂t

−
∂qi,k (x, 0)

∂t

∥∥∥2
L2
≤ lrk , (3)

∂qi,k+1(x, t)
∂x

∣∣∣
t=0
=
∂qi,k (x, t)

∂x

∣∣∣
t=0
. (4)

where i ∈ N̄ , (x, t) ∈ ∂�× [0,T ], l > 0 and 0 < r < 1.
Definition 1 ( [38]): For MAS (1), protocols ui,k (x, t) are

said to solve consensus if for any initial and boundary values,
the states of agents satisfy

lim
k→∞

‖ yj,k (x, t)− yi,k (x, t) ‖L2= 0, i, j ∈ N̄ . (5)

Let yr (x, t), (x, t) ∈ �× [0,T ] be the desired sufficiently
smooth trajectory for consensus tracking, which is accessible
to a subset of followers only. We also regard yr (x, t) as a
leader. Thus, for all agents, the consensus target of system (1)
is equivalent to finding the correct control inputs ui,k (x, t)
such that

lim
k→∞

‖ yr (x, t)− yi,k (x, t) ‖L2= 0, i ∈ N̄ . (6)

To solve the consensus target (5) (or (6)), we construct the
following distributed PI-type ILC protocol at the (k + 1)th
iteration for each agent:{
ui,k+1(x, t)=ui,k (x, t)+3ηi,k (x, t)+0

∫ t
0 ηi,k (x, τ )dτ,

qi,k+1(x, 0) = qi,k (x, 0)+ ϒηi,k (x, 0),
(7)

where ui,1(x, t) is given initial input, qi,1(x, 0) is the initial
state of the agent for the iteration, 0, 3 and ϒ are learning
gain matrices to be determined later. ηi,k (x, t) is the available
information at the (k + 1)th iteration for the ith agent which
denoted by

ηi,k (x, t) =
∑
l∈Ni

al,i[yl,k (x, t)− yi,k (x, t)]

+ si[yr (x, t)− yi,k (x, t)], (8)

where i denotes the agent index, Ni is a collection of neighbor
agents of agent i. si = 1 if the ith agent can access the desired
trajectory and si = 0 otherwise.
Remark 1: Parabolic DPS and hyperbolic DPS are two

kinds of themost important PDEs. Studies ILC-based consen-
sus for the MAS with parabolic DPS has been widely inves-
tigated [33], [34], while ILC-based consensus for the MAS
with hyperbolic DPS are limited. In this paper, ILC technique
is applied to the consensus control of MAS described by a
class of second-order hyperbolic DPS.

Remark 2: PI-type ILC protocol (7) is borrowed from [31].
When 0 = 0, it is degenerated to the case of [25], [33],
but without initial state learning. That is to say, the pro-
posed control algorithm is an extension of the learning con-
trol algorithm developed in [25], [33]. On the other hand,
0
∫ t
0 ηi,k (x, τ )dτ is a feedback of integral of the local neigh-

bor output error, which can help to eliminate the steady-state
error.

Let ei,k (x, t) = yr (x, t) − yi,k (x, t) be the tracking error.
Then, (8) can be rewritten as

ηi,k (x, t)=
∑
l∈Ni

al,i[ei,k (x, t)−el,k (x, t)]+siei,k (x, t). (9)

For the kth iteration, we define

ηk (x, t) = [ηT1,k (x, t) η
T
2,k (x, t) · · · η

T
N ,k (x, t))]

T ,

qk (x, t) = [qT1,k (x, t) q
T
2,k (x, t) · · · q

T
N ,k (x, t)]

T ,

ek (x, t) = [eT1,k (x, t) e
T
2,k (x, t) · · · e

T
N ,k (x, t))]

T .

Therefore, using Kronecker product, we can write (1) and (9)
in the following compact forms

∂2qk (x, t)
∂t2

= (IN ⊗ D)4qk (x, t)+ (IN ⊗ A)qk (x, t)

+(IN ⊗ B)uk (x, t),
yk (x, t) = (IN ⊗ C)qk (x, t)+ (IN ⊗ G)uk (x, t),

(10)

and

ηk (x, t) = ((L + S)⊗ Im)ek (x, t), (11)

respectively. Besides, the compact form of (7) is
uk+1(x, t) = uk (x, t)+ ((L + S)⊗3)ek (x, t)

+((L + S)⊗ 0)
∫ t

0
ek (x, τ )dτ,

qk+1(x, 0) = qk (x, 0)+ ((L + S)⊗ ϒ)ek (x, 0),

(12)

where L denotes graph Laplacian, and

S = diag (s1, s2, · · · , sN ), si ≥ 0, i ∈ N̄ .

III. MAIN RESULTS
To obtain the main results, we first give following lemmas.
Lemma 3: For k ≥ 1, denote

δqk+1(x, t) = qk+1(x, t)− qk (x, t),

δuk+1(x, t) = uk+1(x, t)− uk (x, t).

Then

δuk+1(x, t) = ((L + S)⊗3)ek (x, t)

+ ((L + S)⊗ 0)
∫ t

0
ek (x, τ )dτ, (13)

and

ek+1(x, t) = ek (x, t)− (IN ⊗ C)δqk+1(x, t)

− (IN ⊗ G)δuk+1(x, t). (14)

Proof: The proof is simple, which is omitted here.
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Lemma 4: For MAS (1), considering PI-type ILC
protocol (7), if

‖INm − (L + S)⊗ Cϒ − (L + S)⊗ G3‖2 < 1, (15)

then

lim
k→∞
‖ek (x, 0)‖L2 = 0. (16)

Proof: It follows form (13) and (14), we have

δuk+1(x, 0) = ((L + S)⊗3)ek (x, 0), (17)

and

ek+1(x, 0) = ek (x, 0)− (IN ⊗ C)δqk+1(x, 0)

− (IN ⊗ G)δuk+1(x, 0). (18)

From (12), one has

δqk+1(x, 0) = ((L + S)⊗ ϒ)ek (x, 0). (19)

So, combining with (17), (18) and (19), we have

ek+1(x, 0) = 5ek (x, 0), (20)

where 5 = INm − (L + S) ⊗ Cϒ − (L + S) ⊗ G3. Using
condition (15) and the contracting mapping principle, we can
deduce

lim
k→∞
‖ek (x, 0)‖L2 = 0. (21)

The proof is complete.
Lemma 5: Choosing sufficiently large enough λ and

denoting that

c1 = (1+ ε1 + ε2) ‖ INm − ((L + S)⊗ G3)‖2,

c2 = (1+
1
ε1
+ ε3)‖IN ⊗ CTC‖2,

c3 = (1+
1
ε2
+

1
ε3
)‖(L + S)⊗ G0‖2, ε1, ε2, ε3 > 0,

M = 2‖(L + S)⊗3‖2 +
2‖(L + S)⊗ 0‖2

λ2
,

then

‖ ek+1(x, t)‖2(L2,λ)
≤ c1‖ek (x, t)‖2(L2,λ) + c2‖δqk+1(x, t)‖

2
(L2,λ)

+
c3
λ2
‖ek (x, τ )‖2(L2,λ), (22)

‖ δuk+1(x, t)‖2(L2,λ) ≤ M‖ek (x, τ )‖
2
(L2,λ). (23)

Proof: According to the first equation in (12), we have

δuk+1(x, t) = ((L + S)⊗3)ek (x, t)

+ ((L + S)⊗ 0)
∫ t

0
ek (x, τ )dτ. (24)

Substituting (24) into (14), we get

ek+1(x, t) = (INm − ((L + S)⊗ G3))ek (x, t)

− (IN ⊗ C)δqk+1(x, t)

− ((L + S)⊗ G0)
∫ t

0
ek (x, τ )dτ. (25)

So, using Lemma 1, we have

eTk+1(x, t)ek+1(x, t)

≤ c1eTk (x, t)ek (x, t)

+ c2δqTk+1(x, t)δqk+1(x, t)

+ c3

∫ t

0
eTk (x, τ )dτ

∫ t

0
ek (x, τ )dτ, (26)

where c1, c2, c3 are the same as in Lemma 5. This gives that,

‖ ek+1(x, t)‖2L2 ≤ c1‖ek (x, t)‖2L2 + c2‖δqk+1(x, t)‖
2
L2

+ c3
∥∥∥ ∫ t

0
ek (x, τ )dτ

∥∥∥2
L2

≤ c1‖ek (x, t)‖2L2 + c2‖δqk+1(x, t)‖
2
L2

+ c3
( ∫ t

0
‖ek (x, τ )‖L2dτ

)2
. (27)

Multiplying e−2λt on both sides of (27) and taking λ-norm,
one has (22). By the same argument, it follows from (24),
we have (23). The proof is finished.
Lemma 6: Denoting that

c6 = λmax(IN ⊗ (ATA)),

c7 = λmax(IN ⊗ (BTB))

c8 = ‖(L + S)⊗ ϒ‖2,

and choosing sufficiently large enough λ > 1+
√
c6, then

‖δqk+1(x, t)‖2(L2,λ)

≤
c8

1− c6
4(λ−1)2

‖ek (x, 0)‖2L2

+

1
2(λ−1)

1− c6
4(λ−1)2

Nlrk

+

c7
4(λ−1)2

1− c6
4(λ−1)2

‖δuk+1(x, t)‖2(L2,λ). (28)

Proof: From (10), we can see
∂2δqk (x, t)

∂t2
= (IN ⊗ D)4δqk (x, t)+ (IN ⊗ A)δqk (x, t)

+ (IN ⊗ B)δuk (x, t). (29)

Since
d
dt

∥∥∥∂δqk+1(x, t)
∂t

∥∥∥2
L2

= 2
∫
�

{(∂δqk+1(x, t)
∂t

)T ∂2δqk+1(x, t)
∂t2

}
dx,

we get

d
dt

∥∥∥∂δqk+1(x, t)
∂t

∥∥∥2
L2

= 2
∫
�

(∂δqk+1(x, t)
∂t

)T
(IN ⊗ D)4δqk+1(x, t)dx

+ 2
∫
�

(∂δqk+1(x, t)
∂t

)T
(IN ⊗ A)δqk+1(x, t)dx

+ 2
∫
�

(∂δqk+1(x, t)
∂t

)T
(IN ⊗ B)δuk+1(x, t)dx

:= I1 + I2 + I3. (30)
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Integrating by parts and using the boundary condition (2),
we have

I1 = 2
(∂δqk+1(x, t)

∂t

)T
(IN ⊗ D)

∂δqk+1(x, t)
∂x

∣∣∣
�

− 2
∫
�

{(∂2δqk+1(x, t)
∂t∂x

)T
× (IN ⊗ D)

∂δqk+1(x, t)
∂x

}
dx

≤ −c
d
dt

∥∥∥∂δqk+1(x, t)
∂x

∥∥∥2
L2
, (31)

where c = λmin(IN ⊗ D).
Using Lemma 1 to I2 and I3, we can obtain

I2 ≤
∥∥∥∂δqk+1(x, t)

∂t

∥∥∥2
L2
+ c6‖δqk+1(x, t)‖2L2 , (32)

I3 ≤
∥∥∥∂δqk+1(x, t)

∂t

∥∥∥2
L2
+ c7‖δuk+1(x, t)‖2L2 , (33)

where c6 = λmax(IN ⊗ (ATA)), c7 = λmax(IN ⊗ (BTB)).
Thus, from (30) to (33), it yields

d
dt

∥∥∥∂δqk+1(x, t)
∂t

∥∥∥2
L2
+ c

d
dt

∥∥∥∂δqk+1(x, t)
∂x

∥∥∥2
L2

≤ 2
∥∥∥∂δqk+1(x, t)

∂t

∥∥∥2
L2
+ c6‖δqk+1(x, t)‖2L2

+ c7‖δuk+1(x, t)‖2L2 . (34)

Integrating both sides of (34) above t and combining with the
boundary condition (3), we can get∥∥∥∂δqk+1(x, t)

∂t

∥∥∥2
L2

≤

∥∥∥∂δqk+1(x, t)
∂t

∥∥∥2
L2
+ c

∥∥∥∂δqk+1(x, t)
∂x

∥∥∥2
L2

≤ Nlrk + 2
∫ t

0

∥∥∥∂δqk+1(x, s)
∂s

∥∥∥2
L2
ds

+ c6

∫ t

0
‖ δqk+1(x, s)‖2L2ds

+ c7

∫ t

0
‖δuk+1(x, s)‖2L2ds. (35)

Applying Gronwall inequality, we have∥∥∥∂δqk+1(x, t)
∂t

∥∥∥2
L2

≤ Nlrke2t

+ c6

∫ t

0
e2(t−s) ‖ δqk+1(x, s)‖2L2ds

+ c7

∫ t

0
e2(t−s)‖δuk+1(x, s)‖2L2ds. (36)

As a result, for λ > 1,∥∥∥∂δqk+1(x, t)
∂t

∥∥∥2
(L2,λ)
≤Nlrk+

c6
2(λ−1)

·‖ δqk+1(x, t)‖2(L2,λ)

+
c7

2(λ− 1)
· ‖δuk+1(x, t)‖2(L2,λ). (37)

On the other hand, using the basic inequality, we get

∂(‖δqk+1(x, t)‖2L2 )

∂t

= 2
∫
�

(δqk+1(x, t))T
∂δqk+1(x, t)

∂t
dx

≤ ‖δqk+1(x, t)‖2L2 +
∥∥∥∂δqk+1(x, t)

∂t

∥∥∥2
L2
. (38)

Integrating both sides of (38) above t and using (19), we have

‖δqk+1(x, t)‖2L2 ≤ c8‖ek (x, 0)‖
2
L2 +

∫ t

0
‖δqk+1(x, s)‖2L2ds

+

∫ t

0

∥∥∥∂δqk+1(x, s)
∂s

∥∥∥2
L2
ds, (39)

where c8 = ‖(L + S)⊗ ϒ‖2.
Applying Gronwall inequality, it yields,

‖δqk+1(x, t)‖2L2 ≤ c8‖ek (x, 0)‖
2
L2e

t

+

∫ t

0
e(t−s)

∥∥∥∂δqk+1(x, s)
∂s

∥∥∥2
L2
ds. (40)

Therefore, for λ > 1,

‖δqk+1(x, t)‖2(L2,λ)

≤ c8‖ek (x, 0)‖2L2

+
1

(2λ− 1)

∥∥∥∂δqk+1(x, t)
∂t

∥∥∥2
(L2,λ)

≤ c8‖ek (x, 0)‖2L2

+
1

2(λ− 1)

∥∥∥∂δqk+1(x, t)
∂t

∥∥∥2
(L2,λ)

. (41)

Substituting (37) into (41), for λ > 1 +
√
c6, we have (28).

The proof is complete.
Theorem 1: For MAS (1), considering PI-type ILC

protocol (7), if

‖INm − (L + S)⊗ Cϒ − (L + S)⊗ G3‖2 < 1, (42)

and

‖INm − (L + S)⊗ G3‖2 <
1

1+ ε1 + ε2
, (43)

where ε1, ε2 are positive constants, then the consensus of
MAS (1) can be achieved asymptotically.

Proof: It follows from Lemma 5 and Lemma 6, we have

‖δqk+1(x, t)‖2(L2,λ)

≤
c8

1− c6
4(λ−1)2

‖ek (x, 0)‖2L2

+

1
2(λ−1)

1− c6
4(λ−1)2

Nlrk

+

c7
4(λ−1)2

1− c6
4(λ−1)2

·M‖ek (x, t)‖2(L2,λ). (44)
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Substituting (44) into (22), for λ > 1+
√
c6, we get

‖ ek+1(x, t)‖2(L2,λ)

≤ (c1 +
c3
λ2

)‖ek (x, t)‖2(L2,λ)

+
c2c8

1− c6
4(λ−1)2

‖ek (x, 0)‖2L2

+

c2
2(λ−1)

1− c6
4(λ−1)2

Nlrk

+

c2c7
4(λ−1)2

1− c6
4(λ−1)2

·M‖ek (x, t)‖2(L2,λ). (45)

Obviously, by Lemma 4, we can see that

lim
k→∞

‖ ek (x, 0) ‖L2= 0

via condition (42). Further, when λ is large enough, from (43),
we can deduce that

lim
k→∞
‖ek (x, t)‖2(L2,λ) = 0. (46)

Note that

‖ek (x, t)‖2L2 ≤ ‖ek (x, t)‖
2
L2e
−2λte2λT

≤ ‖ek (x, t)‖2(L2,λ)e
2λT . (47)

Then, it follows from (46), (47), we have

lim
k→∞

‖ ek (x, t) ‖L2= 0. (48)

This completes the proof.
The following corollaries are obvious.
Corollary 1: For MAS (1) with the initial condition

qj,k (x, 0) = 0, considering PI-type ILC protocol,

uj,k+1(x, t)=uj,k (x, t)+3ηj,k (x, t)+0
∫ t

0
ηi,k (x, τ )dτ, (49)

if

‖INm − (L + S)⊗ G3‖2 <
1

1+ ε1 + ε2
, (50)

where ε1, ε2 are positive constants, then the consensus of
MAS (1) can be achieved asymptotically.
Remark 3: The convergence condition (50) does not

include the integration gain 0. Therefore, PI-type ILC pro-
vides an extra freedom for the choices of the parameters in
controller (49).
Corollary 2: For MAS (1) with the initial condition

qj,k (x, 0) = 0, considering P-type ILC protocol,

uj,k+1(x, t) = uj,k (x, t)+3ηj,k (x, t), (51)

if

‖INm − (L + S)⊗ G3‖2 <
1

1+ ε1
, (52)

where ε1 is a positive constant, then the consensus ofMAS (1)
can be achieved asymptotically.

Remark 4: In particular, if simply setting ε1 = 1, the con-
vergence condition (52) becomes

‖INm − (L + S)⊗ G3‖2 <
1
2
, (53)

which is the same result as that in [25]. Obviously, the con-
vergence condition (52) is less conservative than (53) (See,
e.g., the Example 2 in Section 4 Numerical Examples).

IV. NUMERICAL EXAMPLES
In this section, two numerical examples are presented to
demonstrate the validity of the design method.
Example 1: Consider the second-order hyperbolic dis-

tributed parameter systems (1) with D = I2 and

A =
[
1.5 0
0 0.5

]
, B =

[
0.3 0
0.25 0.2

]
,

C =
[
−0.2 0
0 0.1

]
, G =

[
1 0
0 0.2

]
,

and (x, t) ∈ [0, 1]× [0, 1].
Assume that theMAS consist of four agents. The Laplacian

matrix is given as:

L =


1 −1 0 0
−1 2 −1 0
0 0 1 −1
0 −1 −1 2

 (54)

and S = diag {1, 0, 1, 0}. The desired reference trajectory
(the trajectory of the virtual leader) is

yr (x, t) =
[
−4 sin(π t) sin(2πx)
−4 sin(π t) sin(2πx)

]
.

We use the ILC protocol (7) and take the learning gain
matrices

3 =

[
0.3 0
0 0.2

]
,

0 =

[
0 0.10

0.20 0

]
,

ϒ =

[
0.1 0
0 0.2

]
.

Set ε1 = ε2 = 0.02. It is not difficult to verify that the
conditions in Theorem 1 are satisfied.

The numerical simulation is done with initial state values
qi,1(x, 0) = [0.02 x, 0.01 sin x]T , i = 1, 2, 3, 4. The control
input values at the beginning of learning are set to be 0.

Fig. 1 shows the output of four agents without controller.
Fig. 2 is the virtual leader and the output of four agents at the
number of iterations k = 6. It can be seen that the output of
the four agents is almost the same as the output of the virtual
leader. Fig. 3 shows the L2 norm of the tracking errors for
all agents in each iteration. When the number of iterations is
from k = 1 to k = 10, the tracking errors between them grad-
ually converges to zero in the sense of L2 norm. Therefore,
applying the designed PI-type iterative control algorithm to
the above MAS, the consensus of qi(x, t)(i = 1, 2, 3) can be
reached.
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FIGURE 1. The output of four agents without controller.

FIGURE 2. The virtual leader and the output of four agents at k = 6.

Table 1 shows comparison of tracking errors with different
ILC in 10th iteration. The errors value in the 10th iteration
is always smaller than 0.002. But the tracking errors under
PI-type ILC are smaller than those of P-type ILC, which
displays that PI-type ILC surpasses P-type ILC.
Example 2: Consider MAS with the same parameters and

conditions in Example 1 but qj,k (x, 0) = 0. In this case,

FIGURE 3. The L2 norm of the tracking errors for all agents in each
iteration.

TABLE 1. Tracking errors with different ILC.

we use the ILC protocol (51) and let the learning gain matrix

3 =

[
0.6 0.1
0.8 2

]
.

It is easy to find that

‖I8 − (L + S)⊗ G3‖2 = 0.8468 >
1
2
, (55)

which implies the convergence condition in [25] is not satis-
fied. However,

‖I8 − (L + S)⊗ G3‖2 = 0.8468 <
1

1+ 0.1
. (56)

That is to say, if we set ε1 = 0.1, then the condition in
Corollary 2 is valid. So, we can use the ILC protocol (51),
which indicates that the convergence condition presented in
this paper is less conservative than that in [25].

V. CONCLUSION
In this paper, the consensus control of MAS described
by second-order hyperbolic distributed parameter models
is studied. By using the knowledge of neighbors and con-
sidering the information transfer between any two agents,
a PI-type ILC protocol is proposed. The consensus condition
is derived, which is less conservative than the existing one in
the case of P-type ILC protocol. Two examples are simulated
and verified the effectiveness of the proposed algorithms.
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