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ABSTRACT Recently, Knowledge Graph Embedding (KGE) has attracted considerable research efforts,
since it simplifies the manipulation while preserving the inherent structure of the KG. However to some
extent, most existing KGE approaches ignore the historical changes of structural information involved in
dynamic knowledge graphs (DKGs). To deal with this problem, this paper presents a Timespan-aware
Dynamic knowledge Graph Embedding Evolution (TDG2E) method that considers temporal evolving
process of DKGs. The major innovations of our paper are two-fold. Firstly, a Gated Recurrent Units (GRU)
based model is utilized in TDG2E to deal with the dependency among sub-KGs that is inevitably involved in
the learning process of the dynamic knowledge graph embedding. Furthermore, we incorporate an auxiliary
loss to supervise the learning process of the next sub-KG by utilizing previous structural information (i.e.,
the hidden state of GRU). In contrast with existing approaches in the literature (e.g., HyTE and t-TransE),
TDG2E preserves structural information of current sub-KG and the temporal evolving process of the DKG
simultaneously. Secondly, to further deal with the time unbalance issue underlying the DKGs, a Timespan
Gate is designed in GRU. It makes TDG2E possible to model the temporal evolving process of DKGs
more effectively by incorporating the timespan between adjacent sub-KGs. Extensive experiments on two
large temporal datasets (i.e., YAGO11k and Wikidata12k) extracted from real-world KGs validate that the
proposed TDG2E significantly outperforms traditional KGE methods in terms of Mean Rank and Hit Rate.

INDEX TERMS Knowledge graph embedding, gated recurrent units, time unbalance.

I. INTRODUCTION
Recent years have witnessed the rapid growth of Knowledge
Graph (KG). A great number of KGs, including Freebase [1],
DBpedia [2], YAGO [3] and NELL [4] and so on, have
been constructed and applied successfully to many real-
world applications, ranging from semantic parsing [5], [6]
and named entity disambiguation [7], [8], to information
extraction [9], [10] and question answering [11], [12].
A KG is a large multi-relational graph in which nodes repre-
sent entities and typed edges correspond to relations among
adjacent entities. Each edge in a KG encodes a factual belief
(also called a fact) and is represented as a triple of the form
(head entity, relation, tail entity), indicating that the head
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entity and the tail entity are connected by the relation, e.g.,
(Bill Clinton, wasPresidentOf, USA). Though it is effective to
represent inevitably structured data, the underlying symbolic
nature of such triples usually makes KGs hard to manipu-
late [13]. To deal with this issue, a new research direction
known as Knowledge Graph Embedding (KGE) has been
proposed and quickly gained massive attention [14]–[20].
The main idea of KGE is to embed entities and relations
of a KG into low dimensional spaces so as to simplify the
manipulation while preserving the inherent structure of the
KG [13].

Existing research on KGE has mainly focused on static
knowledge graphs [21], [22]. However, in real-life scenarios,
KGs, such as social knowledge graphs in Twitter, citation
knowledge graphs in DBLP [23], tend to be dynamic in which
facts are only valid in a specific time period and evolve
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FIGURE 1. An illustrative example on the necessity of considering the
temporal information and evolutionary patterns of KGs. Since Bill Clinton
served as the 42th president of the United States from 1993 to 2001 and
left from the presidency in 2001, the KG shown on the top, turned into
the one below in 2001. All facts in the top KG were valid from
1993 to 2001, while all facts of the KG below were valid from
2001 to 2009.

over time. For example, as shown in Figure 1, Bill Clinton
served as the 42th president of the United States from 1993 to
2001 and left from the presidency on January 20, 2001.
According to this information, the fact (Bill Clinton, wasPres-
identOf, USA) was true only from 1993 to 2001 and disap-
peared from the KG after January 20, 2001. Facts of dynamic
KGs (DKGs) should be described with temporal information.
Since static KGE methods completely ignore the temporal
information, it makes static KGE methods fail to work on
these real-life scenarios. Thus, it is necessary to design an
embedding method for DKGs.

In order to incorporate temporal information in the learned
embeddings while maintaining the inherent structure of
DKGs, an obvious way is to fragment a DKG into multiple
static sub-KGs with each sub-KG corresponding to a spe-
cific time bin [24]. Then the embeddings can be learned on
these bins separately. Although this kind of models take into
account the temporal information of the KG in the embedding
process, they cannot explicitly model the evolving process
of DKGs. This is because these models are designed to fit
on different time bins independently, which makes it diffi-
cult to share statistical strength among different time bins.
Furthermore, the model trained independently in a specific
time bin cannot remain robust when the structure of the
KG changes drastically at a specific point. Suffering from
the aforementioned disadvantages, the existing research on
DKG embedding is rather limited. Therefore, it is critical to
design aKGEmethod that can preserve structural information
of current sub-KG, while preserving evolutionary patterns of
the DKG simultaneously.

In this paper, we propose a robust dynamic knowledge
graph embedding method called Timespan-aware Dynamic
knowledge Graph Embedding Evolution (TDG2E) to encode
temporal information directly in the learned embeddings.
TDG2E can fit the current KG structure well and consider
the historical changes of structural information. Specifically,
TDG2E fragments the temporally-scoped input KG into mul-
tiple static sub-KGs, each of which corresponds to one time
bin. And then TDG2E projects the entities and relations
of each sub-KG into temporally aware hyperplanes. Next,
a Gated Recurrent Units (GRU) [25] based model is uti-
lized to deal with the dependency among adjacent sub-KGs.
Considering that cumulative structural information leads to
the consecutive structure directly, we further incorporate an
auxiliary loss that uses previous structural information to
supervise the learning of the next sub-KG. Furthermore,
TDG2E designs a Timespan Gate in GRU to solve the time
unbalance issue faced by DKGs. We highlight our contribu-
tions as follows:

1) In contrast to the state-of-the-art dynamic KGE
methods [24], [26], which learn different sub-KGs
independently, the proposed TDG2E can preserve
structural information of individual sub-KGs, while
preserving evolutionary patterns of the DKGs. Specif-
ically, TDG2E utilizes a GRU based model to capture
dependency among adjacent sub-KGs that is inevitably
involved in DKGs. Furthermore, TDG2E introduces
an auxiliary loss, using previous structural informa-
tion (i.e., the hidden state of GRU) to supervise the
learning process of the following hyperplanes. Con-
sequently, TDG2E obtains better performance in the
applications.

2) As presented in [24], the distribution of timestamps
in the KG is unbalanced. However, existing graph
embedding methods [24], [26], [27] have not yet fully
solved this problem. To deal with this issue well,
TDG2E designs a Timespan Gate in GRU to model
the evolutionary patterns of DKGs more effectively
by incorporating the timespan between adjacent sub-
KGs. It makes TDG2E possible to control the transition
effect from past structural pattern to further structural
pattern.

Based on two large temporal datasets extracted from real-
world KGs, we have conducted extensive experiments to
evaluate the effectiveness of TDG2E. The results reveal that
the improvements are significant compared with other state-
of-the-art methods in terms of common evaluation metrics
(e.g., Mean Rank and Hit@K).

The rest of this paper is organized as follows. Section II
reviews the related work. Section III provides some prelim-
inary concepts and presents the problem. Section IV delves
into our proposed method followed by learning algorithm
in Section V. Then, the experimental results on benchmark
datasets and discussions are provided in Section VI. Finally,
we list concluding remarks and discuss the future work
in Section VII.
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II. RELATED WORK
Our work is related to static knowledge graph embedding,
dynamic graph embedding and dynamic knowledge graph
embedding.1

A. STATIC KNOWLEDGE GRAPH EMBEDDING
Extensive studies have been done on static knowledge graph
embedding. These can be roughly categorized into three dif-
ferent paradigms. TransE [15], TransH [16], TransR [17],
TransD [31], TranSparse [32] and TransF [26] are trans-
lation based approaches, whose goals are to minimize the
distance between two entities where one of them is translated
by the relation. RESCAL [14], DistMult [33], HolE [34],
ComplEx [35], SimplE [36] are matrix factorization based
models, which impose on matrices. References [37]–[39]
are deep learning-based models. Deep learning approaches
typically use feed-forward or convolutional neural networks
for scoring edges in a KG.

B. DYNAMIC GRAPH EMBEDDING
In [40], Zhu et al. propose a dynamic graph embed-
ding method based on matrix factorization. Reference [41]
explores the evolution patterns of triads, which can pre-
serve structural information and get the latent representation
vectors for vertices at different timestamps. Reference [42]
proposes a network embedding method based on Hawkes
process, which is powerful in modeling sequences.

There are some studies on recurrent graph neural
models for sequential or temporal graph-structured
data [29], [43]–[46]. The principle of these models is to
adopt a message-passing framework for aggregating nodes’
neighborhood information (e.g., via graph convolutional
operations). GN [43], [44] and RRN [45] learn node rep-
resentations with message-passing between timestamps.
EvolveGCN in [46] incorporates an RNN to learn node
representations across different time stamps. RE-NET [29]
adapts a RNN with message passing procedure between
adjacent entities to encode temporal dependency between
entity interactions.

Different from models mentioned above, our model
focuses on the dynamic knowledge graph, which is a multi-
relational, directed graph with time-stamped edges (relation-
ships) between nodes (entities).

C. DYNAMIC KNOWLEDGE GRAPH EMBEDDING
There have been some studies on incorporating temporal
information into modeling DKG. t-TransE [27] provides a
link prediction method by using temporal order constraints
to model transformation between time-sensitive relations.
Know-Evolve [47] models the occurrence of a fact as a
temporal point process and deals with concurrent events
based on a problematic formulation. Reference [48] regards

1Taking into complex interactions between entities in knowledge graph,
we separate the knowledge graph embedding from general graph as most
studies [28]–[30] do.

timestamps as a sequence of digits (from 0 to 9), then uses
LSTMs to encode the relation vectors and the time digits. [49]
models the interactions between relations and time, and stud-
ies various ways to combine the time embedding vector with
relation embedding vector, such as concatenate, sum or dot
product operations. Recently, HyTE [24] proposes a KGE
method based on projected-time translation. It represents
different times as different hyperplanes, and segregates the
embedding space into different time zones by these hyper-
planes. In contrast to previous time-sensitive KG embedding
methods, HyTE can directly encode temporal information in
the learned embeddings.

Our model focuses on Time-Conditioned tasks rather than
Time-Predicting tasks [28]. HyTE is the most similar work
to our study, however, it ignores the evolutionary patterns
of DKGs. The advantages of our method over the previous
work are two-fold. First, unlike the previous methods that
only model different time bins to fit the corresponding struc-
ture well, our proposed model also considers the changing
trend of the recent history, and introduces an auxiliary loss
to supervise the learning of embeddings. By doing so, our
model can make embeddings of KG elements preserve the
structural information of current sub-KG and evolutionary
patterns of dynamics. Second, we deal with the time unbal-
ance issue of KGs, which further improves the adaptability of
the proposed method and plays an essential role in obtaining
superior performance over different DKGs.

III. PROBLEM FORMULATION
In this section, we will first clarify some terminologies used
in this paper, and then explicitly formulate our problem. For
clarity, some important symbols used throughout this paper
are listed in Table 1.

Usually, KGs are treated as static ones, which consist of
triples in the form of (hi, ri, ti) (i ∈ [1,N ],N is the number
of facts in KG G). hi and ti are the head entity and the tail
entity respectively, which are connected by relation ri. When
triples of a KG G come with separate time dimensions, G is
dynamic. For the quadruple (hi, ri, ti, [t is, t

i
e]), [t

i
s, t

i
e] denotes

the existence time range of the fact represented by triplet
(hi, ri, ti) in the DKG G. t is denotes the start time of the fact,
and t ie denotes the end time of the fact. Given the series of
timestamps, τ ∈ {1, 2, . . . ,T}, the DKG G can be split into
T static sub-KGs G1, . . . ,GT , and each sub-KG consists of
multiple triples that are valid in the corresponding timestamp.
Thus, KG G can be expressed as

G = G1 ∪ G2 ∪ · · ·Gτ · · · ∪ GT , (1)

where τ ∈ [1,T ]. Similar to existing methods, we denote
head entity hi, tail entity ti and relation ri by hhhi ∈ Rd×1, ttt i ∈
Rd×1 and rrr i ∈ Rd×1, respectively.
The goal of dynamic KGE is to learn hhhi, ttt i, rrr i, and the

appropriate mapping functions 0τ , τ ∈ [1,T ] to fulfill the
requirements of the following three tasks:
• Head entity prediction: for an incomplete fact (?, ri, ti)
at τ , 0τ is able to predict the head entity hi.
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TABLE 1. A summary of our symbols and descriptions.

• Relation prediction: for an incomplete fact (hi, ?, ti)
at τ , 0τ is able to predict the relation ri.

• Tail entity prediction: for an incomplete fact (hi, ri, ?)
at τ , 0τ is able to predict the tail entity ti.

IV. THE PROPOSED METHOD: TDG2E
In this section, we give an overview of the proposed TDG2E
followed by detailed descriptions of main components.

A. ENCODING TEMPORAL INFORMATION
Here, we will describe how to encode temporal informa-
tion into the learned embeddings of KG elements based on
TransE. As mentioned in Section II, TransE is the most rep-
resentative static KGE method which represents both entities
and relations as vectors in the same space. Given a fact
(hi, ri, ti), the relation ri is interpreted as a translation vector rrr i
so that the embedded head entity hi and tail entity ti can
be connected by the translation vector rrr i with low error,
i.e., hhhi + rrr i ≈ ttt i. Obviously, if the triplet (hi, ri, ti) does not
hold in the KG, TransE will enforce hhhi + rrr i to be far away
from ttt i. Based on this idea, TransE can obtain embeddings
by minimizing a margin-based ranking loss over the whole
training set [15].

For example, the fact ‘‘Bill Clinton served as the president
of the United States from 1993 to 2001.’’ can be abstracted
with a triple as follows,

(hi : BillClinton, ri : wasPresidentOf , ti : USA). (2)

For another fact ‘‘GeorgeWalker Bush served as the president
of the United States from 2001 to 2009.’’, we can denote it as
follows,

(hj : GeorgeWalkerBush, rj : wasPresidentOf , tj : USA).

(3)

Since the fact that ‘‘George Walker Bush served as the 42th

president of USA while George Walker Bush served as the
43th one.’’, triple (2) and triple (3) share the same tail entity
and relation while having different head entities. If the time
information is ignored, TransE simply mandates hhhi + rrr i = ttt i
andhhhj+rrr j = ttt j. Since ttt i = ttt j and rrr i = rrr j, a wrong conclusion,
hhhi = hhhj, will be deduced by TransE.

In order to deal with the above issue, a traditional way
is to utilize temporally aware hyperplanes to fragment the
embedding space into different time bins. With the help of
the time-specific hyperplane at time τ , the representation of
the triple valid at time τ will be projected into hyperplane
wwwτ ∈ Rd×1 as follows:

Pτ (hhhi) = hhhi − (wwwτ Thhhi)wwwτ , (4)

Pτ (ttt i) = ttt i − (wwwτ T ttt i)wwwτ , (5)

Pτ (rrr i) = rrr i − (wwwτ Trrr i)wwwτ , (6)

where wwwτ is restricted as ‖wwwτ‖2 = 1. Pτ (hhhi),Pτ (rrr i) and
Pτ (ttt i) denote the projection of the head entity hi, relation ri
and tail entity ti on the hyperplanewwwτ , respectively. By doing
so, triples with the same tail entity and the same relation
at different times will be projected into different subspaces,
and the head entities of these triples will be also represented
as different embeddings in different subspaces. Therefore,
the many-to-one problem caused by time factor in DKGs
mentioned above is easily handled.

Inspired by the previous method [50], we learn the embed-
dings in Eq. 4, Eq. 5 and Eq. 6 by minimizing the following
margin-based ranking loss,

argmin
WWW ,hhh,rrr,ttt

Lemb(WWW ,hhh, rrr, ttt) =
T∑
τ=1

S+τ∑
s+i

S−τ,e,S
−
τ,r∑

s−j,e,s
−

k,r

max(0,

2Ltre(s+i )+ γ − Ltre(s−j,e)− αLtre(s
−

k,r )), (7)

where WWW = [www1,www2, · · · ,wwwT ]. Note that different from
the general margin-based ranking loss, which is widely used
among other KGE methods, the margin-based ranking loss in
Eq. 7 incorporates a task-oriented negative sampling strategy
that considers the negative sampling of not only entities but
also relations.
S+τ in Eq. 7 is the positive triple set at timestamp τ and can

be denoted as:

S+τ = {(hi, ri, ti)|(hi, ri, ti) ∈ Gτ , i ∈ [1, |Gτ |]}, (8)

|Gτ | is the size of static knowledge graph Gτ . S−τ,e is the
sampled negative triple set which is generated by replacing
the head entity or tail entity in S+τ , abstracted as:

S−τ,e = {(h
′
i, ri, ti), (hi, ri, t

′
i )|(hi, ri, ti) ∈ Gτ ,

(h′i, ri, ti) ∈ Ḡτ , (hi, ri, t ′i ) ∈ Ḡτ }, (9)

Ḡτ is the complement ofGt , i.e.,Gτ∪Ḡτ = G andGτ∩Ḡτ = ∅.
S−τ,r is the sampled negative triple set which is generated by
replacing the relation in S+τ , abstracted as:

S−τ,r = {(hi, r
′
i , ti)|(hi, ri, ti) ∈ Gτ , (hi, r ′i , ti) ∈ Ḡτ }. (10)
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Ltre in Eq. 7 is the loss corresponding to the projection of
triples on wwwτ , e.g.,

Ltre(s+i ) = Ltre(hi, ri, ti) = ‖Pτ (hhhi)+ Pτ (rrr i)− Pτ (ttt i)‖.
(11)

Following the previous method [50], a parameter α is added
forLtre(s−k,r ) in Eq. 7 to avoid excessive use of negative triples
about relations, which may affect the ability of the model to
differentiate entities.

B. TEMPORAL EVOLUTION EMBEDDING MODEL
According to previous methods [24], [27], the optimal
WWW ,hhh, rrr, ttt can be solved by minimizing Lemb in Eq. 7. How-
ever, as it can be seen from the right part of Eq. 7, Lemb is
only the total sum of the margin-based ranking criterion on
each static sub-KG. In other words, for a fixed set of hhh, rrr, ttt ,
the learning process of wwwτ corresponding to each timestamp
is independent from that of other timestamps. As a result,
the model learned by minimizing Lemb contains only sub-
KG structure information at different timestamps, but not the
temporal evolving pattern of the global DKG.

Actually, in dynamic situations, a DKG keeps evolving
and its sub-KGs are dependent [42]. Thus, it is important to
capture the dynamics of the global DKG and dependencies
among sub-KGs. Considering that Gated Recurrent Units
(GRU) [25] have achieved impressive results on a range
of sequence modeling problems such as language model-
ing and speech recognition, we adopt GRU to process the
hyperplanes at different timestamps while accumulating the
margin-based ranking criterion of each sub-KG. Specifically,
the hyperplane wwwτ is taken as the input of τ -th unit. The
τ -th update gate zzzτ , reset gate rrrτ and hidden state pppτ of GRU
are calculated as:

zzzτ = σ (RRRz[pppτ−1,wwwτ ]), (12)

rrrτ = σ (RRRr [pppτ−1,wwwτ ]), (13)

p̃ppτ = tanh(RRRp[rrrτ ◦ pppτ−1,wwwτ ]), (14)

pppτ = (111− zzzτ ) ◦ pppτ−1 + zzzτ ◦ p̃ppτ , (15)

where operator ‘‘◦’’ denotes the Hadamard product and
σ (xxx) = 1

1+exp−xxx is the sigmoid activation function. tanh
is the hyperbolic tangent activation function. RRRz ∈ Rd×d ,
RRRr ∈ Rd×d and RRRp ∈ Rd×d are all weight matrices.
pppτ is an updated hidden representation containing infor-

mation about the sequential sub-KGs until time τ . As we
all know, to some extent, cumulative structural information
at each timestamp leads to the consecutive structure directly,
so we introduce an auxiliary loss to utilize hidden represen-
tation pppτ for supervising the learning of hyperplane wwwτ+1,
which is formulated as:

Laux(WWW ,RRRz,RRRr ,RRRp) =
T−1∑
τ=1

‖pppτ −wwwτ+1‖2. (16)

The benefits of the auxiliary loss is twofold. From the
aspect of evolution learning, the introduction of the auxiliary

TABLE 2. Comparison of different time bins. (# means ‘the number of’.).

loss helps each hyperplane preserves structural information
of the current sub-KG, while preserving evolutionary patterns
of the dynamic knowledge graph simultaneously. As for the
optimization of GRU, the auxiliary loss reduces the difficulty
of back propagation when GRU deals with tons of sub-KGs.

C. TIMESPAN-AWARE TEMPORAL EVOLUTION
EMBEDDING MODEL
Another problem with Eq. 7 occurs during the application on
real DKGs. As presented in [24], the distribution of times-
tamps in the KG is unbalanced. A usual practice to deal with
this issue is to dispense the timestamps into a number of
different bins, with each bin involving 300 triples. By doing
so, less frequent year mentions are grouped into the same
time bin but years with high frequency forms individual bins.
For example, in KG Wikidata12k [49] which is extracted
from a preprocessed dataset of Wikidata, there are bins like
1596-1777, 1791-1815 with a large span as the events occur-
ring on those points of time are quite less in the KG. The years
like 2013, 2014 being highly frequent are self-contained.
Although these kind of methods can distribute the timestamps
in the KG uniformly, they ignore the impact of different
time bins on modeling the evolving process of the DKG.
Compared to the one with a short span, a time bin with a long
span has a stronger impact on its successor. For example, with
regard to time bin 1596-1777, as 300 triples appeared or dis-
appeared during the 181-year span, the KGwas steady, which
means that time bin 1596-1777 and its recent history have a
strong impact on its successor; while as far as 2013-2014 is
concerned, as 300 triples appeared or disappeared during the
1-year span, the KG changed violently, indicting that time
bin 2013-2014 and its recent history have a small impact on
its successor.

The above instance means that, to some extent, the times-
pan between sub-KGs affects the learning of hyperplanes.
Specifically, the timespan controls the effect of the corre-
sponding cumulative structural information on its successor.
To better deal with the time unbalance issue among DKGs,
we take timespans between sub-KGs into account.

Considering that the effect of timespans, determining the
effect of cumulative structural information on successors,
is similar to that of the update gate in GRU, which helps
the model to determine how much of the past information
(from previous time steps) needs to be passed along to
the future [25], we propose to add a gate like the update
gate to GRU for embodying the effect of timespans. The
gate we added is called Timespan Gate, shown as TTT τ
in Figure 2.
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FIGURE 2. Illustration of the adapted GRU proposed by us. The part we
added is marked in red. The Timespan Gate TTT τ , shown as the red circle,
is used to incorporate timespans, mitigating time unbalance of KGs. The
operator ‘‘�’’ denotes the Hadamard product and ‘‘⊕’’ represents a matrix
addition operation.

To calculate the Timespan Gate, we first denote the span
between the {τ + 1}-th time bin and τ -th time bin as the τ -th
timespan 1tτ , abstracted as,

1tτ = tτ+1s − tτs , (17)

where tτs is the start time of the τ -th time bin. The Timespan
Gate TTT τ is calculated as:

TTT τ = σ (RRRTwwwτ + σ (1tτRRRt )+ bbbt ), (18)

where RRRT ∈ Rd×d and RRRt ∈ Rd×d are the weight matrices.
bbbt is the bias.
TTT τ in Eq. 18 captures the correlation between the current

sub-KG and the timespan1tτ . Under the influence of TTT τ , p̃ppτ
in Eq. 14 and hidden representation pppτ in Eq. 15 are modified
as :

p̃ppτ = tanh(RRRp[rrrτ ◦ TTT τ ◦ pppτ−1,wwwτ ]), (19)

pppτ = (111− zzzτ ) ◦ pppτ−1 + zzzτ ◦ p̃ppτ . (20)

TTT τ is helpful in two ways. As Eq. 19 and 20 show, on one
hand, pppτ−1 is filtered by not only the reset gate rrrτ , but also
the time gate TTT τ . So TTT τ can control the influence of the
cumulative structural information. On the other hand, 1tτ
is firstly stored in TTT τ , then transferred to pppτ , and would be
transferred to pppτ+1, pppτ+2, · · · . Thus TTT τ helps to store 1tτ to
model the evolution of the DKG.

V. MODEL LEARNING
In this section, we present some details of how we can learn
the optimal parameters of TDG2E given a DKG G.
By combining Eq. 7 and Eq. 16, we derive an overall

optimization approach for the following unified optimization
problem, which is constructed by usingL(WWW ,hhh, rrr, ttt,RRR) as the
general loss function.

argmin
WWW ,hhh,rrr,ttt,RRR

L(WWW ,hhh, rrr, ttt,RRR) = βLaux(WWW ,RRR)

+ Lemb(WWW ,hhh, rrr, ttt)| < S+τ , S
−
τ,e, S

−
τ,r >,

s.t. ‖hhhi‖2 = 1, ‖rrr i‖2 = 1, ‖ttt i‖2 = 1, i ∈ [1,N ]

‖wwwτ‖2 = 1, τ ∈ [1,T ] (21)

where β is a tradeoff parameter and RRR includes RRRz,RRRr ,RRRT ,RRRt
and RRRp.

In this section, we roughly derive approaches to solve the
optimization problem constructed in Eq. 21. Firstly, we con-
vert the optimization problem to an unconstrained one,

argmin
WWW ,hhh,rrr,ttt,RRR

L(WWW ,hhh, rrr, ttt,RRR)

= βLaux(WWW ,RRR)+ Lemb(WWW ,hhh, rrr, ttt)

+ ξ

N∑
i=1

[(‖hhhi‖2 − 1)2 + (‖rrr i‖2 − 1)2 + (‖ttt i‖2 − 1)2]

+ ξ

T∑
τ=1

(‖wwwτ‖2 − 1)2 + ξ‖RRR‖22, (22)

where ξ is a tradeoff parameter. Then, we learn WWW ,hhh, rrr, ttt
and RRR alternatively and iteratively. To be specific, at the ρ-
th iteration, we first fix the matrix hhh, rrr, ttt and RRR and update
the value of each wwwτ in WWW using gradient descent based on
the following rule,

(wwwτ )ρ+1 = (wwwτ )ρ − η
∂L(WWW ,hhh, rrr, ttt,RRR)

∂wwwτ
, (23)

where η is the learning rate, and

∂L(WWW ,hhh, rrr, ttt,RRR)
∂wwwτ

=

T∑
τ=1

S+τ∑
s+i

S−τ,e,S
−
τ,r∑

s−j,e,s
−

k,r

[2∇wwwτLtre(s
+

i )

−∇wwwτLtre(s
−

j,e)− α∇wwwτLtre(s
−

k,r )]†
+β∇wwwτLaux(WWW ,RRR)+2ξ (‖wwwτ‖2−1)wwwτ ,

(24)

where [x]† is an indication function, i.e., if x > 0 then
[x]† = x, otherwise [x]† = 0. Due to the limited space,
we don’t detail ∇wwwτLaux(WWW ,RRR) in this paper.
After updating the value ofWWW , we then alternatively fixWWW

andRRR, and updatehhh, rrr and ttt respectively. Takehhhi for example,
we update it based on the following rules,

(hhhi)ρ+1 = (hhhi)ρ − η
∂L(WWW ,hhh, rrr, ttt,RRR)

∂hhhi
, (25)

where
∂L(WWW ,hhh, rrr, ttt,RRR)

∂hhhi

=

T∑
t=1

S+τ∑
s+i

S−τ,e,S
−
τ,r∑

s−j,e,s
−

k,r

[2∇hhhiLtre(s
+

i )

−∇hhhiLtre(s
−

j,e)− α∇hhhiLtre(s
−

k,r )]† + 2ξ (‖hhhi‖2 − 1)hhhi, (26)

Finally, we fix WWW ,ppp, rrr and ttt and then update RRRz, RRRr , RRRT ,
RRRp, RRRt respectively.

We update WWW ,hhh, rrr, ttt and RRR alternatively and itera-
tively until changes of values in the objective function
L(WWW ,hhh, rrr, ttt,RRR) are less than a threshold ε. Considering that
there are numerous possible combinations of negative triples,
we sample several negative triples for each training triplet.
The negative triples are randomly sampled and separated into
three groups (M negative head entity samples, M negative
relation samples, andM negative tail entity samples).
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TABLE 3. Detailed statistics of the Wikidata12K Dataset and YAGO11K
Dataset. (# means ‘the number of’.).

VI. EXPERIMENTS
In this section, we evaluate the effectiveness of our proposed
TDG2E in comparison with state-of-the-art KGE methods.
Specifically, we first introduce the experiment setup, includ-
ing datasets, compared baselines and evaluation schema.
Then, we compare the performance of TDG2E with that of
baselines and analyze the results in detail.

A. EXPERIMENT SETUP
1) DATASETS
KGs such as Wikidata [51] and YAGO [3] have time annota-
tions on a subset of the facts. We use the temporally rich sub-
KG extracted from them for training and testing our algorithm
as well as the baselines.
• YAGO11k. This is a temporal graph generated from
YAGO3 knowledge graph [52]. It is formed of 20.5k
triples and includes 10,623 entities.

• Wikidata12k. It is extracted from Wikidata proposed
by [24]. There are 40k triples in total with 12.6k entities
in it.

In order to ensure a healthy connectivity within the graph,
we filter out sparse triples via picking out the top 10 most
frequently temporally rich relations in YAGO3 and top
24 in Wikidata12k. Following the strategy adopted in HyTE,
we leave out links containing the entity with only a single
mention in the sub-KG. Statistics of the Wikidata12k dataset
and the YAGO11k dataset are summarized in Table 3.

2) BASELINES
To verify the effectiveness of TDG2E, we choose the follow-
ing six state-of-the-art models as the baselines:
• TransE [15] learns embeddings of KG elements by
translation. It is a static KGE method. It treats the rela-
tion as a translation vector between two corresponding
embedded entities, where the embedded entities can be
connected by the translation vector with low error.

• TransH [16] comes as an improvement of TransE
by introducing relation-specific hyperplanes. By doing
so, TransH enables different roles of an entity in
different relations, which plays an import role in deal-
ing with reflexive or many-to-one/one-to-many/many-
to-many relations.

• HolE [34] is utilized as a static KGE method in this
paper. It is a matrix factorization based model, attempts
to learn compositional vector space representations of
entire knowledge graphs.

• t-TransE [27] provides a link prediction method by
using temporal order constraints to model transforma-
tion between time-sensitive relations. Specifically, in the
embedding process, t-TransE enforces the embeddings
to be temporally consistent.

• HyTE [24] proposes a graph embedding method based
on projected-time translation. It represents different
times as different hyperplanes, and segregates the
embedding space into different time zones by these
hyperplanes. In contrast to existing time-aware KGE
methods, HyTE is able to encode temporal information
directly in the learned embeddings.

Note that the hyper-parameters of baselines are set as the
best ones reported in original papers.

3) EVALUATION SCHEMA
Similar to HyTE, we conduct three types of tasks on each
dataset to verify the performance of TDG2E, i,e., head
entity prediction, tail entity prediction, and relation prediction
as mentioned in Section III. The settings for these tasks
have been described in the problem statement. For example,
the head entity prediction task is to predict the missing head
entity with the given tail entity and relation. Specifically, with
the learned embeddings and temporal hyperplanes, TDG2E
uses Eq. 11 to calculate the loss corresponding to triples
formed by each potential candidates head entity and the
observed tail entity and relation. Then, TDG2E ranks the loss
for the real head entity. TDG2E finally reports the following
evaluation metrics on all test data.

• Mean Rank. Mean Rank is the averaged rank of the
missing elements. In this paper, we report Mean Rank
in all three tasks.

• Hit@K. Hit at rank K, Hit@K for short, is 1 if the
miss elements are ranked within the top K candidates,
otherwise 0. Considering the great difference in the
magnitude of the entities and relations, we evaluate
Hit@10 in the entity prediction task and Hit@1 in the
relation prediction task.

For each evaluation metric, all models are repeatedly
trained for 5 times and we report the averaged evaluation
metrics of each model.

4) IMPLEMENTATION DETAILS
Both YAGO11k and Wikidata12k contain time annotations
to the granularity of days. Following the strategy adopted
by HyTE, for the temporal scoping task, we only deal with
year level granularity by dropping the month and date infor-
mation. Timestamps are then treated as 61 and 78 different
spans for YAGO and Wikidata respectively. As mentioned
in Section IV-C, we handle the unbalance issue that may
occur in terms of triples number in a particular span by
applying a minimum threshold of 300 triples per span during
construction.

For fair comparison, we learn all models from scratch
without any pretrained parameters. We optimize all
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TABLE 4. Comparison of different models on Wikidata12K and YAGO11K datasets. ↑ means the higher the better while ↓ means the lower the better. The
best results are in bold.

TABLE 5. Optimal hyper-parameter settings of TDG2E. d denotes the
dimension of embeddings; γ is the margin; M is the number of negative
sampling triples; ξ , β and α are tradeoff parameters; η is the learning rate.

models with Adaptive Moment Estimation (Adam) and
apply a grid search to find out the best settings of hyper-
parameters. Hyper-parameters involved in TDG2E, as shown
in the loss function and the model learning process, are
tradeoff parameters β, ξ and α, learning rate η, negative
sampling triples M , embedding size of entity, relation d and
margin γ . The tradeoff parameters β, ξ , the learning rate
η and the margin γ are chosen individually from the set
{10−4, 10−3, 10−2, 10−1, 1.0, 100.0}. The best configuration
is chosen by corresponding lowest Mean Rank on the valida-
tion set. Other hyper-parameters of our proposed model are
empirically set as follows: the batch size is 256, embedding
size of entity and relation d is 128, α is 0.01, ξ is 1, η, γ
is 1 and M is 5 on both the Wikidata12K and YAGOO11k
datasets, respectively. The optimal hyper-parameter settings
are shown in Table 5.

B. PERFORMANCE COMPARISONS WITH BASELINES
In this section, we report the performance comparisons
among TDG2E and baselines. The best results generated by
different models on two datasets are presented in Table 4
and the iteration process of Hit Rate generated by different
models on YAGO11K dataset is showed in Figure 3. It can be
observed that:

1) TDG2E performs best among all methods in terms
of Mean Rank and Hit@10 on the two datasets.
Take Hit@10 as an example, as shown in Table 4,
TDG2E outperforms the best baseline by 30.053% and
16.554% on the Wikidata12K dataset for head entity
and tail entity prediction task, respectively. TDG2E
also achieves significant improvements of Mean Rank
on entity prediction tasks, including the head entity
prediction and the tail entity prediction. TDG2E per-
forms worse than the best baseline, i.e., HyTE, in terms
of Mean Rank on the relation prediction task on
YAGO11K dataset. However, note that the Mean Rank

metric is less important since it can be easily reduced
by an obstinate triple with a low rank [53].

2) Compared to performance on YAGO11K dataset, per-
formance on Wikidata12K dataset of all methods is
better. This is because YAGO11K is sparser than
Wikidata12K. With lesser training data on YAGO11K
dataset, all methods can not be trained enough, which
leads to suboptimal performance.

3) In general, the performance of TransE, TransH and
HolE on both entity prediction tasks and the relation
prediction task is worse than that of t-TransE, HyTE
and TDG2E. This is because both TransE, TransH and
HolE only learn one embedding for each entity or rela-
tionship, without taking into account the temporal
information. With the temporal information encoded
in the dynamic knowledge graphs, embeddings learned
in t-TransE, HyTE and TDG2E can easily reflect the
variations of the entity or the relation over time, there-
fore they worked better. The results of performance
comparisons among static knowledge graph embed-
ding methods and dynamic ones prove the importance
of temporal information.

4) Although t-TransE and HyTE have incorporated tem-
poral information into the learned embeddings of DKG
elements, their performance is still worse than that
of TDG2E. That is because t-TransE and HyTE are
designed to fit on different time bins independently,
which makes it difficult to share statistical strength
among different time bins. And a model trained inde-
pendently in a specific time bin cannot remain robust
when the structure of the graph changes drastically
at a specific point. In contrast, TDG2E attempts to
capture dependencies among different time bins. This
significant performance gain empirically validates our
claim that the evolutionary patterns of graph struc-
tures among sequential timestamps help to learn richer
embeddings of the dynamic knowledge graph elements,
in addition to the graph structure information at differ-
ent timestamps.

5) Comparing with others, TDG2E exhibits a little bit
unstable performance in relation prediction. This is
partly caused by negative samples of relations. Dif-
ferent from other KGE methods, which only consid-
ers the negative sampling of entities in the learning
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FIGURE 3. The iteration process of Hit Rate generated by different models on YAGO11K dataset.

TABLE 6. Instances of Qualitative Results of different methods on relation prediction task.

process of embeddings, we adopt the task-oriented
negative sampling strategy which considers not only
negative sampling of entities but also that of relations
as shown in Eq. 7. To illustrate the effect of negative
relation sampling on TDG2E’ performance intuitively,
we adapt TDG2E to TDG2E-nr that only considers the
negative sampling of entities in the learning process of
embeddings. The iteration process of Hit@1 in relation
prediction generated by TDG2E, TDG2E-nr and other
models is showed in Figure 4. From the figure, we can
see that TDG2E-nr’s performance is a little bit stable,
verifying that TDG2E’s unstable performance is in part
because of negative samples of relations.

C. PERFORMANCE COMPARISONS WITH THE VARIANT
To demonstrate the importance to consider the impact of
timespans on modeling the evolving process of DKGs, we
also compare our method TDG2E with its variant, named
as TDG2E-T. Different from TDG2E, TDG2E-T adopts the
general GRU to process each hyperplane wwwτ , without the
introduction of the Timespan Gate. In TDG2E-T, the hidden
state and auxiliary loss are calculated as Eq. 15 and 16 respec-
tively. The performance comparisons between TDG2E-T and
TDG2E are reported in Table 4.
We notice that, in general, performance of TDG2E-T on

both Wikidata12K and YAGO11K datasets does not exceed

FIGURE 4. The iteration process of Hit@1 in relation prediction generated
by different models on YAGO11K dataset.

that of TDG2E. This is because that Timespan Gate intro-
duced in TDG2E can balance the impacts of different time
bins on their successors, which plays an important role to
capture the evolving process of DKGs correctly.

D. PARAMETER ANALYSIS
As mentioned above, we optimize all models with Adap-
tive Moment Estimation (Adam) and apply a grid search to

VOLUME 8, 2020 6857



X. Tang et al.: Timespan-Aware Dynamic KGE by Incorporating Temporal Evolution

FIGURE 5. Sensitivity Study on Trade-off Parameters β. To make it intuitive and simple, we choose different epoch spans for three tasks. Note that the
three sub-figures don’t share the same order of magnitude.

find out the best settings of hyper-parameters for TDG2E.
For the trade-off parameter β in Eq. 22, which balances
the weight of auxiliary loss, we also adopt the grid search
strategy to find its most suitable value by searching in
{10−4, 10−3, 10−2, 10−1, 1.0, 100.0}.
Fig. 5 reports the potential impacts imposed by the value

of trade-off parameter β to the Mean Rank of TDG2E on
the YAGO11K dataset. As shown in Fig.5, the Mean Rank
of TDG2E on the three tasks, including the head entity pre-
diction task, the relation prediction task and the tail entity
prediction task, fluctuates greatly at first. This is because that
the epoch is small and the model is not stable. The fluctuation
of Mean Rank then tends to be mild as epoch increases. And
the Mean Rank of TDG2E gets its smallest at the maximum
epoch when β is around 100. These results indicate that an
unsuitable β will increase the Mean Rank of TDG2E, which
is not conducive to prediction. Therefore, we set the number
of trade-off parameter, β to 100.

E. QUALITATIVE RESULTS
In order to demonstrate the advantages of our approach
more intuitively, we carry out some qualitative analyses.
Table 6 reports some instances for the relation prediction task
on YAGO11K dataset. We can see that:

1) TransE is confused by the temporal relations, including
wasBornIn and diedIn. TransE predicts wrongly that
Gordon Carroll ‘‘died in Baltimore in 1928’’, while
the fact is that Gordon Carroll ‘‘was born in Balti-
more in 1928’’. However, HyTE and TDG2E can fig-
ure out the truth correctly. This instance can show the
importance of considering the temporal information
in DKGs.

2) As shown by the second instance, both TransE
and dynamic knowledge graph embedding methods,
including HyTE and TDG2E, can correctly predict
wasBornIn for the incomplete fact (Sanders Anne
Laubenthal, ?, Mobile Alabam) in 1943. However,

when the query year is 2002, TransE predicts wrongly
that Sanders Anne Laubentha ‘‘was born in Wash-
ingto’’, while HyTE and TDG2E can predict diedIn
correctly. This is because TransE is fit for static knowl-
edge graph embedding, without taking the temporal
information into consideration. In contrast, HyTE and
TDG2E encode a prior knowledge that Sanders Anne
Laubenthal ‘‘was born in 1943’’, ‘‘created Excalibur
in 1973’’ from the training data, and come to the correct
relation through the relative temporal ordering.

3) HyTE makes some type inconsistency in relation pre-
diction. For the missing fact (Lauren Miller, ?, Lake-
land Florida) in 1982, HyTE predicts isMarriedTo
wrongly. This can be attributed to the fact that HyTE
does not impose any type related constraints in its
embedding process.

4) TDG2E does well in dealing with all these seven
instances as shown in Table 6. In our qualitative experi-
ments, we can observe abundant instances of this kind.
TDG2E is naturally learning some relation ordering in
parallel with the temporal direction.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel model termed as TDG2E,
which aims to directly encode temporal information in the
learned embeddings of dynamic knowledge graphs. In con-
trast with other state-of-the-art methods of static/dynamic
embedding, the main characteristics of our approach are two
fold. Firstly, TDG2E incorporates temporal evolving process
underlying the given DKG by utilizing a GRU based model.
Furthermore, considering the impacts of cumulative struc-
tural information to the consecutive structure, TDG2E further
introduces an auxiliary loss to use hiddden state of GRU
for supervising the learning of the next sub-KG. By taking
into account the evolutionary patterns and the cumulative
structural information, the proposed TDG2E can preserve not
only structural information of current sub-KG but also evolu-
tionary patterns of the DKG. Secondly, to further deal with
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the time unbalance issue underlying the DKGs, a Timespan
Gate is designed in GRU. It enables TDG2E to model the
evolutionary patterns of DKGs more effectively by incor-
porating the timespan. Experiments on Wikidata12K dataset
and YAGO11K dataset verify the superiority of TDG2E over
other state-of-the-art baseline methods in terms of Mean
Rank and Hit Rate.

In the future, we plan to further evaluate the effectiveness
of our model on more real-world datasets. Moreover, consid-
ering that the hyperplane captures only the time information
while ignores the relation-specific information, wewould like
to incorporate comprehensive hyperplanes to further improve
our model.
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