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ABSTRACT The longest cross-sea bridge worldwide, i.e., the Hong Kong-Zhuhai-Macao Bridge (HZMB),
opened in October 2018, integrating nine cities and two special administrative regions of China’s
Guangdong-HongKong-MacaoGreater BayArea (GBA). TheGBA is one of the regions with themost active
economic vitality in China and has an important strategic position in the overall national development. Using
full-sample freeway toll data of the GBA, this paper proposed a new structured evaluation methodology that
combines the node degree, traffic volume, and topological and flow field-theory (e.g., agglomeration and
distribution) to explore the hub city ranking and evolution in this area. The data period we selected to analyze
is immediately before and after the opening of the HZMB, and we assess the counties’ centrality changes in
the GBA by analyzing these data. The findings reported in this paper can reflect the traffic hub evaluation
process and provide more macroscopic intercity transportation views to the government.

INDEX TERMS Data analysis, Guangdong-Hong Kong-Macao greater bay area (GBA),
Hong Kong-Zhuhai-Macao bridge (HZMB), hub city evolution.

I. INTRODUCTION
China’s Guangdong-Hong Kong-Macao Greater Bay Area
(GBA) covers a total area of 56,000 square kilometers and
links Hong Kong, Macao, Guangzhou, Shenzhen and seven
other cities with a combined population of 70 million [1];
the objective of the GBA is to become the fourth largest bay
area worldwide and build a world-class urban agglomeration
[2]–[4]. The other three largest bay areas, including the Tokyo
Bay Area, New York Bay Area, and San Francisco Bay Area,
benefit from their highly connected freeways and bridges.
The Golden Gate Bridge, which is located on the Golden Gate
Strait in San Francisco, is not only a landmark architecture but
also a significant corridor in the San Francisco Bay Area [5].
The Bronx-Whitestone Bridge and Tokyo Bay Bridge also
play significant roles in connecting traffic on both sides of
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the bay area [6]. TABLE 1 shows a comparison of four major
bay areas in terms of the field of zone space, population, GDP,
and vital infrastructures.

As shown in TABLE 1, the Hong Kong-Zhuhai-Macao
Bridge (HZMB) is considered the most vital infrastructure of
the GBA that increases the spatial disparity of accessibility
[20] and plays an essential role in promoting transporta-
tion connectivity and economic integration [21]. FIGURE
1 shows the geographic locations of the GBA, HZMB, and
data collection points in this paper. The GBA is a sharp heart
space with the largest cities in the central area [1]. Thus,
the HZMB is located in an essential geographic location in
the GBA.

The HZMB, which opened to traffic in October 2018,
strengthens the transport links between the Mainland and
Hong Kong and Macao [18], [19] and builds an efficient and
convenient modern integrated transport system. The HZMB
is designed to have a traffic capacity of 2.5 ∗ 106 per
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TABLE 1. Comparison of the four largest bay areas.

FIGURE 1. Geographic locations of the GBA, HZMB, and data collection points in this paper.

month [22]. Since the vehicle quota policy has not been fully
liberalized on this newly constructed bridge, the traffic vol-
ume is only 1.4∗105 per month on average by July 2019 (data
from the Transport Department of the Hong Kong Special

Administrative Region). As shown in FIGURE 2, the total
vehicle volume on the HZMB is steadily increasing.

Since the GBA is one of the most competitive
urban agglomerations worldwide, studying the traffic
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FIGURE 2. Total vehicle volume on the HZMB on the HK side (month).

characteristics of urban agglomeration and city ranking can
help explore the transportation evolution mode and provide
data supporting future research in this area. Thus, we need
to select some traffic evaluation indexes, e.g., node degree,
traffic volume, agglomeration, and distribution characteristic
indexes. Significant studies performed over recent years have
investigated the node degree, traffic volume, agglomeration,
and distribution field.

The node degree can be selected as an index for node
importance assessment in a transportation network [23]–[29].
In traffic networks, the node degree distribution is an essen-
tial factor in scale-free networks [30], and the node-to-
node distance based on both the definition of the norm
and node degree is provided to avoid traffic concentration
problems [31]. By showing that the best routing metric is the
??-norm based on node degrees along a path to the desti-
nation node, Tamura H [32] addresses the issue of network
congestion due to inef?cient mapping between traf?c demand
and network resources. Studies investigating the relationship
between the node degree and city centrality are significant for
traffic design [35].

Recently, the traffic volume index has been mainly used
in traffic management [36], especially in traffic prediction
through long short-term memory (LSTM) and deep belief
network (DBN) [37].Wang et al. [38] analyzed the interactive
pattern of traffic flow in three macro-regions based on real
Beijing expressway toll collection data and calculated the
traffic volume to determine the specific relationships of the
traffic volume in these large OD regions during different
periods.

Many scholars have also studied the agglomeration and
distribution field to discover the pattern within a specific
field. Lewin [39] first applied the theory of agglomeration
and distribution in the field of social psychology. This theory
is also widely applied in the transportation and tourism field.
Berry [40] first applied the theory of the ‘‘space field’’ to the
spatial analysis of cargo flow, and this theory supports the
assessment of the potential of the development of a logis-
tics and transport hub through the calculation of relevant
indicators using available information regarding container
flows in the region [41]. By analyzing agglomeration and
distribution tourist fields in Europe, the geographical pattern
of tourist-destination and tourist-generating areas becomes
clear [42], [43].

With the expansion of city scope and the increasing number
of cities, there has been a rapid development in the study
of urban hierarchical patterns and spatial structures. The
K-means clustering algorithm [44], Gravity Model [45], and
central place theory [46] are used to analyze cities’ functional
structures and the hierarchy evolution of urban agglomer-
ations. Remote sensing data and nighttime light data are
also applied to explore the dynamics of polycentric urban
development [47], [48]. Other data resources (i.e., population,
wealth, etc.) display a positive correlation with topological
and dynamic centrality [49].

Although previous studies are thorough and intensive in
analyzing city centrality and spatial structures, some prob-
lems remain to be addressed. Due to the lack of long term and
full sample traffic data [36], [42], most previous studies were
carried out using themethod of comparison [50] or theoretical
analyses [51]; other studies rely on a sample of open source or
macro data (e.g., such as road network structure data [29] and
social and economic indicators data [44]), which may lead to
one-sided and subjective results in the analysis. Additionally,
the evaluation system cannot comprehensively consider more
indexes (e.g., agglomeration and distribution function and
urban hierarchical pattern), and the two indexes, i.e., the node
degree and traffic volume, reflecting district accessibility and
district centrality are not considered simultaneously.

To bridge these research gaps, this paper analyzes the
traffic hub city evolution of the GBA andmakes the following
contributions.

First, the GBA is among the regions with the most
active economic vitality in China; however, few studies have
focused on hub city evaluations in this area, and full sample
extensive data-driven studies are scarce. The data used in this
research are collected from a total number of 610 toll stations
with a total number of 1.4 million pieces of toll notes over
6 months. The data period we analyze is immediately before
and after the opening of the HZMB; thus, we provide reliable
and abundant benchmark data.

Second, we propose an evaluation model that combines the
unit area node degree and the scores obtained from anR-mode
analysis and Q-mode analysis. The conclusions obtained
from the proposed evaluation model have a high application
value. These data can reflect the hub city evolution trend for
the government.

The remainder of this paper is organized as follows.
Section 2 presents the study area of this paper. Section 3
introduces the methodology of this research, including the
node degree method and agglomeration and distribution
method. Section 4 provides the data preparation process and
discusses the three vital indexes (i.e., node degree, traffic vol-
ume, agglomeration, and distribution). Section 4 analyzes the
results of the proposed model and performs some sensitivity
analyses. Section 5 offers a conclusion.

II. STUDY AREA
The research area in this study is the GBA
(114◦47’-114◦53’E, 21◦50’-23◦53’N), which includes
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eleven cities (i.e., Guangzhou, Shenzhen, Zhuhai, Foshan,
Huizhou, Dongguan, Zhongshan, Jiangmen, Zhaoqing,
Hong Kong, and Macao) and covers a total area of
56,000 square kilometers. To deeply analyze the character-
istics of the hub cities in the GBA (e.g., node degree, traffic
volume, agglomeration, and distribution), we divide the GBA
into forty-three research-units according to the following
rules:

¬ Administrative Rules: Since it is easier to obtain data by
administrative region, we divide and integrate the units based
on the 91 existing administrative counties.

 Connectivity Rules: We consider protecting the
fundamental role of each unit (e.g., tight economic connec-
tion, life-oriental tour connection district, etc.) and maintain
the district traffic functions’ integrity. For example, since the
central urban area of Guangzhou has close connections by
city roads and fewer freeway connections, we integrate the
area of the central counties in Guangzhou as a unit to avoid
interrupting the highly integrated unit characteristic.

® Data Source Rules: The data quality in some regions
is slightly lower since the frequency administrative division
adjustment by the government causes data duplication and
missing data. Adjusting or merging some existing adminis-
trative counties can improve the data quality and accuracy of
the analysis.

Proper research units are conducive for the data acquisition
and cleaning processes and increase the data accuracy. The
zoning results are shown in TABLE 2 and FIGURE 3.

With the increasing attention to data-driven analyses,
scholars have increasingly focused on the full sample anal-
ysis of massive data and explored the patterns in such data
[52]–[57]. The toll data used in this paper are derived from
the Guangdong Provincial Department of Transportation and
cover over 4000 kilometers of freeway mileage across all
610 data-collection points [1]. Since China’s freeway network
has restricted access, the toll records can accurately describe
all vehicles’ travel characteristics (e.g., origins and destina-
tions, departure and arrival times, vehicle types, toll fees,
etc.). As shown in Table 2 in the sixth column, the number
of data points reaches 65 million per month.

Regarding the research period, we select the months
immediately before and after the opening of the HZMB
(i.e., 2018 and 2019) and compare regular months
(e.g., January and March) to selected national festival
months (e.g., February, which includes the Spring Festival,
the Lantern Festival, etc.).

Regarding both geographical and economical considera-
tion, the central area of the GBA includes counties belonging
to GZ, FS, ZS, DG, SZ, ZH, HK, and MO, while the edge
area of the GBA includes counties belonging to JM, HZ and
ZQ [1]. To analyze the influence of the HZMB in the GBA
in-depth, we marked the bankside of the HZMB in FIGURE
3. In FIGURE 3, the area in the blue circle represents the
east-side cities of the HZMB (i.e., MO, XZ, ZS, DM, TS, and
XH), while the red circle area represents the west side cities

of the HZMB (i.e., LH, SZ, LG, BA, and HK), all of which
are located within a radius of 50 km.

III. METHODOLOGY
For the convenience of the readers, the critical notations used
throughout the paper are summarized in TABLE 3.

The hub city evaluation model includes the following two
components: the score of the improved unit area node degree
(i.e., ki/Ai) and the scores of the agglomeration-distribution
analyses (i.e., F1,i and F2,i).

Mi = c1
ki
Ai
+ c2(F1,i + F2,i) i ∈ J (1)

In Equation (1), Mi denotes the score of the evaluation of
district i, and c1 and c2 denote the coefficients of the rate of
the score of the unit area node degree and the rate of the score
of the R-mode and Q-mode analyses, respectively. In the first
component, ki/Ai denotes the node degree divided by the
acreage of district i. In the second component, F1,i denotes
the score of the R-mode analysis, and F2,i denotes the score
of the Q-mode analysis. This model considers the intercity
traffic connections and their traffic volume simultaneously,
thus avoiding one-sided conclusions.

A. NODE DEGREE
The node degree is the number of links associated with a
particular node in a network, is often proportional to the
importance of the node [29] and has been regarded as one
of the essential and convenient metrics used to measure the
connectivity of specific networks [58],59]. The node degree
(ki) is the sum of the out-degree (

∑
i6=j,j∈J αij) and in-degree

(
∑

i6=j,j∈J αji). The out-degree refers to the number of links
that flow in the direction from that node to other nodes, and
the in-degree refers to the number of links that flow in the
direction from other nodes to that node. In Equation (2), αij
denotes the number of links from district i to district j, while
αji denotes the number of links from district j to district i.
These two vital components represent the out-degree and in
degree, and their sum represents the node degree of node i.

ki =
∑

i6=j,j∈J
αij +

∑
i6=j,j∈J

αji ∀i ∈ J (2)

B. AGGLOMERATION AND DISTRIBUTION
To address the question of agglomeration and distribution,
we introduce a factor analysis in our research. Factor analysis
is a traditional method used to identify the socio-economic
structure of urban areas [60] and has been used in a consider-
able number of papers [61], [62].

Factor analysis uses the data collected from the 43 research
units to form a 43 × 43 R-mode original matrix X and a
Q-mode matrix XT , where X and XT are transposed-matrix.
The R-mode analysis can analyze the agglomeration patterns
and show the destinations’ typical type, while the Q-mode
analysis reveals the distribution pattern and shows the origins’
typical type [60]. In the matrices X and XT , the matrix
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TABLE 2. Zoning results and necessary information.

element xij denotes the traffic flow volume from the origin
i to destination j, where ∀i, j ∈ J .

Equations (3), (4), and (5) show the data standardization
process. In these Equations, x ′ij denotes the revised traffic
volume from district i ∈ J to j ∈ J , x̄i denotes the average
traffic volume starting from district i ∈ J , and Si denotes the
variance of the traffic volume starting from district i ∈ J .

x ′ij =
xij − x̄i
Si

∀i, j ∈ J (3)

x̄i =
1
n

n∑
k=1

xik ∀i, k ∈ J (4)

Si =

√√√√ 1
n− 1

n∑
k=1

(xik − x̄i)2 ∀i, k ∈ J (5)

Then, the correlation coefficient can be calculated by
Equation (6), where Rij is the correlation coefficient of the
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FIGURE 3. Zoning results in the GBA.

TABLE 3. Notation.

traffic volume from district i ∈ J to district j ∈ J .

Rij =
1

n− 1

∑n

k=1
x ′ikx
′
jk ∀i, j, k ∈ J (6)

The Jacobi method is used to obtain all eigenvalues and
eigenvector matrices. We solve the characteristic equations
|R− λkI | = 0, where R denotes the correlation coefficient
matrix, and I represents the eigenvector matrices. Pk denotes
the percentage of variance quadratic sum of eigenvalue k ∈
J , and Ph denotes the accumulated percentage of the top
p ∈ J eigenvalues’ variance quadratic sum. Based on the
eigenvalues obtained above, each eigenvalue’s percentage of
the square sum of variance and its accumulated value can be

calculated by Equations (7) and (8).

Pk =
λk∑n
k=1 λk

k ∈ J (7)

Ph =

∑p
k=1 λk∑43
k=1 λk

p ∈ J (8)

The R-mode analysis and its factors (i.e., Pk ,Ph) can
reflect traffic agglomeration, while the Q-mode analysis and
its extracted factors (i.e., Pk ,Ph) can reflect the traffic dis-
tribution. The eigenvectors corresponding to the extracted
factors are arranged into transformation matrix W , and the
original matrix A can be calculated by Equation (9), where 3

denotes the diagonal matrix composed of eigenvalues.

A = W
√

3 (9)

Then, a maximum variance rotation is performed to obtain
the factor load matrix after rotation B. Based on the matrices
obtained above, factor score matrix F can be calculated by
Equation (10). Then, the vital R-mode analysis and Q-mode
analysis indexes (F1,i and F2,i) can be obtained from this
matrix.

F = A (3)−2 A′X (10)

IV. RESULTS AND DISCUSSION
In this section, we present the results according to the index
results from the evaluation model, including the node degree,
traffic volume, agglomeration and distribution. We provide
some preliminary results of these indices. Then, we discuss
the evaluation model and parameter sensitivity analysis.

A. NODE DEGREE
As shown in FIGURE 4, the node degrees of the areas in the
GBA dramatically increased from 2018 to 2019 since more
new constructed freeways have been introduced for use [1].
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FIGURE 4. Node degree comparison in different areas of the GBA.

TABLE 4. Node degree comparison between the west and east side cities.

In FIGURE 4, the red-colored area has a higher node degree
than the green-colored area, and an inverted U-shaped area
with a high node degree (in red and dark orange) appeared
in 2019. Regarding the degree of all research units, DG
ranked in the first position, followed by BY, GZ, BA, PY,
ZS, and SZ. Generally, the node degree decreases from the
center of the GBA to the edge of the GBA. The node degree
of HJ and LM grow the fastest in the GBA with an increased
rate of 10.73% and 10.66%, respectively, mainly due to newly
built freeways and the HZMB.

As shown in TABLE 4, we compared the node degrees of
both sides of the HZMB and their rate changes. On the west
side of the HZMB, the average node degree increase rate is
4.95%, which is slightly higher than that in the east side cities.

To better analyze the node degree changes from the
time dimension, as shown in FIGURE 5, we compare the
node degree of the top three ranked cities (i.e., DG, GZ,
and BY) during the period from January to March in

FIGURE 5. Note degree variation over time.

TABLE 5. Node degree in different months.

2018 and 2019. As shown in TABLE 5, the node degrees
of the three top-ranked central areas are over 1600 from
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FIGURE 6. Traffic volume in the GBA.

FIGURE 7. Traffic volume/month (top three areas).

January to March, and the node degrees in February slightly
increase or decrease. The same situation was also observed
in the edge GBA areas; the node degrees are approximately
1300, while that in February is slightly higher. February is
pretty specially in China since most of the Spring Festi-
val occurs in this month, which could lead to a series of
complicated traffic difficulties.

The variation in the note degree occurs for the following
two main reasons: civil constructions (e.g., new freeway
and bridges that connect more areas) and temporary road
closures (e.g., some pavement is under maintenance or
reconstruction).

B. TRAFFIC VOLUME
We calculate the traffic volume in the areas of the GBA,
and as shown in FIGURE 6, BY, DG, LG, BA and GZ
exhibit the highest traffic volume in the GBA. The volume in

TABLE 6. Traffic volume comparison in different months.

TABLE 7. Summary of the traffic volume from the geographical
dimension.

the different areas significantly varies. In Figure 6, the red-
colored area has a higher traffic volume (summation of
inflow and outflow volume) than the green-colored area,
which formed an inverted U-shaped area in red, orange,

12050 VOLUME 8, 2020



P. Lin et al.: Data-Driven Analysis of Traffic Volume and Hub City Evolution of Cities

TABLE 8. Results of the R-mode and Q-mode analyses of the GBA.

and yellow. Additionally, as shown in this Figure, the traf-
fic volume in February differs from that in January and
March. To deeply analyze the differences across these
months, FIGURE 7 shows the traffic volume by month.

The traffic volume varies over time, as shown in
FIGURE 7, and we calculate the top three traffic volume
research areas from January to March in 2018 and 2019.
We find that the volumes during the same month steadily
increase. Additionally, we find that the traffic volume dras-
tically decreases in February and that the traffic volume in
February is only approximately 55% of the traffic volume in
January and March. The main reason is the Chinese Spring
Festival as many people return to their hometowns and spend
more time with their family instead of working. Because of
the characteristics of Guangdong province, which has a large
number of migrant workers, the traffic volume in February is
lower.

To more deeply analyze the top three ranked central areas
and edge areas in the GBA (TABLE 6), we find that the
traffic volume in the central GBA area (e.g., GZ, DG, and SZ)

drastically decreases in February, while the traffic volume
in the edge GBA area (e.g., GN, HJ, and DQ) increases in
February. This phenomenon may reflect the return home of
workers from the central districts of the GBA, and the loss of
traffic volume in February suggests that more people in the
central GBA gather from other places.

To reflect more geographical characteristics of the GBA
area, we also analyze both bridge sides of the HZMB,
as shown in TABLE 7. The average increase rate of the west
side of the HZMB is 10.68%, which is significantly higher
than that of the east side. The reason why the west bank
side grows more rapidly than the east bank is complicated.
It is believed that the economic downturn in Hong Kong
decreased traffic volume.

C. AGGLOMERATION AND DISTRIBUTION RESULTS
Applying the traffic volume data above to Equations (3)-(10),
we can finally obtain the R-mode score and Q-mode score
of each district, as shown in TABLE 8. TABLE 8 shows the
results of the R-mode and Q-mode analyses of the GBA.
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TABLE 9. M values of each district in 2018 and 2019 (ct = 0.1, c2 = 5).

DG ranks first in 2018 in the R-mode analysis, followed by
NH, GZ, SZ, and BY, while TS, HJ, and LM are low ranking.
NH ranks the first in 2019, followed by DG, ZS, BY and SZ.
In the Q-mode analysis, DG ranked the first in both 2018 and
2019, while NH, GZ, SZ, and BY are also high ranking.

After the opening of the HZMB, the agglomeration
function of the west side of the HZMB improved as follows:
ZS, XZ, and DM climbed 3, 6, and 9 ranks, respectively, and
TS even climbed 14 ranks, but the results of the Q-mode anal-
ysis changed to a lesser degree, indicating that the agglom-
eration function of the HZMB is much stronger than the
distribution function and that the west side of the HZMB
benefits more from the bridge than the east side. However, the

agglomeration and distribution functions of the bridge will
gradually balance according to FIGURE 2 since the vehicle
quota policy is generally liberalized.

Notably, the fastest-growing district is DQ likely due to the
newly built freeway. The new freeway not only results in a
better distribution function in DQ, FK, and other districts in
Zhaoqing but also provides a more convenient choice for the
districts above to travel to the central GBA.

D. MODEL RESULTS
By applying the results of the node degree analysis and
agglomeration and distribution analysis to Equation (1),
we can obtain the model results, as shown in TABLE 9.
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FIGURE 8. M values of each district in 2018 and 2019.

TABLE 9 presents the M value of each district in 2018 and
2019 in the hub city evaluation model. Considering the dif-
ference in magnitude between the unit area node degree and
the score of the R-mode and Q-mode analyses, we choose
0.1 and 5 as the values of parameters c1 and c2, respectively.
FIGURE 8 shows the M values of all research units

in 2018 and 2019. The values of DG, NH, SZ, GZ, BY, and ZS
are relatively high within the GBA in 2018 and 2019, suggest-
ing that these districts are traffic hub cities in the GBA. DG,
which is located betweenGZ and SZ, exhibits the highest cen-
trality and has a vital traffic effect in the GBA. Additionally,
NH, GZ, and BY can be hub cities in the Guangzhou-Foshan-
Zhaoqing urban agglomeration, DG and SZ can be hub cities
in the Shenzhen-Dongguan-Huizhou urban agglomeration,
and ZS can be a hub city in the Zhuhai-Zhongshan-Jiangmen
urban agglomeration. FIGURE 9 shows the ranking changes
in these areas. As shown in the figure, the M value rank
drastically increases in the west side areas of the HZMB and
the districts in Zhaoqing. In the former area, the TS, XZ, DM,
and MO rankings rise mainly due to the HZMB. In the latter
area, the DQ, GY, SH, and FK rankings increase due to the
newly built Guangzhou-Foshan-Zhaoqing Freeway. We can
obtain further information from FIGURE 6, which shows that
the western GBA’sM values change more rapidly, indicating
that the government invests more in the infrastructure of the
western GBA. However, there is not much improvement in
the transportation infrastructure in the districts in HZ and GZ,
leading to a decline in their rankings.

FIGURE 9. Changes in the M value rankings from 2018 to 2019.

TABLE 10. Urban hierarchical results.

E. SENSITIVITY ANALYSIS
Based on the model results, we change parameters
c1 and c2 to carry out a sensitivity analysis, and the detailed
results are shown in FIGURE 10. With the growing ratio of
c2 to c1 (i.e., c2/c1), the differences between theM values of
different districts become increasingly apparent.

When the ratio is 1, suggesting that the unit area node
degree is as significant as the score of the agglomeration and
distribution analysis, theM value of most districts is approx-
imately 0, and the differences are small. It is inconvenient
to carry out a hub city analysis and classification based on
these data. When the ratio reaches 100, suggesting that the
score of the agglomeration and distribution analysis is the
main influencing factor, the differences among the districts
become very significant. However, in this ratio, districts with
small acreages, such as CC, JH, and MO, have low M val-
ues, while the M values of districts with large acreages are
relatively high. In this ratio, the function of the unit area
node degree is ignored, but the function of the agglomeration
and distribution analysis is enlarged. When the ratio is 50,
which is the medium between 1 and 100, the results are not
only definite but also consider both the node degree results
and agglomeration and distribution results. In addition, when
c2/c1 is 50, the M values are the closest to the average M
values when c2/c1 ranges from 1 to 100.
As shown in TABLE 11, GBA traffic hub cities have a

dense freeway network and active traffic agglomeration and
distribution; the regional traffic hub cities’ influencing areas
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FIGURE 10. Results of the sensitivity analysis.

are mainly the adjacent districts, and the influence of the first
type of cities is smaller, while normal cities have the weakest
traffic agglomeration and distribution function and usually
agglomerate and distribute traffic through the infrastructure
of hub cities. According to the average score of the sensitiv-
ity analysis, we can divide the 43 districts into three types
according to the central place theory and urban hierarchical
theory proposed by Christaller [63]. As shown in TABLE 11,
the proportions of the three types of districts, which are
called Level-1 to Level 3 traffic hub cities, are 15%, 20%,
and 65%.

We also find that the hub cities are mainly located at the
center of theGBA and perform better economically than other
districts. Thus, the geographical location, traffic centrality,
and economic performance of a city are interrelated, and an
advantageous geographical location creates superior traffic
centrality, thus leading to high economic performance.

V. CONCLUSION
Using a full sample of freeway toll data, this paper pro-
poses an evaluation model to explore the traffic operation
and determine the hub traffic cities in the GBA before and
after the HZMB opened to traffic. By using the methodology

of the node degree, traffic volume, and agglomeration and
distribution theory, we reach some conclusions.

First, the west side of the HZMB benefits more from the
bridge than the east side, and the agglomeration function
of the HZMB is much stronger than the distribution func-
tion. The analysis of the node degree and traffic volume
shows that the west side (ZS, XZ, DM, XH, TS, and MO) is
rapidly rising. Based on the results of the agglomeration and
distribution analysis, we discover that the ranking changes
more drastically in terms of agglomeration than in terms of
distribution after the opening of the HZMB. This situation
occurs because the HZMB is mainly used for leisure and
sightseeing rather than for transportation and commuting.

Second, the urban hierarchical pattern and hub cities in the
GBA are clear. Six districts (i.e., DG, NH, GZ, SZ, BY, and
ZS) are Level-1 traffic hub cities, and nine districts (i.e., PY,
SD, BA, LG, PJ, DZ, DH, and GY) include Level-2 traffic
hub cities. These hub cities exhibit sound traffic infrastructure
and play an essential role in agglomerating and distributing
the traffic in the GBA. Integrating resources in the GBA
and accelerating the transfer of logistics, business, and infor-
mation flow with the help of the convenient transportation
infrastructure of the hub cities is vital for group development.
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The model proposed in this paper has great application
value and can help reflect the communication among districts
through traffic data, predict the development trend of the
social economy, and guide urban agglomeration planning.
However, the use of freeway data alone cannot provide a com-
plete assessment of the regional development level and the
economic benefits of the HZMB. In the future, multisource
and long-term data will be considered, and data offered by
the HZMB Authority will also be emphasized in analyses.
Moreover, we will apply more sophisticated models to reflect
the economic and traffic development of the GBA.
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