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ABSTRACT The goal of this work is to forecast human activities that may require robot assistance. Each
activity consists of consecutive actions. Each action is bounded by initial and final state and is created
by the motion trajectory. The states are defined in the training phase. The vision and depth sensors are
used for data collection. The data are processed and the structured database is built. This base is used for
making prediction. The method allows us to forecast the trajectories of nominally possible motion goals
(prognosing of an action). The probability functions support the selection of possible motion goal. Then
the possible motion trajectory is created which predicts the ongoing action. The activity is predicted on the
basis of already completed action sequences and using knowledge about possible sequences stored in the
database. The core of the reasoning process are: the probability functions, the action graphs (describing the
activities) and the structured database. The approach was evaluated using four datasets: CAD 60, CAD-120,
WUT-17, and WUT-18. The efficiency of the presented solution compared to the other existing
state-of-the-art methods is also investigated.

INDEX TERMS Human activity, human-object relation, probability distribution, action prediction,
structured database.

I. INTRODUCTION
The actions and activities recognition is needed for the per-
sonal robots taking care of the elderly, children or persons
with some dysfunctions. If the person starts to do something
but due to dementia, motion or force limits, or due to the lack
of skills is not able to finish it (e.g. when trying to grasp
a bottle of water and drink) s/he needs the robot support.
That is why a robot must,,understand’’ ongoing actions. Due
to those requirement, inferring human activities using visual
information plays a significant role in human-robot interac-
tion, content-based video analysis, and intelligent surveil-
lance. Publicly available inexpensive RGB-D sensors and
increasing computational power allow us to process a large
amount of input data. Therefore, a large number of potential
applications [1] for commercial use, as well as for scientific
research are expected. Forecasting human activities for safe
human-robot collaboration tasks in crowded environments
needs the interpretation of the observed actions. These actions
include the type of an action, the object of interest, who is
involved, and what might the future action be. For example,
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FIGURE 1. A pictorial illustration of a human activity prediction: a robot
needs to infer ongoing human actions and make a decision based on
partial observation.

considering the case of a person standing in the kitchen and
wishing to drink water (see Fig.1). A robot assisting in this
task must be able to recognize and forecast the next action
of this person in order to help by placing the glass on the
kitchen table, if necessary. The robot either assists a person if
it is requested to do so or it predicts the need to assist based
on the perception provided by visual information [2].

A lot of efforts have been placed in the area of recognizing
and prognosing human activities using videos in both: 2D and
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3D scenes [3]–[5]. Situation contexts and semantics are often
used for prediction which involves typical human-object
interactions [6], [7]. The features of the scene elements and
the human attributes (age, illness, habits) create semantics.
Therefore, inferring human activities requires to address not
only actions but also the involved objects and their dynamic
in spatio-temporal arrangements which are changing during
the actions [8].

In this paper, we present the method of forecasting human
activities by prognosing sequential actions. We used two
RGB-D sensors for recording the datasets (WUT-18) in an
office and a home environment. The proposed approach
was investigated in a supervised setting. The method aims
at solving the short/ long-duration prediction problem. The
low-level features, temporal segmentation of the recorded
video clips, the spatio-temporal human-object relations,
a data-gathering process, and the structured database are the
key elements of this method. To demonstrate its effectiveness,
evaluations were done using four experimental datasets cov-
ering a wide range of activities.

Comparing to our previous work [9], this paper focuses on
the following aspects:
• the universal formalization of the problem is proposed,
• the definition of spatial and temporal features is
formulated,

• data processing method is detailed,
• the definition of structured database is proposed,
• a series of probability functions and the reasoning (sum-
marized by the structured graph) is detailed,

• the publicly available Warsaw University of Technology
(WUT-17, WUT-18) datasets consisting of 11 short and
long term activities were produced and released,

• the comparison of the proposed method with the
results obtained using other state-of-the-art methods was
made.

Starting our research on actions prediction we used the
software developed by the authors of [5] and [10]. Following
our ideas the software was further modified and adjusted.
Moreover, we adapted some concepts presented in [11]
and [12]. The additional parameter, namely the edge prefer-
ence, was introduced. This parameter is applied in established
by us probability functions used for actions prediction. The
correctness of these functions was justified. The experiments
confirmed that proposed amendments are resulting in com-
petitive performance comparing to other prediction methods.
Another contribution is the definition and implementation of
structured database used for the activities’ prediction. Such
database allows fast, directed by the seen objects access to
the parameters needed for actions prediction. The conclusion
about ongoing activity is finally reached by comparing the
sequence of performed actions with the sequences stored in
the database.

The remaining part of the paper discusses this contribution
in details. In section II we discuss the other works in the
area of forecasting human activities. Section III focuses on
formalization of the problem in brief and section IV describes

the details of the data gathering process and the concept of
structured database. Section V presents the testing stage and
experimental results. The paper endswith the conclusions and
future work suggestions.

II. RELATED WORKS
Activity recognition has a long history with the past research
focusing on recognizing human actions from video sequences
taken by a single camera [13]. Recently, the research has
concentrated on detecting human activities using RGB-D
data [14]–[17]. Forecasting human activities has attracted the
attention of many computer vision and robotics communities.
The recognition of complex human activities uses spatial
and/or temporal descriptions of motion trajectories. A lot
of efforts has been devoted to recognizing human activities
using still images and videos in both: 2D and 3D scenes. The
general methodology uses the observation of a human body
or a hand motion and associates it with the activity [18]–[20].
Guo et al. [21] outlined methods for human activity recogni-
tion using still images and categorized them depending on
a type of features that are considered. In [22], the authors
summarized the different methods of human activity recog-
nition using 3D motion capture data with the main focus
on the depth information. In many scenarios, predicting the
intended actions is very desirable. It is also significant to
differentiate between recognition and prediction. An activity
recognition concerns an ongoing activity and observation of
the current stage. Activity forecasting (prediction) predicts
the intention (future) when observing few previous action
segments [23]. Ryoo [3] pointed out that the activity predic-
tion requires the recognition of unfinished action by observ-
ing its early stage. Cao et al. [24] expanded this work with
recognizing human activities based on a partially observed
action. An unobserved sequence can arise at any time due to
temporal gaps in the sensing (i.e., scene obstruction).

In [23], the whole activity was concluded by observ-
ing only a few actions. Yang and Tian [25] addressed an
activity classification approach based on a Naive-Bayes-
Nearest-Neighbor Classifier where only a part of an action
is observed. In Gehrig et al. [26], a framework for activity
recognition which combines a description of intention, activ-
ity, and motion, was proposed. Kim et al. [27] presented the
method that can be applied for the whole activity predic-
tion, their work focusing on temporal segmentation using
activity partitioning. They applied event transition segments
and event transition probabilities. Furthermore, work [5]
incorporated object affordances to anticipate human activities
for reactive responses. Work [9] addressed the so-called,
modified object affordance with spatio-temporal human-
object relation taking into account selected features. This
research showed that careful selection of features and proper
data gathering approaches are crucial for forecast perfor-
mances, cancelling the need for a sophisticated learning algo-
rithm. Kitani et al. [28] addressed the prediction task as a
decision-making process and proposed the semantics for the
scene labelling.

VOLUME 8, 2020 6099



V. Dutta, T. Zielinska: Prognosing Human Activity Using Actions Forecast and Structured Database

In [29], a recursive process of motion recognition and syn-
thesis based on the hidden Markov models is used enabling
a robot to understand the human behaviour for proper reac-
tions. The proposed framework is based on learning the
interactions between the two-person through observation,
and by that generating human-like motions for the robot.
Takano and Nakamura [11] proposed an approach establish-
ing a fundamental framework using the so-called motion
symbols and the motion labels extracted using established
stochastic translation model. The,,distances’’ between the
labelled motions are calculated using the probabilities. The
label space summarizes motion similarities. The label space
concept allows also the motion recognition. Recently the
authors of [30] have described the approach dealing with
understanding human daily activities through the so-called
Interaction Unit analysis that enables decomposition of
activities into a sequence of units. Each of these units is
associated with a behavioural factor. The recognition of
human behaviour is performed by Dynamic Bayesian Net-
work (DBS) that operates on top of the Interaction Unit, offer-
ing quantification of the behavioural factors and formulation
of the human’s behavioural model.

A limited number of studies [4], [5], [9] addresses relevant
factors such as spatial features, human-object interactions,
data gathering, and the database. Although activity recog-
nition and forecasting methods have shown good perfor-
mance for small datasets with controlled background settings,
it is still challenging to generalize them for real-time and
uncontrolled settings due to large computational complexity.
Our previous work [9] presented some situations with higher
computational need, however, still on a limited scale. Visual
information may be redundant, and therefore it is not nec-
essary to consider each observation in the data processing.
Such a situation motivated us to propose the method which
uses a series of probabilistic functions for the prediction of
sequential actions.

III. PROBLEM DEFINATION
A. GENERAL OVERVIEW
A human activity is a state of doing. Since a human activity
is a broader concept, for the sake of simplicity, in this work,
we considered only human activities involving objectsmanip-
ulation. Our method of activity prediction consists of two
phases: (a) the first one is the training phase (data gathering,
processing and storing), and (b) the second one is the testing
phase, alternatively called as the ‘‘prediction phase.’’

In the training phase, human activities are recorded using
two Intel Senz3D cameras. Next, the records are tempo-
rally segmented in terms of atomic actions. The bound-
aries between atomic action are defined by the initial and
final states (section III-B). Inside each action, human pose
and the object features are observed, recognized and quan-
tized. The created database relates the actions sequence
and the objects to the corresponding activities. We extract
the spatio-temporal features (i.e., the features that describe
the relationship between a human and object of interest

in the scene) using video clips. In the training process,
we obtain the motion parameters evaluating the mean value
and variance of some distances. The forecasting (prediction)
problem is a sequence of prognoses basis on partial obser-
vation. The proposed approach uses probability functions for
the prognosis. A maximum likelihood is taken into account
for inferring the future motion trajectories.

B. FORMAL DESCRIPTION
In this part, we provide the formal description of the activities
prediction system. The scene is observed and the objects in
the human vicinity are identified (recognized). The objects
are used as the discriminates for indicating which actions will
be nominally taken by the human being.

First we explain the applied notations:
• the capital letter (i.e. S, A, O) denotes a set,
• the small letter (i.e. s, a, o) denotes an element of a set,
• the upper script denotes the assignation, e.g. SAC means
that the set S is assigned to AC ,

• the lower script marks the concrete element.
Each action ai is an elementary transformation of the human
state. For each action, several possible initial and final states
exist. Therefore for each ai action we assign a pair (S

ai
in , S

ai
fin),

where Saiin is a set of possible initial states and Saifin is a set of
possible final states. An action ai is the transition:

ai : sk −→ sm = < ai : sk , sm > (1)

where sk ε Saiin , sm ε Saifin, what can be also expressed as
(Saik , S

ai
m ). It must be noted that any sk can be not only the

initial (or final) state of an action ai but of any action as
well, therefore in final description we use the upper script ai
if the state concerns the action ai and neglect this upper script
when considering any of possible states not relating them to
concrete action.
For example:
ai = move_hand
Saiin = {hand_free, bottle_in_hand, hand_on_table}
Saifin = {hand_over_cup, hand_free}

The action can be performed involving some objects. In the
example above, the object can be a bottle, a table, a cup.
Potentially involved object oai belongs to Oai (oaiε Oai ).
Finally the action is described by:

ai = ai(S
ai
in , S

ai
fin, O

ai ) (2)

For the sake of simplicity of the further notation if the spe-
cific object op is involved in an action ai we denote it as
ai(op). Realization of an activity ACk is achieved by the
sequence of actions ai, am, ak , . . . performed by a human
being for fulfilling some goal. Naturally, the actions are sep-
arated by states. The activity starts and ends with particular
state. It means that with each activity is associated the pair
(sACkin , sACkfin ) ε SACk .

Lets us denote by AACk all possible actions which can build
the activity ACk . Considering the above:

ACk = ACk (AACk ,OACk ) (3)
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For ai ε AACk basis on equation 2 and equation 3 Oai ⊃
OACk . Let us seq_AACk denotes one out of several possible
sequences of actions building an activity:

if ai ε seq_AACk then ai ε AACk (4)

When prognosing the activity we consider the scenario
(observed scene). The scenario delivers the vocabulary. First,
the objects are identified making the first element of vocab-
ulary. Based on the equation 3 having the set O of the seen
objects, the possibleACk can be defined and then respectively
the corresponding actions (equation 4), as well as initial and
final states (equation 2) can be determined.

FIGURE 2. The figure represents a graph structure for sequence of two
actions making an activity.

Let us consider an example of activating of a computer (see
Fig. 2), where the activity is summarized by: (a) scenario,
(b) the vocabulary.

1) SCENARIO
The scene is observed in an office environment where a
computer and a person are present. The person is by the table
and is expected to activate the computer.

2) THE VOCABULARY FOR THE ACTIVITY
• Activity: AC1 = activate_computer
• Initial state: sAC1

in = screen_black
• Final state: sAC1

fin = scren_bright
• Involved object: o1AC1 = computer

The activity is build out of two actions (Fig. 2) as it is
described below.

3) THE VOCABULARY FOR BUILDING THE ACTIONS
Actions = {reaching, pressing}

Action aAC1
1 = reaching Action aAC1

2 = pressing
Initial state sa1in = HNO1 Initial state sa2in = SCB 2

Final state sa1fin = HO3 Final state sa2fin = SB4

Involved object oa11 = CP5 Involved object oa21 = CP

C. OUTLINE OF THE METHOD
In the proposed method, the states sk ε Saiin , sm ε Saifin
separating the actions are indicated by the human expert (the
person who makes the training) in the data-gathering phase.
A set of video records for each activity is collected. Each
record is cut according to the set of states indicated by the

1HNO: Hand next to object.
2SCB: Screen black.
3HO: Hand on an object.
4SB: Screen bright.
5CP: Computer.

trainee Saiin and Saifin. It means that each segment starts with
sk ε S

ai
in , and ends with sm ε S

ai
fin. One segment represents an

action ai. For the sequence of consecutive actions ai and ai+1,
the final state sm ε S

ai
fin of a previous action makes naturally

an initial state sm ε Sai+1in of the next action. The recorded
segments are processed further in order to collect human pose
features and object features. Obtaining such data is needed for
estimating the spatio-temporal attributes.

When building the base of the structured database our
method takes as an input a set of features consisting of
spatio-temporal attributes (dHo, θ , e) which are obtained in
the first stage (data gathering). For each action, we col-
lect such data for the records repeated, M times (M ≥ 60).
Collected data are used for evaluating the mean value
µdHo , µθ , µe and variance σ 2

dHo , σ
2
θ , σ

2
e respectively. Those

values are applied later as the probability function parame-
ters. The probability functions support the selection of possi-
ble motion goal and the possible motion trajectory is created
which makes an activity prediction. The activity graph is built
out of seq_AACk . During the experiment the method allows to
forecast the trajectories to nominally possible motion goals
(predicting an action) and next, using the action graphs,
to prognose of an activity. The human states are defined by
the nodes and the nominally possible actions are represented
by the edges respectively. Section IV describes the data gath-
ering process and the creation of the structured database. The
testing stage uses the graphs and the probability functions are
described in section V.

IV. DATA GATHERING AND BUILDING THE
STRUCTURED DATABASE
A. EXPERIMENTAL SETUP FOR DATA COLLECTION
Although a few relatively large RGB-D datasets are available,
to facilitate experiments with larger and diverse datasets,
the new datasets (WUT-17) were introduced [31]. Recently
we have produced one more data set called WUT-18
which uses multi-view settings. Our method is dedicated
to be implemented in the environment with properly dis-
tributed sensors. Since the required sensors are inexpensive,
we assume that the relevant space will be well observed by
as many sensors as needed to obtain the proper view of a
human and objects. It must be also noted that the human takes
specific postures when doing a specific activity. For example,
it is rather unusual that the person will be reaching the bottle
placed on the table without some turning towards it. However,
if it is the custom of the user the sensors placement and
the data collection phase must consider it. Therefore in our
approach, we avoid the disturbances and occlusions analysis
as it is commonly ignored by the other researchers. However,
one question still remains to be investigated. It refers to
the problem what is more efficient - either the disturbances
rejection and occlusions adjustment or to design the sens-
ing system carefully. It seems that with the fast progress in
sensing technologies, the second option would be a better
choice.
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FIGURE 3. Graphical illustration of camera setup.

Two fixed viewpoint RGB-D vision sensors were placed
on tripods with adjustable height 1.5 − 1.7m. We applied
Senz3D RGB-D [32], [33] which is the sensor released by the
Intel RealSense is one of themost advanced 3D depth-sensing
cameras, which provides information about the depth and the
RGB images as well. The sensor is equipped with an RGB
camera and an infrared camera. The depth range applied for
human observation is 1−3m. Customized programming tools
were developed for data extraction from the raw images. The
software was developed using the C++ language and robot
operating system (ROS).

We used down-sampled images (640 × 480 pixels) at
60fps frame rate since real-time decoding and display of
multiple streams of a high-resolution video is a bottleneck
problem. The applied system has the ability to provide the
3D visual data and allows tracking 3D skeleton points and
object position. During the experiments, the orientation of
the cameras was fixed [9]. We used several objects on which
the manipulations were performed. In addition, the record-
ing included a wide variability of the activities performed
by different persons using both: left and right hand with
different time duration as well as the speed. Two cameras
were delivering independently two images in which (after
proper preprocessing) the x, y, z coordinates of the points
of interest were provided ({xc1 , yc1 , zc1}, {xc2 , yc2 , zc2})
in each camera plane. We applied two coordinate systems
with the origin placed in the center of each camera frame
respectively.

B. DATA PREPROCESSING
The first step of the human activities prognosing is pre-
processing the recorded observations. Proper preprocessing
speeds up the training method. In preprocessing, the temporal
segmentation and features extraction are made as it was intro-
duced in our previous work [9]. Here we are summarizing this
step using a more formal description.

1) TEMPORAL SEGMENTATION AND FEATURE EXTRACTION
The goal of video segmentation is to turn the recorded data
into a set of parts. Each segment is a sequence of video

frames together with depth values which have no significant
inter-frame difference in terms of motion contents.

Each activity ACk was performed M times (in our case
M = max(m) ≥ 60) by 6 different users. Let’s FACkm denotes
m-th record of an ACk activity. Each record FACkm consists of
f number of frames (where f can vary from case to case),
what is denoted by FACkmf . As it has already been mentioned,
we do the temporal segmentation by partitioning an activity
into a group of actions ai. F

ACk
mf is cut into smaller parts by

the human expert (see Fig. 4). Each part represents an action.
Therefore, the part associated with ai in FACkmf is denoted

by
(
FACkmf

)ai
. The part representing i-th action (action ai)

is again cut into segments automatically. Such segmentation
process is required for obtaining the data used for motion
prognosis. As each action can start when the human hand is
at the different distance from the object of interest and can
be realised with different speed, the segmentation helps to
establish a proper dataset. The number of video segments
starting from some (selected by us) moment till the end of
an action is used for extracting the relevant data.

FIGURE 4. Graphical illustration of an activity segmentation into actions.
A human expert divides the record producing the sequence of actions.

The second step of preprocessing is the extracting of
relevant features. We require not only to track movements
focusing on those body parts, which are mostly involved
when executing the activity but also on the objects on which
the actions are performed. Therefore, features selection and
extraction is a significant step in the activity forecasting.
Finding an appropriate set of features is problem-oriented.
We extract three groups of features: (a) human position
matrix H , (b) object position oftc , and (c) features describing
human-object interaction: distance dHo, angle θ , and edge e.
The human position matrix (human feature) H consists

of 3D positions of some relevant points of a human body.
To extract such features, we use the data delivered by
senz3D RGB-D sensor. The data provides visual data and the
real-time position of body points. In this work, we consider
three points: center of torso (CT), right hand (RH) and, left
hand (LH) position. Torso position is needed in order to con-
clude about the whole body movement, e.g., walking towards
the door before the hand starts manipulation. Observation of
both hands is needed to make a decision about which hand is
involved in an action. Some noisy points (i.e., hip center, right
wrist, left wrist, right ankle, left ankle) due to their closeness
to the other points (i.e., right hand, left hand, right foot, left
foot) are not considered, however more points are used for
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FIGURE 5. The figures are representing human posture estimation obtained from the Senz3D camera. The illustration concerns
following following actions: (a) reaching an object, (b) drinking coffee, (c) pulling the chair. The bottom figures show the extracted
sketch diagram representing the positions of the body points for the posture above: (d) Skreaching, (e) Skdrinking, and (f) Skpulling.

body visualization. The feature matrix H is expressed by:

H = [PCT ,PRH ,PLH ] (5)

where each Pr ∈ <3, is the vector containing the 3D
coordinates (xp, yp, z) of the r − th point (r = {CT , RH ,
LH}). xp, yp are the positions of the points expressed first
in pixel coordinates, z is the depth value for a pixel (xp,yp).
We transform all the values to the real world coordinates:

x =
z
f
(xp − x0 + δx) (6)

y =
z
f
(yp − y0 + δy) (7)

where (x0, y0) is the image center, δx and δy are parameters
correcting the lens distortion.

The feature oftc represents a vector containing the
(xc, yc, zc) coordinates of the object center expressed in the
world coordinates. We perform both, object detection and
tracking for two object categories: (a) larger objects (door,
table, box, whiteboard, etc.), (b) smaller objects (marker,
bottle, cup, etc.). To effectively detect and track objects in
real time we follow the tracking − by − detection paradigm
described in [9].

Larger objects are labelled by QR codes which can be
properly recognized in the observed scene using label-based
object detection method [34]. For the smaller objects, we use
the ’’Lucas-Kanade Descriptor’’ (KLD) method [35] which
is based on the search of an object which picture is stored in
the database.

Besides of H and oftc the third group of features is the
spatio-temporal vector which contains: (a) a temporal dis-
tance dHo between human hand and the object of interest,
(b) angle θ between human hand and the object of interest.
(c) edge e which is the normalized distance obtained as the

FIGURE 6. The figure illustrates the scenario for obtaining the
distance dHo, and angle θ .

distance dH from the camera to the human hands normal-
ized by the distance dHo between the human hand and the
object of interest, as it is shown in the Fig. 6. The edge e is
expressed by.

e =
dH

dHo
(8)

C. DATA PROCESSING AND THE DATABASE
The temporal values of relevant features are used to obtain
their mean µi and variance σ 2

i as it is listed in Table 1.
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FIGURE 7. An example of object detection and recognition. The figure illustrates the scenario with detection and tracking of an artificial landmark and a
cup. The following images are representing an action such as: (a) beginning of an action, (b) ongoing action, and (c) end of an action.

TABLE 1. Considered data.

Next, 50 out of 60 records for each action are selected for
training, and the remaining 10 are selected for testing. Selec-
tion of such a specific amount of records for both training and
testing was justified and explained later in the section V-C.3
(data test).

For each recorded framewe store the distance dHo between
the hand wrist position and the object of interest (object
to be manipulated) from the beginning till the end of an
action. Similarly, the edge e is calculated using equation 8
and stored together with θ . For each object which can be
manipulated (considering all nominally possible actions) the
values of µdHo , µθ , µe, σ

2
dHo , σ

2
θ , σ

2
e are calculated. Once

those parameters are obtained, we create the database con-
sisting of activities and corresponding actions taking into
account the objects. The database for each activity contains
all nominally possible actions. In particular, each action
sequence is defined taking into account the object/objects
involved in the activity. The obtained parameters (µi, σ 2

i )
are used as the parameters of the probability functions (see
Appendix). The set of parameters was selected taking into
account the probability approach. These parameters are con-
sidered in probability functions used for action forecasting.
The probability of an action concerns the object of interest
and the easiness of reaching/manipulating it. Therefore we
call it the object affordance. The object affordance in our case
results from the edge, angular and distance preferences. In the
testing phase, probability functions are used for concluding
the future trajectory. Bezier curve is used to prognose the
trajectory from the current location to the predicted location.

The graphs representing the activities reflected in the
database using the equation 4. Fig. 8 shows the overall
structure of the database used in our work. Considering the
different objects can be involved in different actions, we split
the action sequences taking into account the involved object.

Let us use as the example of an activity ACi performed on the
objects w and z, or w or (∨) z, which can be realized using the
following sequences:

seq_AACk =


an(w), ak (w), ap(w), ab(z), ac(z), ad (z), or
(an(w), ak (w), ap(w), ad (w) ∨
ab(z), ac(z), ad (z))

(9)

The example described by equation 9 is shown on the left
side of Fig. 8.

The database is divided into two main parts. The first part
consists of activities definition. Each activity is described
by the all possible action sequences taking into account the
involved objects. The second part (right side of the Fig. 8)
contains the parameters established during data gathering
phase based on calculated quantities (µi, σ 2

i ). Those quan-
tities are obtained using the segments cut from data records.
A detailed description of this stage is given in [9]. For each
addition of new actions or, objects the model requires to be
additionally,,trained’’ and the additional parameters must be
obtained.

The specific action involving the specific object can be per-
formed by several trajectories. During prognosing we must
forecast the most possible trajectory for each action. The
parameters from the second part of the database are used for
the trajectories prediction to identify the target location. The
referred part of the database is organized as follows: there
are segments associated with as many objects as many were
indicated in the first part of the database describing the activi-
ties. Each object description consists of the list of all possible
actions which can be performed involving such an object.
For each earlier obtained parameters (µi, σ 2

i ) probability
functions are given. In the testing phase these probability
functions are used for prognosing the future trajectories.

D. ACCESSING THE DATA BASE
Once the objects are recognized in the sensor field of view,
the right part of the database is accessed (Fig. 8). Let’s say
objects z and w are noticed. The parameters of all probability
functions assigned to those objects are accessed (see Fig. 8
right side). Next, on the basis of the equation 10, actions
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FIGURE 8. Graphical illustration of the database: A-right side of database (first part), B-left side of database (second part).

with the highest probability are forecasted and the possible
future trajectories to the goal of interests are obtained as it is
described in V-B. Once the action is indicated for the concrete
object the first part of the database is used for predicting the
ongoing activity. As it can be seen in Fig. 8 (left side) the
combination of an object and action is associated with an
activity.

If the same pair object-action occurs in several activi-
ties then all those activities will be considered. If for some
activities some specific sequences and objects are only pos-
sible the conclusion about ongoing activity will be made
faster. The left part of the database is used for predicting
the activities. At the beginning of reasoning, all possible
activities containing the pair object-action are considered
as possible. At some point, the passed activities sequence
becomes particular which concludes the ongoing activity.

The activity prediction time results from the,,particularity’’
of the object-action pair and the actions sequence.

Fig. 9 gives the graphical representation of the database
concept reflecting the equation 1 described in section III-A.
The graph is built out of seq_AACk as it is defined in equa-
tion 4. The nodes represents the human states and the edges
illustrates the elementary transformation (i.e. action). The
example graph is made out of 7 activities which are consid-
ered in this work. In the testing phase, the method allows
us to forecast the trajectories to nominally possible motion
goals (prognosing an action) and next, an activity is prog-
nosed using the sequence of the completed actions. Expand-
ing the graph means the proper update of the database with
properly feeding it with objects, action sequences and the
probability function parameters collected during the training
phase.
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FIGURE 9. This figure illustrates the activity graph made out of 7 actions. The possible sequences of actions are defined in
training stage.

V. TESTING STAGE: VERIFICATION OF THE METHOD
In this section, we discuss the testing stage of inferring
human activities. The inputs are the depth information and

video data. We track the human motion using ‘‘Skeltrack’’
application to obtain the locations of the key points of the
human skeleton (feature H ). We recognize the objects of
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FIGURE 10. Graphical representation of an activity with different possible sequences associated with specific object of
interest (in this example – bottle): (a) complete graph, (b) graph representing the drinking activity associated with both glass
and bottle (c) another graph representing the drinking activity associated with either the glass or the bottle.

interest being used in the activity and track them (feature oftc ).
We obtain dHo, θ , and e respectively using the above features
and the depth information.

In the testing phase the possible activities with all nom-
inally possible action sequences are indicated for each rec-
ognized object (Fig. 8 - right side). Next, for each action,
probability functions are used to forecast the motion tra-
jectories. These functions consist of: distance preference,
angular preference and edge preference. Action ai for which
the probability is biggest is selected using the action selection
function described in section V (part A).

Let’s refer to the example of concrete activities which are
described by graph presented in Fig. 9. This graph describes
7 activities: (a) drinking water, (b) activating computer, (c)
making cereal, (d) arranging books, (e) taking out the warm-
ing food from microwave, (f) picking up the phone, (g) open-
ing the door. Now we address only the first activity,,drinking
water’’ (upper part of the Fig. 9). In this example are possible
3 sequences:
• {a2(b), a4(b), a5(b), a6(g)} performed on two objects
(bottle, glass) as it is shown in Fig. 10b,

• {a2(b), a6(b)} (see Fig. 10c) performed on one object
(bottle),

• {a2(g), a6(g)} (see Fig. 10c) involves one object (glass).

A. ACTION SELECTION FUNCTION
Once the object is recognized during the testing phase the
set of actions associated with this object is considered (right
side of the Fig. 8). Selection of an action means that the
current parameters θai , d

Ho
ai , eai are justified as a valid initial

quantities (at the moment) for this action. Then the probabil-
ity is calculated considering the actions associated with the
object. Such action P(ai) is selected for which the probability
is biggest.

P(ai) = max
ai

{
(P(eai ) · P(θai )) for dHo > 20cm
(P(dHoai ) · P(θai )) for dHo ≤ 20cm

(10)

The threshold 20cm was selected heuristically noticing that
when the hand is farther than 20cm from all the objects any

object can the targeted. For the distance not bigger than 20 cm
the motion towards that object will be completed and the
equation 10 in this case is used for selecting the trajectory
described in section V (part B).
P(eai ) is the edge preference function, P(θai ) is the angular

preference function, and P(dHoai ) is the distance preference
function. Selection of those functions together with its valida-
tion was presented in detail in our publication [9]. The sum-
mary in Appendix provides the overview of those selected
functions.

B. PROGNOSING THE TRAJECTORY
A forecasted trajectory is produced using the parameter-
ized cubic equation of Bezier curve [9]. Each fragment
of such a curve lies inside the outline established by the
so-called control points. The curve shape is influenced by
these points. The Bezier curve is a polynomial of pn, where
pn ∈< 0, 1 >:

tj= (1−pn)3t0+3(1−pn)2pnt1+3(1−pn)p2nt2+p
3
nt3, (11)

tj = {xj, yj, zj}, j = 0, 1, 2, 3. Applied Bezier curve is param-
eterized by a set of four points: the starting and final point of
the trajectory (t0 and t3), and two control points (t1 and t2).
In our case, t0 is the current position of the hand. The point
t3 is the end point of the action indicated by the probability
function (equation 10) and it is the object position. For prog-
nosing of hand trajectory associated with the selected action
two control points (future position of the hand) are used. The
control points coordinates t1 and t2 are obtained from the
number of observations (records) in data gathering phase. For
this purpose the full records collected in data gathering phase
are used. Point t1 is the hand coordinate at 40% since the
starting point t0 (when the action was selected) and point t2
concern 80% of the record since t0. Point t1 and t2 are the
points taken from the previously recorded trajectory which
has its beginning close to the t0.
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C. RESULTS
The proposed approach was validated using two methods:
(a) a comparisonwith the other methods (model test) (b) qual-
ity of prognosis depending on the amount of observation data
(data test).

We applied our method on four datasets: (a) CAD-60,
(b) CAD-120, (c) WUT-17, (d) WUT-18. The details of the
data sets are given in section V-C.1, and the implementation
details are summarized in section V-C.2. In section V-C.3,
we present the experimental results and the performance
analysis of the proposed method.

1) DATASETS
We created publicly available data sets (named as WUT-17,
WUT-18) of the following daily activities: drinking water,
opening a door, arranging a book on the shelf , (Fig. 11).
These activities were performed by 6 participants in 3 dif-
ferent settings (a) an office, (b) a living room, (c) a kitchen.
The participates had neither prior knowledge of the purpose
of the study nor instructions how to perform each activity. The
data sets were collected under RGB-D settings, at the rate of
60fps. The cameras range for human observations was fixed
and covered the range.

The Cornell Activity Dataset CAD-60 [36] is composed
of 12 different activities (see Fig. 11) performed in 5 different
environments: (a) an office, (b) a kitchen, (c) a bedroom, (d) a
bathroom, and (e) a living room. The activities are performed
by 4 people. The data set is a collection of RGB images, depth
information, and skeleton data with 15 points. The activities
are: rinsing a mouth, brushing teeth, wearing contact lens,
talking on the phone, drinking water, microwaving food, etc.

We also considered CAD-120 [37] - one of the most used
publicly available data set of complex human activities in
daily life situation. The data set consists of 120 RGB-D
videos of 10 long activities: arranging objects, having meal,
making cereal, picking objects, etc. as shown in the Fig. 11.
These activities are performed by 4 different participants
repeating each action three to four times.

2) IMPLEMENTATION DETAILS
The method was implemented using Intel Core i7 3.10GHz
machine with 16 GB of RAM, with 64-bit Linux operating
system. With such implementation the method shows low
memory consumption justifying its efficiency.

3) EXPERIMENTAL EVALUATION
Two different tests were performed. The first one called the
model test, gives the performance of our approach comparing
it with other baseline algorithms. The second onewas the data
test, giving the performance accuracy related to the properties
of the training set. In this case, it was investigated how much
the prediction is influenced by the number of data samples
considered in the training stage.

a: MODEL TEST
It is not possible to compare the different methods for the
activities prediction as the implementation of the methods
described in the literature needs a huge amount of work.
Additionally, not all implementation details are disclosed.
That is why, we make the comparison considering only the
action level.

To conduct this study, we compared our approach with the
methods using: (a) HiddenMarkovModel (HMM), (b) Linear
Support Vector Machine (LSVM), (c) the method developed
by Kappula, Gupta, Saxena (KGS), (d) the method with
Anticipatory Temporal Conditional Random Field (ATCRF).

In HMM-based approach [11], human full-body motions
are encoded as a set of parameters of HMM. This method
stochastically determines the activity category to which
it belongs. The authors applied commonly used HMM
with 40 hidden states and the corrosponding hyperparam-
eters were: (a) maximum number of iterations was 20,
(b) the number of training samples were 50 records, and
(c) the value of learning rate was fixed to 0.01. To opti-
mize the model evaluation process, the authors used tra-
ditional approach Baum-Welch (BW) algorithm based on
expectation-maximization (EM) algorithm to find the max-
imum likelihood given a set of observed feature vectors. The
Gaussian Mixture Model (GMM) was used to establish emis-
sion probability. In LSVM based approach, the linear kernel
was used as the single classifier, the action features (spatio-
temporal motion features) are fed to a single SVM classifier
for labelling (recognizing) the actions categories [12]. The
linear kernel function based approach offers reduced calcu-
lation demand comparing to the other methods when many
features or many training samples are being considered. The
main hyperparameters of the SVM classifier were the kernel
function and the regularization parameter C. This parameter
is often termed as soft margin constant C and in this exper-
iment it was fixed to 100. For large values of C, the opti-
mization chooses a smaller-margin hyperplane and does a
better job of getting all the training samples classified cor-
rectly. To find the best solution of the problem optimization
algorithm was used and Particle Swarm Optimization (PSO)
was the choice. In KGS method [10], the action transition
probabilities and object affordances are obtained using the
training data. The observed frames are first labelled using
the Markov Random Field (MRF) model. To learn the model
parameters the authors used the cutting planemethod [38] and
sloved the optimization problem using a graph-cut method
(i.e., quadratic pseudo-Boolean optimization) [39]. The antic-
ipated actions and object affordances for the future are pre-
dicted based on the transition probabilities given the inferred
labelling of the last frame. ATCRF [5] method samples the
future nodes of sub-activities and object affordances (both
in temporal segments and frames in each temporal segment)
as described in [5] and uses a fixed temporal structure. The
authors took the advantage of a large-margin approach [40]
to learn the parameter vector from the labelled training
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FIGURE 11. Example images of drinking, placing, reaching, moving, pouring, approaching actions from four data sets such
as CAD-60 [5], CAD-120 [5], WUT-17, WUT-18.

examples and used the graph-cut optimization method. The
prediction accuracy was tested on four datasets (WUT-17,
WUT-18, CAD60, CAD120) by comparing each predicted

action with the observed action and averaging the results
over the entire tests performed by the new person. We fol-
lowed the train-test split described in [9]. Table 2 shows the
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FIGURE 12. Experimental result of forecasting an activity ‘‘remove food from the microwave’’ using
CAD-120 dataset. The figures in the first column show the following actions: (a) static situation (start),
(c) approaching, (e) reaching, (g) placing. The second column illustrates how the progress in an activity is
marked in the graph: (b) Grhstatic , (d) Grhapproaching, (f) Grhrecahing, (h) Grhplacing respectively.

performances comparison. The following indicator for accu-
racy evaluation was applied

Pacc =
Ncorr
Ntol
× 100%, (12)

where Ncorr is the number of correctly predicted actions,
Ntol is a total number of actions. We achieved good per-
formance in predicting the activities. However, the experi-
ment with WUT-17 dataset shows poorer accuracy due to
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FIGURE 13. Experimental result of forecasting an activity ‘‘activating computer’’ using WUT-18 dataset. The
figures in the first column show the following actions: (a) static situation (start), (c) reaching, (e) pressing,
(g) reached. The second column illustrates how the progress in an activity is marked in the graph: (b) Grhstatic ,
(d) Grhreaching, (f) Grhpressing, (h) Grhreached respectively.

background noise, low light conditions, and single camera
view.

The achieved performance is compared to those reported
in [5], [41], [42] (Table 2). The best accuracy of prediction

is 93.02%. Fig. 12-13 show the actions sequences and the
predictedmotion trajectories with the heat maps around them.
In the bottom part of the Fig. 12-13, the graphs representing
the investigated activities are introduced in Fig. 9. The edge
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FIGURE 14. Error matrices of action prognosis on the test video records of both WUT and CAD datasets.
Figure 14a and 14b show the confusion matrix of prognosis accuracy for WUT-17 and WUT-18 datasets. The confusion
matrix of prediction accuracy for CAD-60 and CAD-120 test datasets are shown in Fig. 14c and 14d.

TABLE 2. Performance accuracy. The comparison of other baseline
algorithms against our method on CAD-60, CAD-120, WUT-17,
WUT-18 datasets.

denoted by green color indicates the prognosing of an action.
The edge represented by red color denotes an action already
performed.

b: DATA TEST
The data test aimed at evaluating the performance that the
proposed method can achieve while varying the number of
training sets. Each dataset was divided into four subsets and
each of the listed below experiment was repeated 5 times.
At each run, we randomly selected the data for the training
sets. Since the data is of a temporal sequential nature, we do
not perform cross-validation for this data but average the
results from multiple runs.

• Experiment-1: Half of the samples (50%) from the
dataset is used for training and the rest is used for testing.

• Experiment-2: 70% of the data samples of each activity
is used for training and the rest is used for testing.

• Experiment-3: 80% of the data samples of each activity
is used for training and the rest is used for testing.

• Experiment-4: 95% of the data samples of each activity
is used for training and the rest is used for testing.

TABLE 3. Performance accuracy (%) of the proposed method on four
different experimental settings using data sets CAD-60, CAD-120,
WUT-17 and WUT-18.

Results of the data test are given in Table 3. The perfor-
mance is better for experiment-3 and experiment-4 as it is
shown in the Table 3. In experiment-1, the results are worse
indicating that 50% of data set (50% of motion record) is not
enough for making the prognosis.
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TABLE 4. Precision (%) and Recall (%) of the performance of our proposed method on four different activities.

Fig. 14 illustrates the outcomes using error matrix which
shows the interpretable aspect of the proposed method
and its ability of making the correct prognosis. Note that
Fig. 14b and 14c indicate few errors, such as closing action
sometimes was miss-classified as an opening action, the rea-
son is that the movements range of the hand in both
scenarios is minimal. Moreover, in various scenario the pour-
ing action was predicted as a placing action and talking
action was miss-classified as a drinking action and so on
due to the problem with light sensitive object recognition.
During the experimental evaluation we also detected that
the proposed method performs poorly when the actions are
not finished and repeated. Such a situation occurs when the
change of an action arises close to the final stage and the
same action is again initiated and started from the initial
stage.

Following [9], we applied the binary scores TP, TN , FP,
and FN respectively. TP, TN , FP, and FN denote true posi-
tive, true negative, false positive and false negative respec-
tively. The following measures were used to evaluate the
precision (Pr)= TP

TP+FP , recall (Re)=
TP

TP+FN . We tested four
activities for which the precision and recall values are listed
in Table 4.

FIGURE 15. Average processing time for the data analysis steps.

In Fig. 15, we illustrate the average processing time
for each step in the testing process. The most time con-
suming step is the step responsible for skeleton points

detection, objects detection, and tracking. The features
extraction and action selection take overall less processing
time.

c: GENERAL NOTE
The CAD datasets were recorded using first generation of
Kinect sensor (Kinect V1) with resolution 320 × 240. Since,
Kinect V1 sometimes provides poor readings for skeleton
poses due to poor depth resolution, the achieved joints detec-
tion accuracy for CAD datasets was up to 81%. Joints detec-
tion accuracy using WUT datasets was better (up to 89%)
because of good quality of applied recordind system. The
WUT dataset was recorded using Intel RealSense camera
working in a range 1m - 3m, the applied resolution of images
was 640 × 480.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed and described the method for
human activity prediction considering the spatio-temporal
human-object relations. We used the sensory system capable
of collecting visual and depth information. Such informa-
tion was used to obtain the relevant attributes which were
later stored in the structuralized database. In our approach,
the activities are described by the sequences of actions con-
cerning the involved objects. The list of the objects which
can be recognized by our system together with the actions
performed on them make the first part of our database. The
parameters used in probability functions indicating the pos-
sible actions are stored in the second part of the database.
Those data concern all considered activities and objects. The
choice of probability functions was experimentally justified.
The relevant details of the methods were introduced covering
the training and testing stage. The performed experiments
proved that the proposedmethod allows to forecast an activity
regardless of different scenarios and the speed at which the
actions were executed. The performance was tested off-line
using real-life scenarios with four datasets.

There are some limitations of our method: our data only
includes cases in which the person was not occluded by
partial body view or by other people; our method may not
be robust in such situations. We designed the sensing system
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carefully for avoiding the disturbances and occlusions. How-
ever, in broader sense, when occlusions occur it may lead to a
poor performance in prognoses. Some actions when the hand
is repeatedly moving forwards and backwards without fin-
ishing an action degrades the performance of the prognosis.
Because of that such cases were not considered and not
included in the database. In this work, we only considered
the parameters for finished actions. It must be also added that
we do not optimized the real-time performance of our system.
This work refers to the activity prediction based on the bench-
mark datasets. The concept of structured database orients the
search what speeds up the access to the needed data, how-
ever, addition of many new actions and their corresponding
parameters to the database might slow down the accessing
the needed data therefore declining the forecasting speed.
Therefore, the forecasting speed should be further improved
using distributed calculations and stronger computers with a
more efficient operating systems.

In the future, we intend to study the prediction process
in real-time implementation considering the robot assistants.
More data should be also collected consideringmore complex
activities and the method should be tested to a bigger extent.
The database should be expanded by more cases of everyday
human activity. Obviously, the addition of a new data will
increase the size of the database. Therefore, it could be useful
to investigate the problem of more advanced structuring of
the database for speeding up the search method further. The
example of this investigation can be the division of the second
part of the database into the parts with data for the objects
grouped by their size or by their application (e.g. object
in an office environment, in-home environment). Then the
data search for parameters of probability functions will con-
cern only the part for relevant objects. Besides refining the
database, more studies should be done on activities prediction
with deeper insight into the forecasting efficiency taking
into account the different possible scenarios where occlusion
occurs or when the object tracking accuracy drops.

APPENDIX
A. DISTANCE PREFERENCE
The distance preference P(dHo) is a probability function
which takes into account current human-object distance.
It uses the current value of dHo comparing it to the mean
value µdHo and the variance σ 2

dHo obtained during training
phase for each segment of motion. The distance preference
is described by a normalGaussian distribution parameterized
by mean µdHo and variance σ 2

dHo .

P(dHo) = N
(
dHo;µdHo , σ

2
dHo

)
=

1√
2πσ 2

dHo

exp
−

1
2

(
dHo−µ

dHo

σ2
dHo

)

The standard statistical test was applied to check whether the
data are consistent with the selected distribution. A common
test in such case is a Shapiro Wilk normality test, it has good

performance for the smaller amount of samples as it was in
our case [9].

B. ANGULAR PREFERENCE
The angular preference P(θ) a probability function based
on circular distribution, where the data are expressed in an
angular scale, the parameters are current value of θ , mean
value µθ and the variance σ 2

θ . Angular position towards the
object is relevant for certain actions. The angular preference
is defined by the modified wrapped normal distribution, as it
was described in [43]. The angular preference is described by:

P(θ ) = N
(
θ;µθ , σ

2
θ

)
=

1
2π

1+2
K∑
k=1

(
exp−

σ2
θ
2

)k2
cos(k(θ−µθ ))


The distribution covers the area [0, 2π]. For this distribution,
we used goodness-of-fit test based on Watson’s U2 to justify
the applied distribution. The goodness-of-fit test enables us
conclude that the conisdered functions is sufficient and more
complex relations are not needed. The details are given in [9].

FIGURE 16. The figure shows the histogram plot of the data justifying the
log-normal distribution. The variable edge e is log-normally distributed.

C. EDGE PREFERENCE
During the interactive actions where the human and the object
are separated by a distance the edge preference P(e) is con-
sidered. The likelihood of the next position of the hand is
the position depends on the normalized distance - the edge
(Eq. 8). This function considers the human hand - object
distance related to the hand distance to the sensor plane
(Fig. 6) in this paper. The edge preference is described by
log-normal distribution function:

P(e) = N
(
e;µe, σ 2

e

)
=

1

e
√
2πσe

exp
−

(
(ln(e)−µe)2

2σ2e

)
, e > 0
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To validate the correctness of applied function we followed
the statistical test described in [9]. We analyzed the data for
a log-normal distribution transforming the data (i.e., e) using
the logarithm. Transformed data have the Gaussian normal
distribution. Here also the Shapiro Wilk normality test was
applied to justify the distribution. The plot is given in Fig. 16
proofs that data are following the normal distribution.
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