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ABSTRACT The myoelectric interfaces are being used in rehabilitation technology, assistance and as an
input device. This review focuses on an insightful analysis of the data acquisition system of EMG signals
from these interfaces. According to applications reported in research articles of the last five years, the prop-
erties of the sensors, the number of channels, the pre-processing of the EMG signal, as well as the software
and hardware used were identified. This analysis was performed for the following applications: monitoring
of muscular activation for rehabilitation, muscle activation plans, and identification of possible pathologies,
exoskeletons, electric of wheelchairs, prosthetics control, myoelectric bracelets, handwriting recognition and
silent speech recognition. The results presented in this review become a guide of recommendations for the
myoelectric signal processing according to the application of the interface. The main developments, degrees
of research and open challenges are also presented in this direction.

INDEX TERMS Emg acquisition system, emg processing, electromyography sensors, myoelectric control,
myoelectric signals.

I. INTRODUCTION
Electromyography (EMG) is a technique used to measure the
muscle’s response to electrical stimulus of the nerves [1]. The
EMG signal acquired from the skin surface around muscle
and joint areas is the summation of the electrical activity of
all the muscle-fibred motor unit action potentials (MUAPs)
caused as a result of motion activity [2].

EMG signals have been relevant in several health fields.
The periodical monitoring of EMG signals can be utilized
to detect diseases like Huntington’s disease, Myopathies,
or Muscular dystrophies, and to timely address problems
such as heart attacks or stroke occur [3], [4]. Furthermore,
EMG signals could be useful to detect neuromuscular dis-
orders that could affect motor units (Mus) and to identify
the origin of such disorders [5]. Recently, in the Human-
Computer Interaction (HCI) field, the use of bio signals has
opened the way for the development of muscle-computer
interfaces. Particularly, EMG signals collected by sensors
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attached to superior limbs, have been used for controlling
devices by means of the electric impulses generated through
the muscles [6].

Given all the possibilities for exploiting EMG signals,
it is critical to ensure that the data collected is reliable and
that it is a precise representation of the electrical activ-
ity of the muscles. Therefore, an important research area,
is the analysis of the specific application design require-
ments of the acquisition system considered for obtaining the
myoelectric signals. Once these requirements are identified,
it will be possible to provide widespread recommendations
for the design of efficient and reliable EMG signal acquisition
systems.

An EMG signal acquisition system consists of four main
stages: (i) signal collection (ii) signal amplification, (iii) sig-
nal filtering and (iv) analog-to-digital converting. Each stage
demands specific requirements according to its operational
characteristics. These requirements can be specified in terms
of the design parameters necessary for the implementation of
EMG signal acquisition systems and will be further discussed
in the rest of this document.
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The method for collecting the EMG signal is by using elec-
trodes. An electrode is a transductor that represents the level
of muscle activity by recording the electrical activity in it.
Invasive approaches, also known as needle electromyography
(nEMG), record electrical activity through needle electrodes.
Whereas, non-invasive approaches, also known as surface
electromyography (sEMG), record muscle activity from the
skin surface through wet or dry surface electrodes [1], [7].
The suitability of each approach depends on the feasibility
of using an invasive or non-invasive approach to collect the
EMG signal. Although nEMG provides more features of
the muscular activity, its main disadvantage emerges from
the dynamics of muscular activities. Given the inherent inva-
siveness of the approach, it is difficult to repeatedly reposi-
tion the needle electrode if multiple locations of the muscle
need to be analyzed. Thus, only a limited number of active
engine units can be measured [8]. sEMG is preferable for
obtaining information regarding the duration or intensity of
superficial muscle activation [9]. Themajority of applications
consider the non-invasive sEMG approach, as it is free of
discomfort and observes extremely low risk of infection to
amputees [10].

Two critical design parameters for the signal collection
stage are the selection (type) and location (placement) of
the electrodes. Given that the signal-to-noise ratio (SNR)
depends on the place where the signal is collected, an optimal
selection of the electrode placement is mandatory to achieve
an adequate SNR level [11]–[13]. On the other side, the open-
loop gain (output-to-input ratio) as well as the input and
output impedances, are key parameters in the amplification
stage [14].

Given the proximity of many other bio signals in the sur-
roundings of the muscle and power line interference, it is
expected that the collected EMG signals will contain unde-
sired features that may obscure important information regard-
ing the electrical activity of the muscle. Hence, the optimal
design of the filtering stage is critical to exclude all the
unwanted frequency components. Several variables must be
considered in order to efficiently design the filtering stage: the
selected muscles, the type of contraction, the configuration
of the sensor and the source of the specific noise [15]. The
characteristics of the amplifiers and filters will determine the
quality of EMG signal.

After the EMG signal is amplified and filtered, it is fed
into an analogue-to-digital converter (ADC) circuit [16]. For
each specific application, EMG signals must be processed
by means of advanced signal processing algorithms, which
are commonly implemented in computer systems. Therefore,
the analogue-to-digital conversion stage needs to be carefully
designed. Three main variables must be considered during
the design of the ADC stage: the open-loop gain considered
during the amplification stage, the maximum output voltage
at the back-end of the EMG signal acquisition system, and
the additive noise. Moreover, in order to reconstruct digitized
signals with minimal errors, it is necessary to determine the

optimal sampling frequency, which makes it another impor-
tant design parameter for the ADC stage [14].

Insightful recommendations regarding non-invasive eval-
uation of muscles were provided by the European project
SENIAM [17], published in 2000. Sensor type selection and
sensor placement were remarkable topics addressed in the
recommendations. More than a decade later, the considera-
tions draw from SENIAM for sensor placement were updated
[18]. Moreover, key features as signal amplification, filtering
and sampling rate were added to the previous recommenda-
tions. Recently, works have been developed to perform anal-
ysis related to filtering, thinking about obtaining minimum
sampling frequency parameters to determine more favorable
conditions for processing time and its implementation in
portable acquisition systems [19], [20]. These contributions
have been very valuable for the pre-processing of EMG
signals, however, none of these previous works study the
relationship among the configuration of the data acquisition
system and the specific application of the EMG signal.

Therefore, this paper focuses on providing an insightful
analysis of the data acquisition system requirements, from a
measurement and data pre-processing point of view, as related
to the myoelectric interface for a specific application of the
EMG signal.

II. METHODOLOGY
A. SEARCH STRATEGY
In order to collect significant information regarding the
parameters of EMG signal acquisition systems, a system-
atic search was conducted. The references were indexed
by the following keywords: emg acquisition system, emg
sensors, electromyography sensors, myoelectric control and
myoelectric signals. The search was conducted in the fol-
lowing databases: IEEE Xplore R©, SCOPUS, Springer and
ScienceDirect search engine to determine the state of the art
of the topic.

B. REVIEW PROCESS
Articles found after the previously described search were
evaluated by analyzing the title and the abstract. The fol-
lowing criteria was considered for final selection of articles:
(i) Articles written in English; (ii) articles published from
2014 to 2018; (iii) comprehensive initial search results that
included journal articles only.

The study was conducted using the systematic review
method proposed by Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis (PRISMA), as shown
in Fig. 1.

C. INCLUSION CRITERIA
Articles found after the previously described search were
evaluated by analyzing the title and the abstract. The fol-
lowing criteria was considered for final selection of articles:
(i) Articles written in English; (ii) articles published from
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FIGURE 1. Flowchart of searching and screening strategy.

2014 to 2018; (iii) comprehensive initial search results that
included journal articles only.

III. RESULTS
A. STUDY SELECTION
From the 12,427 results found in the databases, only 3,886
did not duplicate. From these, 3,345 were discarded after
title screening. 541 works were selected to perform abstract
review, resulting in the selection of 243 papers for full-paper
review. After the full-paper review process, 30 papers were
selected according to the fulfillment of the specifications
shown in Table 1. It is important to note that although there is
a significant amount of publications in the field, only a small
number of publications address the specifications regarding
the design of EMG signal acquisition systems.

All the applications found during the screening process are
listed below:
• Monitoring of muscular activation for rehabilitation,
muscle activation plans, and identification of possible
pathologies [4], [5], [21]–[24].

• Support mechanisms based on the estimation of muscu-
lar strength, known as exoskeletons [25], [26].

• Electric control of wheelchairs [27], [28].
• Prosthetics control [29]–[36].
• Command control by means of myoelectric bracelets
[37]–[40].

• Handwriting recognition from EMG signals for control-
ling computer peripherals and identification of patholo-
gies as Parkinson’s disease and dysgraphia [41]–[45].

• Surface EMG-based sketching recognition for the devel-
opment of electronic sketching systems and computer-
aided sketching systems [46], [47].

• Silent speech recognition by means of myoelectric sen-
sors interface [48]–[50].

TABLE 1. Parameters considered during the reference scan process.

The aforementioned applications are classified by
Hakonen [18] into three categories: (1) Rehabilitative tech-
nology, that includes activation of exoskeletons and moni-
toring of muscle activation which is useful for the detection
and prevention of health problems, as well as for activation
and strengthening of muscular structures; (2) assistive tech-
nology, involving the control of prosthetics and motorized
wheelchairs by means of EMG signals; and (3) technology
as an input device, which includes the use of myoelectric
bracelets for the identification of gestures or sign language,
myoelectric interfaces for writing interpretation and sketch-
ing, and myoelectric sensors for silent speech recognition.

After the comprehensive review of the 30 selected papers,
it was found that the requirements of the EMG signal acqui-
sition system vary from one application to another. In this
sense, the objective of the present review is to analyze these
requirements to provide an adequate property classification
and to define the recommended operational characteristics of
the EMG signal acquisition systems for each of the previously
listed applications.

B. STAGE ANALYSIS OF THE EMG SIGNAL
ACQUISITION SYSTEM
EMG systems are characterized for acquiring, analyzing and
processing complex bio signals. These bio signals are small
in amplitude but very rich in information, and given that they
are controlled by the nervous system, they depend on the
anatomy and physiological properties of the muscles [51].
The electrical characteristics of EMG signals reported in the
reviewed works are listed in Table 2. In the table, it can
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TABLE 2. Electrical characteristics of the EMG signal.

TABLE 3. Harmful interferers that affect the recording of the EMG signal.

be identified that the amplitude in voltage of a muscular
contraction can vary from 0 to 10mV and the energy is within
the first 500 Hz in the frequency spectrum.

On the other hand, Table 3 presents a collection of harm-
ful interferers that may affect the performance of the EMG
system. Among the main interferences, the following were
identified: moving artifacts affecting low frequencies, trans-
mission line that can affect the frequency of 50 or 6OHz
depending on the energy sub-ministered of each country, sat-
uration of amplifier, physiological interference, specifically,
the electrocardiogram and noise bio signal.

Due to the characteristics described above, EMG signals
require specific treatment to take the full advantage of the
information provided by them. Therefore, the design of the
EMG signal acquisition system stages must be carried out in
such a way that this specific treatment is effectively achieved.
In general terms, an EMG signal acquisition process requires
two main activities: signal sensing and signal pre-processing.
Several authors agree in dividing pre-processing of EMG sig-
nals into three stages: amplification, filtering, and analog-to-
digital conversion [51], [21], [57], [59], [60]. Hence, we will
consider that EMG signal acquisition systems are comprised
by four stages: (1) sensing, (2) amplifying, (3) filtering, and
(4) analog-to-digital conversion.

As stated before, the main goal of this review is to clas-
sify the application-specific properties of each stage of the
EMG signal acquisition system and to draw recommenda-
tions regarding the design requirements for the stages. In this
sense, Table 4 abstracts the main properties identified for the
sensing stage. The information in Table 4 was completed by
identifying in each research article what type of technique
was used, superficial or intramuscular, if only the EMG sig-
nal was analyzed or in conjunction with another bio signal,
how many channels were used, and the characteristics of the
sensors used.

While Table 5 summarizes the properties related to the
amplifying, filtering, and analog-to-digital conversion stages

as well as the software and hardware used, both tables
were constructed from the information extracted from the
30 reviewed articles.

1) SENSING STAGE
a: PROPERTIES OF THE EMG SENSOR
In a myoelectric interface, electrodes are used to detect the
biological potential that is generated due to muscle contrac-
tion [3]. EMG signals can be analyzed independently or along
with other bio signals that are useful to the better understand-
ing of the muscle’s movement. The number of implemented
sensors is related to the type of movement that is analyzed,
and the amount of information provided by each channel
needs to be considered for further processing. Properties such
as construction material, configuration and size are variables
that need to be considered when designing and implementing
the signal acquisition system for each specific application.

In this sense, the properties of the sensors considered in the
30 papers selected for this systematic review, were thoroughly
analyzed. It is worth mentioning that the selected works cover
most of the applications of EMG signals discussed in the
previous section. It can be observed in Table 4, that 9 out of
the 30 research works correspond to applications falling into
the rehabilitation technology category, 10 out of the 30 works
fall into the assistive technology category, and finally, 11 out
of the 30 works belong to the technology as an input device
category.

b: SENSING TECHNIQUE (SUPERFICIAL OR
INTRAMUSCULAR)
Bioelectrical activity inside the muscle of a human body is
detected by means of EMG electrodes. There are two main
types of EMG electrodes: superficial (skin surface electrodes)
and intramuscular (needles and thin wires) [61].

From 30 works shown in table 4, 28 resorted to the superfi-
cial technique for gathering the EMG data, one work consid-
ered the intramuscular technique (sEMG), and one employed
a fusion of both techniques (hybrid approach). Of the works
that did not report using surface technique, one of the two
researches used the intramuscular technique which is focused
on EMG signal classification methods for identifying health
problems [5]. Signal classification method proposed in [5]
allows discriminating among normal, myopathy and Amy-
otrophic Lateral Sclerosis (ALS) patients. On the other hand,
the work that considered the hybrid approach addresses
the problem of prosthetics control by means of signal
classification [32].

c: TYPE OF ANALYZED SIGNAL
As stated before, it is possible that the sensors collect other
bio signals along with the EMG signal. These bio signals may
differ according to the application considered. The analysis
of the signals used in the studies proposed in each of the
30 reviewed works, highlights that 21 works consider only
EMG signals, while the remaining 9 publications consider
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TABLE 4. Properties of the sensors according to the application type (N=30).

other signals as: strength, signals acquired by IMU sensors,
electrocardiogram (ECG) signals, pressure, acceleration,
space orientation, electrodermal activity (EDA), adaptive
cruise control (ACC), illuminance (LUX), elbow movement,
photo plethysmography (PPG), bioelectrical impedance anal-
ysis (BIA) and position tracking.

In Table 4 it is remarked that the papers that involve the
measurement of other bio signals in addition to the EMG
signals are, in general, those that study signal classification
methods for prosthetic control. This is mainly since these

applications require knowledge regarding additional informa-
tion as position, speed, rotation and force to improve the effi-
ciency of parameters interpretation. The use of other sensors
for monitoring different bio signals has also been reported,
although they are not necessarily analyzed all together with
the EMG signals.

d: NUMBER OF EMG CHANNELS
The number of channels used in an EMG signal acquisition
system is related to the muscles intended to be analyzed.
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TABLE 5. Pre-processing features according to the application (N=30).
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TABLE 5. (Continued) Pre-processing features according to the application (N=30).

FIGURE 2. Number of channels used for each application. 1 channel [5],
[24], [21], [4]; 3 channels [48]; 4 channels Exoskeletons [25], Electric
powered wheelchair control [27], [28], Myoelectric bracelets [37],
Handwriting recognition [44], Silent speech recognition [49];
6 channels [42] and [43]; 8 channels Exoskeletons [24] and [60],
Myoelectric bracelets [63], Handwriting recognition [39], [40]
and [45], Prosthetics control [29], [33] and [34] and 10, 12, 16 y
24 channels [27], [28] and [30]–[32].

This design parameter will directly affect the amount of infor-
mation that needs to be processed during the classification
and data interpretation stage of the myoelectric system.

From the analysis shown in the Table 4 is found out that
the number of channels is directly related to the specific
application of the EMG signal. Fig. 2 depicts the relation-
ship between the numbers of channels used per application
addressed in the thirty reviewed papers. Articles reported
having used between 1, 3, 4, 6, 8, 10, 12, 16 and 24 channels.
At the bottom of the figure the reference is shown according
to the channel number and its application.

According to the information provided by the reviewed
papers and Fig. 2, one single channel could be enough for
transmitting the muscular activity data necessary for muscu-
lar activation monitoring systems. However, if pattern recog-
nitionmethods are going to be applied for identifying specific
limb pathologies, then considering up to ten channels might
be necessary [23].

For silent speech recognition applications, studies report
that a considerable amount of words and phrases could
be interpreted by using four channels [49]. On the other

hand, periodic expressions as chewing, talking, gargling, and
temporary expressions as sadness, surprise, happiness, pout-
ing and anger, could be recognized by employing a minimum
of three channels [48].

The number of channels documented in applications
for the interpretation of command gestures is four [27],
[28]. These applications are typically used in electrical
powered wheelchairs to control functionalities as: mov-
ing, stopping, moving forward and reversing. Also, four
channels are used in applications for simple hand gesture
recognition through myoelectric bracelets [39], [64], [65].
Common uses for these applications are virtual reality gam-
ing, computer or mobile phones control, or sign language
interpretation.

Works that address applications as writing recognition and
exoskeleton activation have documented the use of, at least,
six and eight channels. The number of electrodes used in
the prosthesis can vary from 1 to 32 electrodes. The impor-
tance of this configuration lies in its electro-accuracy control,
production cost, computational load, the type and number of
tasks to be achieved and degrees of freedom (DoFs) [66].

e: SENSOR FEATURES (CONFIGURATION, CONSTRUCTION
MATERIAL AND SIZE)
According to the investigation reported in [17], there are
three different sensor configurations: monopolar, bipolar and
array/line electrodes. By analyzing the sensor configuration
considered in each of the 30 reviewed works, it was observed
that the bipolar configuration is the most used. Only 3 out of
the 30 works consider the monopolar configuration, and none
of them consider the array/line sensor configuration.

On the other hand, a desirable feature for data recording
electrodes is their capability for avoiding overpotentials due
to polarization. A silver chloride (Ag/AgCl) electrode com-
plies with this feature [67]. In this regard, 13 out of the 27
works that consider bipolar sensors, reported that the sen-
sors were constructed using Ag/AgCl, while the remaining
14, do not specify the construction material of the sensors
employed.
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FIGURE 3. Percentage of the works per gain type.

Regarding the size of the sensor, only 10 out of 30 papers
provided a detailed description of the sensor size and shapes.
The information is summarized below:
• Rectangular: 41mmx 44mmx 9.4mm, 19.8mmx 35mm,
5cm x 3.5cm, 10mm x 20mm x 3mm

• Circular: 8mm, 10mm, 12mm y 5.7cm
• Needle electrode: 0.07mm

2) AMPLIFYING STAGE
As mentioned before, EMG signals are very weak. This
characteristic is exacerbated in some specific muscles. There-
fore, it is expected that the amplifier gain design must be
tailored according to the application in relation to the mus-
cles involved. 14 out of the 30 reviewed works reported the
amplifier gain considered for their systems, the results are
shown in Fig. 3, considering that 100% corresponds to the
14 papers that report the gain type and value used for their
systems, it was identified that over the majority of the works,
36%, documented earnings between 500 and 1000 over the
original signal.

The information provided in Figure 3 can be further
described to classify the gain value used per specific appli-
cation:
• Myoelectric bracelet: Gain of 1000 [37].
• Prosthetic control: Programmable gain amplifiers [30],
[32], [36].

• Exoskeleton: Programmable gain from 2000 to
5000 [26].

• Handwriting: Gain of 1000 [41], [46] and of 2000 [43].
• Muscular activation monitoring: Gain of 600 [23],
of 1000 [22], of 4000 [5], low noise and variable gain
amplifier [24].

• Electric powered wheelchair control: Gain of 455 [28].
From the works that do not specify the amplifier gain,

5 of them are related to prosthetic control applications, 1 to
muscular activation monitoring, 2 to exoskeleton activation,
3 to writing recognition, 1 to myoelectric bracelet, 1 to
electric powered wheelchair control, and 1 to silent speech
recognition.

It can be assumed that the lack of information on thismatter
is mainly due to the unavailability of the specific parame-
ters of design in commercial devices. For example, in [38]
the hand control application is based on the myoelectric

bracelet, which is manufactured byMYO fromThalmic Labs.
Thalmic Labs does not provide further information regarding
the amplifier stage of the acquisition system of the bracelet.

3) FILTERING STAGE
As discussed previously, EMG signals can be affected by
other intended or non-intended signals, for example other
bio signals (ECG, EEG, etc.) or radiofrequency emissions
(cellphones, Wi-Fi, Bluetooth, etc.). Furthermore, tempera-
ture fluctuations, compensations in amplification stage, char-
acteristics of the sensor, etc., can also affect the waveform
of the EMG signal. All these undesired signals and random
variations can be modelled as noise whose frequency charac-
teristics may vary depending of the actual noise sources [61].
In this sense, the filtering stage in a signal acquisition system
is of paramount importance to reduce the detriment of the
EMG signal caused by noise.

According to its frequency response, the filters reported in
the reviewed works on Table 5 can be classified into three
categories:

(1) Band-pass filters:
• 500 Hz, 3rd order [22]
• 5-500 Hz, 2nd order [41]
• 10-200 Hz [44]
• 10-400 Hz [4], 3rd order [33], [4]
• 10-500 Hz [30], [46], [47]
• 20-250 Hz 2nd order [42]
• 20-450 Hz [49]
• 20-500 Hz [48], 2nd order [23] and 4th order [31], [32]
• 30-300 Hz 4th order [29]
• 2-750 Hz [37]
• 13 works do not specify the characteristics of the filter-
ing stage

(2) Notch filters: 50 Hz and 60 Hz (depending on the
frequency of the electrical network in each country).

(3) Low-pass filters:
• 2 and 10 Hz [5]
• 20 Hz [35]
• 7 Hz [25]
• 16 Hz [43]

4) ANALOG-TO-DIGITAL CONVERSION
Applications as pattern recognition or device control through
EMG signals take place after the EMG signal is converted
to a digital format. Hence, the sampling frequency and quan-
tization levels of the analog-to-digital converter (ADC) are
important design parameters that must be thoroughly ana-
lyzed for each specific application.

Regarding the sampling frequency, 24 out of the 30 works
from Table 5 presented a detailed report of the sampling
frequency considered in their applications, summarized as
follows: 21 papers reported sampling frequency values rang-
ing from 1000 to 1500 samples per second; for the remain-
ing 3 papers, the sampling frequency ranges from 2000 to
23434 samples per second. The latter are related to appli-
cations that resort to classification methods for pathology
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FIGURE 4. ADC resolution reported in some EMG signals applications.
8 bits [22]; 10 bits [28]; 12 bits Pathology detection muscular activation
[23], [21], Exoskeletons [26], Prosthetic control [30]; 14 and 16 bits
Handwriting recognition [46], Prosthesis control [32] and 24 bits
Prosthetic control [29], [33].

detection through muscular activation, prosthetic control and
writing interpretation.

On the other side, the resolution of the ADC is reported
in 12 out of the 30 works from Table 5. The classification of
the resolution considered in these research works is presented
in Fig. 4, where it is shown that the ADC can vary between 8,
10, 12, 14, 16 and 24 bits, with ADC converters of 12, 14
and 16 bits being more used. At the bottom of the figure, the
reference is shown according to the number of bits and their
application.

According to the classification provided in Figure 4, it is
possible to infer that applications that require simpler ges-
tures interpretation would require lower resolution, as com-
pared to that requiring more complex gestures interpretation,
as in, for example, writing recognition or prosthetic control
with higher degrees of freedom, where higher resolution,
ADC is necessary.

5) SOFTWARE AND HARDWARE
According to Table 5 it can be seen that there is a diverse
range of commercial systems developed for the monitoring
of EMG signals, these may vary according to the num-
ber of synchronized channels and the use of these sig-
nals. Each of these systems develop the processing and
visualization in closed-source hardware/software systems.
However, the commercial software of these owners often
have the opportunity to provide ways to export files for
use on other platforms such as Matlab, Excel, Labview
among other. They can be exported by ‘‘Selected signal(s)’’
or ‘‘Raw data set’’. The export of these can be done
in different types of files: Bynary, CSV o Matlab files.
Some suppliers offer the opportunity to access the differ-
ent sensors with some adaptation to be read by Simulink,
for example.

On the other hand, the works report the development of
owned systems for research purposes, these systems are usu-
ally just as reliable as the commercial ones and have a degree
of flexibility adequate for analysis and research purposes.
The general architecture is represented in the type of sen-
sors, the type of amplifiers, the converter card A/D, and the
microcontroller that controls the process. C++, LabVIEW
(National Instruments Corp., Austin, TX, EE. UU.) and

MATLAB (The Mathworks Inc., Natick, EE. UU.) They are
mainly used as programming languages.

Currently, there are also systems called ‘‘open -source
hardware’’, based on platforms like Arduino, Raspberry Pi,
Atmel, Pololu, among other whose hardware, software and
mechanical design files are available online offering a solu-
tion to the high costs and slow pace of innovation of medical
devices.

IV. DISCUSSION
The use of the myoelectric signals has extended in the last
decades for diverse applications: in its commercial use, it is
more remarkable in the medical and rehabilitation area; how-
ever, it has gained ground in mechanisms of support to the
upper extremities such as the prosthetics and exoskeletons.
Challenges remain and there are various applications that
continue to be worked in the laboratory with the challenge
of becoming new and ergonomic input peripherals on the
HMI, as are the myoelectric bracelets, the handwriting and
silent speech recognition. In order to add to this branch of
knowledge, in this review and according to the application,
the technical aspects of the main signal acquisition system
were identified along with important differences in the con-
figuration of these. The main findings found at each stage are
shown below.

A. SENSING STAGE
Although there are different techniques to acquire the myo-
electric signals, there are enough results in the analyzed
works to consider that the superficial type technique (sEMG)
is the most appropriate when you want to develop more
ergonomic devices and equipment for commercial use. The
most used sensors on investigations were those of biopo-
tential configuration with silver chloride material (Ag/AgCl)
since it has been shown to have the appropriate standards for
the myoelectric interfaces due to its impedance characteris-
tics.

The type of shape and measurements of the sensor have
their variations, however, the most common are the round
of 8mm and 10mm diameter. This information is consistent
with the recommendations given in the European project
SENIAM [17] published in 2000.

Regarding the relationship in the number of channels per
application, it was identified that according to the number of
muscles needed for a more efficient analysis, will be the num-
ber of channels to utilize. This trend, however, in research,
is to decrease the number of channels. For this, the techniques
of electrode location as sensors placement procedures for
the sensors sEMG [68] and Crosswalk studies [69], [70], are
important aspects to consider for the reduction or the correct
selection of muscles and channels.

According to the analyzed investigations, works with only
3 channels, were able to recognize periodic expressions such
as: chewing, speaking, gargling and transient expressions
such as: sadness, surprise, happiness, pout and anger. For the
gesture’s recognition defined through myoelectric bracelets,
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electric control of wheelchairs and of silent speech recogni-
tion, 4 channels are commonly used. 8 channels for applica-
tions of prosthetics control more than 1 DoF, exoskeletons
and handwriting recognition; 10, 16 and 24 are the most
utilized channels for complex systems of prosthetics control
for an important variety of movements.

The design of the surface electrodes can be classified as:
1) Muscle-oriented design, precise location of the muscle
is necessary when using and adhering pairs of electrodes,
2) Arrangement of the low-density surface electrode (LD),
it is necessary to have electrodes in certain patterns and
distribute them uniformly in the skin forming ring structures
or belts, what is also known as uniform electrode positioning.
The number of channels can vary from 2 to 16, 3) Arrange-
ment of high density surface electrodes (HD), which collects
the EMG signals from the closely spaced electrodes, allows
exploiting spatial information through the muscles, therefore,
this strategy can be useful for the study of complex dynamic
tasks in the free space with a greater number of DoFs. How-
ever, it remains a challenge to deal with many EMG channels
to interact with a practical prosthetic hand.

B. AMPLIFICATION STAGE
From the analyzed documents, it was identified that there is
not much of attention in documenting precise characteristics
of amplification and filtering. This is more recurrent on the
applications with a greater number of channels, as in myo-
electric control; however, they documented having worked
with programmable amplifiers. This makes sense because
the efficiency of the classifiers focuses on patter recognition
and classification algorithms about muscular regions not on
a single muscle.

TheWorks that documented the gain value for applications
such as monitoring of muscular activation, the gesture inter-
pretation like electric control of wheelchairs, the handwriting
recognition and the silent speech recognition, converge on the
need to amplify the signal with a gain of 500 – 1000 unlike
work [28] which proposes an amplification of 400.

Without a doubt, the gain and noise characteristics that
these signals have, become complex and although the largest
amplitude is desired, you have the risks of saturation in the
amplifier. In [24], the need for low noise amplifier (LNA)
and considering the risk of saturation on the amplifiers is
mentioned. The consideration to incorporate a preamplifier
is to have a high common mode rejection ratio (CMRR) and
high input impedance.

C. FILTERING STAGE
The signal sEMG is inevitably contaminated, therefore, it is
necessary to consider the different factors to determine the
specifications of the filtering which include: the selected
muscles, the type of contraction, the configuration of the
sensor and the source of the specific noise and [15] adds that
it’s important to consider the corner frequency, the roll-off
rate and the circuit topology chosen. The determination of the
band-pass is important to reduce noise and the contamination

by the artifacts and to preserve the desired signal, this way,
the majority of the systems utilizes filters between 10 and
500 Hz. However, [71] indicates that utilizing the high-pass
angle frequency of 20 Hz offers the best compromise to opti-
mize the informational content desired of the SEMG signal,
since at low frequencies of the spectrum frequency, noise
sources are involved which overlap with the SEMG signal,
for this reason, the determination of filtered characteristics in
this region, has been a focus of attention.

The order of the reported filters can vary from first to
fourth order, however, comparisons have been made between
the second and fourth order Butterworth high pass, confirm-
ing that a second order can replace the high-pass filter of the
fourth order [15].

Although the modern technology is substantially immune
to some noises, it is not so for the reference noise, such
is the case of the noise generated by the power lines. The
works reported using the notch filter for frequencies of 50 or
60 according to the standards in each country.

D. ANALOG-TO-DIGITAL CONVERSION
The similarities on the works continue per the frequency
sampling, most of the scanned works, documented to have
used sampling frequency of 1000 Hz, as stablished by the
sampling theory of Nyquist, which must be equal or less than
half the speed of sampling of the signal, which it is known as
the greater power (approximately 95%) of the signals, sEMG
is explained by harmonics of up to 400 – 500 Hz. However,
some differences were noted: [5] worked with a sampling
frequency of 23428 Hz, [30] with 2048 Hz and [32] increased
up to 10,000 Hz.

It is observed that those works that used a greater number
of channels also increased the frequency. Although the use of
a higher sampling frequency can acquire more myoelectric
information that can increase the precision of the motion
classification, this adds more computational complexity and
analysis, as well as memory requirements. Some works such
as [72] have shown that it is possible to decrease the sampling
frequency up to 500 Hz were you can save approximately
50% storing memory and reduce 50% data processing time
with a slight accuracy sacrifice (around 2%).

The ADC conversion was achieved with resolutions of 8,
10, 12, 14, 16 and 24 bits. In monitoring applications, a reso-
lution sufficiency of 8 bits is shown, unlike electric control of
wheelchairs and control by means of myoelectric bracelets,
which are more efficient to use in a 10-bit resolution. The
application that used 12, 14 and 16 bits are those that desire
to interpret more complex pathologies or gestures such as
prosthetics control, exoskeletons, handwriting recognition.
The works that document the use of 24 bits are those that
interpret complex gestures determined by the movement of
upper extremities.

Although the ADC conversion varies for each application,
[73] states that a 16 bit converter may be preferable for
any acquisition system, since the aggregate resolution may
eliminate the need for manual gain of each EMG amplifier.
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E. SOFTWARE AND HARDWARE STAGE
According to the results of the documents analyzed,
3 types of systems were identified; each of them used
for specific purposes due to its hardware and software
characteristics.

High-end data acquisition platforms. These systems are
used for medical and prosthetics applications whose main
characteristics are: off-line processing, they do not focus
on optimization for resource constrained platforms such as
wearables, can obtain high gesture classification accuracy,
the used algorithms are not documented and design of real
time efficient systems is still a challenge.

Embedded data acquisition platforms: Systems used for
research purposes, these systems are usually: open source
platform, meet real-time requirements, are low power sys-
tem. For the development of a wearable and low-power sys-
tem, targeting high accuracy, the most promising approach
seems to be the synergy between a low power Analog
front-End (AFE) and a microcontroller, merging the sys-
tem flexibility with a good signal quality and maintaining a
good trade-off between power consumption and computing
capabilities [36], [74].

Low cost wearable device. Used for interactive appli-
cations. Currently, the most interesting solution for wear-
able EMG gesture recognition is the MYO armband, from
Thalmic Labs. This is a wearable and low-cost device
equipped with EMG and inertial sensors. It connects to a
PC or tablet via Bluetooth Low Energy (BLE) and allows
both raw data streaming and the use of a proprietary library
for gesture recognition. The signal processing is performed
on the host platform and the used algorithms are not doc-
umented [36]. Nevertheless, the device presents low flex-
ibility in terms of possible applications because it lacks
embedded computing capabilities and cannot be used as a
stand-alone system.

V. CONCLUSION
Although there are recommendations made by [17] regard-
ing the non-invasive evaluation of muscles and those made
by [18]–[20],which make references to key features such
as amplifier, filter and sampling frequency. The approach
proposed in this review allowed us to study the relationship
between the configuration of the data acquisition system and
the specific application of the signal.

The aforementioned applications can be classified into
three categories: (1) Rehabilitative technology, that includes
activation of exoskeletons and monitoring of muscle activa-
tion, useful for the detection and prevention of health prob-
lems, as well as for activation and strengthening of muscular
structures; (2) assistive technology, involving the control of
prosthetics and motorized wheelchairs by means of EMG
signals; and (3) technology as an input device, which includes
the use of myoelectric bracelets for the identification of
gestures or sign language, myoelectric interfaces for writ-
ing interpretation and sketching, and myoelectric sensors for
silent speech recognition.

The stages of the EMG data acquisition system include
census, amplification, filtering and digital analog conver-
sion. When reviewing a variety of papers documented by
the researchers, it is concluded that the surface technique
is preferable in its biopotential configuration for the EMG
signal census, the amount of sensors used may vary accord-
ing to the application of the interface, for example, inter-
pretation applications of simple gestures such as motorized
wheelchairs control or signal monitoring, use fewer sensors
than the control of prosthetics or the use of exoskeletons; the
majority of the works documented gains between 500 and
1000 on the original signal, the considerations to incorpo-
rate amplifiers is to have a high CMRR and a high input
impedance; the most common filtering has to do with the
elimination of interference from power lines, the movement
of artifacts and other bio signals detected. Butterworth filters
of the second or fourth order were the most reported; the most
documented sampling frequency was 1000 Hz, as established
by the Nyquist theorem, however, wireless systems usually
use frequencies lower than 250 Hz and higher frequencies
in medical platforms, the resolution of the analog-digital
converter varies according to the application although, 16-bit
converters are preferable.

According to the results of the documents analyzed, three
types of systems were identified that allow the acquisition of
High-end data acquisition platforms, Embedded data acqui-
sition platforms and Low-cost wearable device, each using
hardware and software features according to their purpose.

The results presented in this review can already be recom-
mendation guides for the design of emg signal acquisition and
processing systems according to their application, however
the recommendations are based on the common practices of
the researchers, in order to obtain reliable and optimal crite-
ria, it is pending to carry out a study with the same approach,
paying attention to the processing times, computation cost
and the classification results for those interfaces that involve
the interpretation of gestures.
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