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ABSTRACT The application of train-to-train (T2T) communication in urban rail transit is expected to
simplify system structure, reduce maintenance costs, and improve operational efficiency. In particular, train-
to-wayside (T2W) communication coexist with T2T communication in the train control system based on T2T
communication. To make full use of limited spectrum resources, frequency reuse is adopted as an efficient
technique, but it brings the co-channel interference unfortunately, which affects the quality of service (QoS)
for T2T and T2W users. In this paper, we propose a multi-agent deep reinforcement learning (MADRL)
based autonomous channel selection and transmission power selection algorithm for T2T communication
to reduce the co-channel interference. Specifically, each agent interacts with the environment and selects
actions to implement a distributed resource allocation mechanism independently, adopting asynchronous
updates to avoid different agents choosing the same sub-band. Simulation results show the superiority of
our proposed algorithm: compared with the existing resource allocation schemes for T2T communication,
the system throughput and the successful transmission probability of T2T links are greatly improved.

INDEX TERMS Train-to-train (T2T) communication, resource allocation, multi-agent deep reinforcement

learning (MADRL), urban rail transit.

I. INTRODUCTION

With the continuous expansion of urban scale and the pres-
sure of rail transit increasing, efficient and safe rail transit
is highly valued [1]. In the past decade, the communication-
based train control (CBTC) system has been widely used
for its punctuality and higher operational efficiency [2], [3].
However, key functions such as train route and safety protec-
tion are based on bidirectional train-to-wayside (T2W) com-
munication structure in CBTC systems, which bring many
problems such as multiple configuration equipment and com-
plicated system structure [4], [5]. Reliable direct train-to-train
(T2T) communication can significantly improve efficiency
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and safety of train operation, and reduce wayside equipment
in the train control system [6], [7]. Then, T2T technology was
proposed and applied to the train control system, which is
regarded as the next generation train control system [7]-[9].

Related research on T2T communication technology has
been carried out widely. The channels for T2T communi-
cation at different frequencies were measured and modelled
in [6], [10]-[13], which is the foundation for further research
on T2T technology. The authors of [14] designed a novel
CBTC system based on T2T communication, and proposed
the local security certification and cooperative security check
scheme to detect and against Sybil attacks. In [15], the CBTC
data communication system based on T2T communication
was proposed, and the reliability of the system was evaluated.
In [16], the millimeter wave (mmWave) band was applied to
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T2T communication, and the authors studied the alignment of
narrow beams between trains in turning scenes. The authors
of [17] studied the switch control function of the CBTC
system based on T2T communication.

Although the T2T communication based CBTC system has
many advantages, the wayside equipment in the system is
still necessary. While the two adjacent trains acquire each
other’s position and status information through the T2T link,
the train also needs to communicate with the wayside equip-
ment. By multiplexing the frequency resources of the T2W
uplink in T2T link, spectrum utilization can be improved
effectively. However, it also produces co-channel interference
in the system. Therefore, an effective resource allocation
scheme is required to manage the interference [18]-[20].
The authors of [21] proposed a bio-inspired algorithm to
achieve distributed channel allocation, which could effec-
tively increase system throughput and reduce communication
delay. To improve channel utilization and system perfor-
mance, the authors of [22], [23] proposed a novel distributed
channel allocation algorithm and a evolutionary scheme
(named E-MAC) to achieve collision-free transmissions. The
authors of [24] proposed a power control algorithm based
on statistical-feature, which could reduce the average D2D
transmit power and increase the energy efficiency of D2D
communications in the cellular. The authors of [25] designed
a mean-field game (MFQG) theoretic framework and achieved
a novel distributed power control scheme within the MFG
framework. Notice that, none of the above works involved
machine learning algorithms.

The reinforcement learning (RL) based resource allocation
schemes have been applied to device-to-device (D2D) com-
munication widely. In [26], a Q-learning based power con-
trol algorithm was proposed which decorrelated the actions
selected by users and expand the solution space, and it had
higher quality of service (QoS) than the schemes based on
correlated Q-learning. In [27], two RL based power con-
trol methods were proposed, i.e., centralized method and
distributed method. The simulation results showed that the
distributed method had better system performance. In [28],
a distributed learning based spectrum allocation scheme was
proposed, which could maximize system throughput and
spectral efficiency. However, in the above schemes, power
control and channel selection were realized separately. In [29]
and [30], new methods were proposed to solve this defect.
In [29], an actor-critic RL based on policy gradient was
proposed to improve D2D throughput and system through-
put. In [30], a novel Bayesian (RL) model was proposed,
and Bayesian RL-based coalition formation algorithms were
implemented in a long-term evolution advanced network.

Recently, multi-agent RL has been gradually applied to
wireless networks for its excellent performance and efficient
implementation of distributed mechanisms. In [31], a collab-
orative multi-agent RL anti-jamming algorithm was proposed
to solve the problem of external malicious jamming and
mutual interference among users. An autonomous channel
selection scheme based on multi-agent RL was proposed
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in [32], which could accelerate the convergence speed of
the algorithm as well as improve the throughput of the
system. In [33], a multi-agent deep reinforcement learn-
ing (MADRL) based distributed dynamic power allocation
scheme was proposed, which achieved near-optimal power
allocation. In [34], a MADRL method was adopted to realize
cooperative spectrum sensing. Compared with traditional RL
methods, the proposed algorithm had advantages in both the
convergence speed and the reward performance.

However, the machine learning based resource allocation
scheme for T2T communication is still scarce. In [35], Stack-
elberg game was proposed for power control, and weight
factors based on proportional fairness were introduced for
channel selection, which realized the resource allocation in
the T2T scenario. The scheme can improve the throughput
of the system and ensure the stability of the T2T communi-
cation. However, in this scheme, the system model has some
disadvantages, e.g., the resource of one T2W uplink can only
be multiplexed by one T2T link.

In this paper, we design a novel CBTC system structure
based on T2T communication with Long Term Evolution for
Metro (LTE-M), since Beijing Yanfang urban railway has
already adopted LTE-M to transmit CBTC traffic [9]. Then,
MADRL is adopted to the T2T scenario for the first time, and
a novel distributed resource management scheme is realized.
Specifically, in the proposed scheme, each T2T transmitter is
regarded as an agent. Through interaction between agents and
environment, each agent obtains state information, including
resource block (RB) reuse and channel state, etc. According
to the policy, each agent chooses actions, including power
selection and RB selection. Compared with random allo-
cation scheme and existing resource allocation scheme for
T2T communication, the proposed scheme can effectively
improve the throughput of the system, and improve the suc-
cessful transmission probability of T2T links within the spec-
ified time.

The remainder of this paper is organized as follows.
Section II briefly introduces the system model and formu-
lates the resource allocation problem in the T2T scenario.
In Section III, we describe the MADRL based resource allo-
cation algorithm for T2T communication. The performances
of the proposed schemes are simulated and compared in
Section I'V. Finally, we conclude the paper in Section V.

Notation: a, a and A represent a vector, a scalar and a set,
respectively; |.A| denotes the size of set A; R” stands for the
set of n-vector real numbers; E[-] denotes the expectation.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

A. T2T COMMUNICATION BASED CBTC SYSTEM

A novel CBTC system based on T2T communication with
LTE-M is shown in Fig. 1. The CBTC data communication
system is mainly composed of Evolved Packet Core (EPC) of
LTE-M systems, base station (BS), and terminal equipments.
Compared with the traditional CBTC system, the functions
of computer interlocking (CI) and zone controller (ZC) are
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FIGURE 1. A novel CBTC system structure based on T2T communication with LTE-M.

integrated into trains and trackside controllers. In this novel
CBTC system, the train becomes more ‘“‘core” and “‘intel-
ligent”. Automatic train supervision (ATS) system sends
the routing plan to vehicle on board controller (VOBC)
by T2W communication, then VOBC can straightforwardly
control the rotation and opening of the turnout according
to the routing plan [3]. By adopting D2D communication
technology, adjacent trains can directly perform T2T com-
munication and exchange the key information such as train
position and speed with each other. Based on the key infor-
mation, the train can timely generate updated movement
authority (MA) without the assistance of ZC or other equip-
ments. There is a transmitter with the environmental sensor
at the front and rear of the train to better support the T2T
communication. The environmental sensor can obtain “‘envi-
ronmental state information” such as instantaneous channel
state information (CSI) and interference power, etc. The main
function of the environmental sensor will be introduced in
Section III.

The novel design can not only effectively reduce the com-
munication processes between trains and improve the per-
formance of the entire system, but also simplify the system
structure.

B. PROBLEM FORMULATION

The T2T communication scenario in a single cell is shown
in Fig. 2. In this scenario, we assume that the total number of
RBs in the system is M, where M is the maximum number of
trains in the area covered by the cell. The RBs are orthogonal
to each other. Moreover, N trains require to establish N T2W
uplinks to communicate from train to wayside equipment,
and each link denotes as n € W = {1,2,...,N}. Each
T2W link uses one RB, and the RBs are different from each
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FIGURE 2. Co-channel interference caused by T2T communication and
T2W communication.

other. Furthermore, each train requires to interact with the two
adjacent trains to attain the location and state information of
the adjacent train. So there are K T2T links denoted by 7 =
{1,2,...,K}, and K is twice as much as the number of trains.
In particular, the first and last trains, only one train adjacent to
them, and they still establish two T2T links with the adjacent
train for redundant transmission. The anti-interference ability
at the BS is stronger compared with that at the train, and
the available spectrum resources for wireless communication
are limited. Therefore, each T2T link reuses the orthogo-
nal spectrum resource of the T2W uplink, and the same
RB can be reused by multiple T2T links at the same time
slot. When different links in the system use the same RB,
co-channel interference (i.e., collision transmissions) occurs.
The co-channel interference will affect the throughput and
performance of the system.

The signal to interference plus noise ratio (SINR) of the
nth T2W user at the BS can be expressed as

P h)
o2+ ZkeTpk[”]PI{ZIZV’

yWinl = (1
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where P)V is the transmission power of the nth T2W user,
h,‘iv is the channel gain of the useful signal corresponding
to the nth T2W user, and o2 is the noise power. px[n] = 1
when the kth T2T user has reused the frequency resource of
the nth T2W user and pi[n] = 0 otherwise. P,{, E,‘;V is the
transmission power of the kth T2T user and the channel gain
of the interference to the BS, respectively. According to the
Shannon theorem, the throughput of the nth T2W user can be
formulated as

C"[n] = Blog>(1 + vV [n), 2

where B is the bandwidth. The co-channel interference caused
by reusing the same frequency resource between the T2T user
and the T2W user is

Iw =Y pxlnlP) Rl 3)
neW

and the co-channel interference among all T2T users which
use the same RB is

Ir=Y% > pnlpunlPLRL . )
neW k'eT k' #k
hence, the SINR of the kth T2T user can be expressed as
PT /’ZT
yIkl= —~E+—, 5)
oc+1Iw + It

where, h,{ is the channel gain of the useful signal correspond-
ing to the kth T2T user, and h,{’ « 1s the channel gain of the
interference from the nth T2W or T2T user to the kth T2T
user. The throughput of the kth T2T user can be expressed as

CT[k] = Bloga(1 + yT [k)). ©)

In this system, each T2T transmitter is regarded as an
agent. Each agent chooses transmission power and RB by
interacting with the environment. By designing an appro-
priate reward function, our proposed scheme can maximize
system throughput and improve the reliability of information
transmission in each T2T link. In order to ensure the safe
operation of trains, the position and status of trains need to
be transmitted periodically between adjacent trains, so the
reliability of the T2T link is particularly important. To eval-
uate the reliability of the T2T links, we define the successful
transmission probability of T2T links. The information trans-
mission is considered to be unsuccessful if the T2T link fails
to transmit the required information within the specified time.
More details will be discussed in Section III.

IlIl. MULTI-AGENT DEEP REINFORCEMENT LEARNING
FOR T2T RESOURCE ALLOCATION

MADRL can effectively implement a distributed resource
allocation mechanism. Deep RL is a combination of deep
learning and RL [36]. Deep learning is used to solve mod-
elling problems between value function and policy, and RL is
used to define problems and optimize goals. This section will
be divided into two parts. The first part introduces RL. For the
resource management in the T2T scenario, the basic elements
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FIGURE 3. The framework of reinforcement learning.

of the RL model are designed, including state space S, action
space A, policy 7 and reward function R. The second part
introduces the deep Q-network (DQN) and multi-agent deep
Q-network (MADQN) algorithm, which solve the mapping
relationship between observation and value functions, and
finds the optimization policy.

A. REINFORCEMENT LEARNING

As shown in Fig. 3, the framework of RL is composed of two
parts: agent and environment, which can interact with each
other. In the process of interaction, the agent can continuously
learn and ultimately complete the learning task. The key
elements of the RL model are designed as follows:

« States: For the T2T resource allocation management,
the agent can sense the external environment and gen-
erate its states s; based on the onboard environment
sensor [37], and s; consists of six parts:

S, =1{G;, H;, I _1, D1, E;, Fy}, @)

where, G; € RM and H,, € RM are channel gains
of the T2T links and the T2W links at current time
slot ¢ respectively, I;_; € RM and D,_; € RM are
interference power and times of the RBs being reused by
adjacent agents at the previous time slot, respectively. E;
and F; denote transmission duration and load quantity.
At different time slots, the states observed by the agent
will be different, all possible states constitute the state
space S.

« Actions: At time slot #, the agent observes the state s;
from the environment and selects the action a;, a; € A,
according to the policy 7. Policy 7 is a mapping function
from state space S to action space A, which determines
the action selection in state s;. a; includes the selection
of the RBs to reuse and the transmit power level, which
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can be expressed as
at = {RB;,P[}. (8)

As mentioned in Section II, the total number of RBs in
the system is M, hence, RB; € {1,2, ..., M}. Consid-
ering the complexity of the DQN network and T2T user
requirements comprehensively, three levels of transmis-
sion power is adopted, and P; € {P1, P, P3}. Therefore,
the size of the action space |.A| (i.e., number of different
actions) can be formulated as

|A] =3M. )

After the agent takes action a;, it will act on the envi-
ronment. The state of the environment becomes s;y| from
s:, and an instant reward r;y1 feeds back to the agent. Such
interaction can go on like this:

S0, A0, 71, S1, A1, ..., F'1—1, Si—1, Ar—1, Ft, S¢. (10)

o Reward Function: To recognize the impact of the
selected action on the system, we define the reward
function as the weighted total throughput of the T2T and
T2W links, rather than the throughput of the link related
to the agent. The instant reward r; is expressed as

r=xy CVinl+a-n> CTkl, a1
new keT

where A € [0, 1] is the weight factor. In RL, besides
instant reward, a total reward should be considered to
ensure the stability of long-term performance of the
system. In the T2T scenario, the environment has no
termination state, and the total reward will be infinite.
To solve this problem, the discount rate y is introduced
to control the weight of the long-term reward, and the
discount reward r; is defined as

o0
=) ¥ (12)
i=0

where y € [0, 1], the agent is more concerned about
long-term rewards when y approaches 1, and the current
reward becomes more important when y approaches 0.
The target of RL is to learn a policy to maximize the
expected discount reward, which can be defined as

R = E[r]]. (13)

The performance of the system is controlled by design-
ing the reward function.

B. MULTI-AGENT DEEP Q-LEARNING

Many effective algorithms have been proposed to achieve
the target of RL, Q-learning is one of the commonly used
algorithms. For a policy 7, Q-learning optimizes policy &
by Q-value. The Q-value is closely related to the state s, and
the selected action a;, denoted as Q(s;, a;). It can be approx-
imated as the expected total reward of the agent selecting the
action a; in the state s;. The action with the highest Q-value
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is selected to update the policy 7, then the Q-value is updated
with the new policy, and repeat this process until Q-value
converges to the optimal Q-value, Q*. The optimal policy 7 *
can be found, once the Q* is obtained. The iteration formula
of Q-value is as follows

0(s,a) < O(s,a) +« <r+y max oG, a')—Qs, a)), (14)

where « is the learning rate. In Q-learning, the Q-value is
stored in the Q-table, and the size of the Q-table is |A||‘S !
As the state-action space increases, the size of the Q-table will
increase dramatically. In the resource allocation for the T2T
communication, the state space |S| is large and uncertain,
so the classic Q-learning cannot be applied. This problem
can be solved well by using the neural network. As shown
in Fig. 4, the observed state is regarded as the input of the
neural network, and the neural network outputs the Q-value
of each action. The Q-table is replaced by the neural network
which can be called as Q-network.

Input layer ~ Hidden layer Output layer

Q(s, a1)
StE S

Q(st, an)

Weights: @

FIGURE 4. Structure of the deep Q-network.

In the resource allocation problem that we proposed, action
a, € Ais discrete and finite. The output of Q-network can be
expressed as:

Oy (ss,ar)
Qp(s1) = : , (15)
Q(P(Sl? al’L)

where ¢ denote the weights in the Q-network and is learned
to ensure Qy(S;) close to the real Q-value. There are two
problems in the process of learning: one is that the target
is unstable, and the goal of parameter learning depends on
the parameter itself; the other is that there is a strong cor-
relation between the samples. To solve the two problems,
DQN was proposed. The DQN takes two measures: one is
the freezing target network, i.e., the parameters in the target
network are fixed in a period to stabilize the learning target,
and the second is experience replay, an experience pool is
built to remove data dependencies [38]. To solve the T2T
resource allocation problem proposed in this paper, we adopt
the MADQN algorithm, i.e., there are multiple agents which
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Algorithm 1 MADQN for T2T Resource Allocation

Input: State space S, action space A, discount rate y,
learning rate o
Output: Multi-agent deep Q-network
1 Initialize replay memory D to capacity N;
2 Initialize Qk(s, a) for each k € T
3 Randomly initialize the weights ¢ of the Q-network;
4 Randomly initialize the weights of the target Q-network
¢ =5
5 for episode =1 :jdo
6 Initialize state s; foreachk € T
7 for step=1:ido
8
9

for k € T do
In state sy, select action a; with policy 7;
10 Take action ag, observe the reward r; and a
new state s; ;
11 Save si, ay, 7%, S, into D;
12 Sample ss, aa, rr, s's’ from D;
13 y=rr+ ymaxa/Qé)(s/s/, a');
14 Train the multi-agent deep Q-network with

the loss function

Loss(¢) = (v — Qg(ss, aa))*;

15 Sk < S}

16 | Every C steps (;3 <~ ¢;

—

7 return: Multi-agent deep Q-network with weights ¢.

select actions with DQN independently. The learning process
of the MADQN is described in Algorithm 1.

In the process of MADQN training, to make the agent
explore the environment sufficiently, e-greedy method is
adopted, i.e., the agent selects the action which has the largest
Q value with probability 1 —e and randomly selects the action
from A with probability €.

With the completion of the training, the Q-value converges,
and the learning effect of the MADQN will be tested. Dif-
ferent from the training process, the e-greedy method is
not adopted in the testing stage. The action with the largest
Q-value is directly selected to maximize total reward and
improve the performance of the system. In the distributed
resource allocation scheme, each agent cannot know the
actions selected by other agents at current time slot, and
multiple agents may reuse the same RB, thereby generating
large interference, reducing the reward and failing to obtain
a higher system performance. To solve this problem, only
a few agents update their actions in each time slot, syn-
chronous update becomes asynchronous update. At a dif-
ferent time, the impact of the action selected by the agent
on the environment can be observed by other agents. For
higher rewards, the reuse of the same RB by adjacent or
multiple agents at the same time will be reduced or even
avoided.

In summary, the MADQN algorithm is proposed in this
paper, which can solve the resource management problem in

VOLUME 8, 2020

the T2T communication scenario. The specific performance
analysis is given in Section I'V.

IV. SIMULATION ANALYSIS

In this section, detailed simulation parameters are given, and
the simulation results are conducted to evaluate the perfor-
mance of our proposed scheme.

A. SIMULATION PARAMETERS

For the MADQN, considering the number of inputs and out-
puts, a three-layer fully connected neural network is adopted,
which consists of an input layer, a hidden layer, and an output
layer, where the number of neurons in the hidden layer is
set as 90. MADQN input size n;, is 4M + 2 according to
Equation (7). The output size n,,; is equal to |.A|, and it can
be seen in Equation (9). The number of neurons in the input
layer and the output layer can be set once n;, and n,,; are
determined. In the training stage, the e-greedy method with
variable € is adopted. At the beginning, the agent randomly
selects the action with a high probability to constantly explore
the environment and accumulate experience. With the number
of training steps increasing, € gradually decreases, which
can effectively balance exploration and exploitation. More
specifically, € can be expressed as

1
€= (16)
;+1

where, x denotes the number of training steps, and b is
a constant. With the value of b increasing, the agent will
spend longer time to explore the environment. In this paper,
we take the value of b as 5500. From Fig. 5, the effect of the
training process can be seen. Fig. 5 shows the variation of
the average reward in the system with the number of training
steps increasing. At the beginning, the agent is still in the
stage of environmental exploration, i.e., the agent chooses
action randomly with a high probability, so that the action
with low reward will also be selected. Therefore, the average
reward is constantly fluctuating. When training steps reach
about 7700, due to the probability of selecting action with
the largest Q-value is already greater than the probability of
randomly selecting the action, the average reward begins to
rise continuously. Hence, the exploration of the environment
by agents begins to decrease.

The detail parameters are shown in Table 1. The path
loss models of T2T links and T2W links are from the real
information in Beijing Yanfang subway line [9].

B. PERFORMANCE ANALYSIS

To evaluate our proposed scheme, we compare it with the
scheme proposed by [35] and the random allocation scheme.
In the first scheme, the channel selection was based on the
weighting factor of proportional fairness, and the power con-
trol was performed by Stackelberg game. For simplification,
the scheme is called as scheme I. The other scheme is ran-
domly choosing an action for each agent.
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FIGURE 5. Average reward versus the training steps.

TABLE 1. Simulation parameters.

Parameter Value

RB bandwidth B 1.5 MHz
Number of RBs M 7

BS coverage radius 3 km

BS antenna gain 7 dBi

BS receiver noise figure 5dB

Train antenna gain 4 dBi

Train receiver noise figure 8 dB

Train speed 65 - 90 km/h
Distance between adjacent trains 600 - 900 m
T2W transmit power 43 dBm

T2T transmit power levels { P1, P>, P3}
T2W link path loss model
T2T link path loss model

{8,14,23} dBm
37.6log10(d)+128.1 dB
40log10(d) + 148 dB

Specified time of T2T links transmit 100 ms

Learning rate o 0.001

Discount rate y 0.4

Weight factor A 0.2

3 T T T T
e MADQN
== Random
25 =R=Scheme I| |

)

o

Average T2T Link Throughput (Mb/s)

0.5 L L L L
2 3 4 5 6 7

Number of Trains

FIGURE 6. Average T2T link throughput as a function of the number of
trains.

Fig. 6 shows the relationship between the average through-
put of the T2T links and the number of trains. It can be seen
that the proposed scheme effectively reduces the interference
of the T2T link, and its throughput is higher than the other
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FIGURE 7. System throughput as a function of the number of trains.

two schemes in different train quantities. As the number of
trains grows, more T2T links are established. Due to the
limited quantity of available RBs, the interference from the
T2W link to the T2T link, and among the different T2T
links increases, which lead to a reduction in the average
throughput of the T2T link. In detail, when the number of
trains increases from 2 to 3, the average T2T link throughput
decreases significantly. The specific reasons are as follows:
Ideally, the co-channel interference could be eliminated when
the number of train is 2, and the total number of links in the
system is less than the number of available RBs. However,
the co-channel interference is inevitable when we increase the
number of trains to 3. Meanwhile, the total number of links
is larger than the available RBs due to the increase number of
trains.

Fig. 7 illustrates the total throughput of the system with
respect to the number of trains in the system. From the
simulation results, we can see that the proposed scheme can
effectively increase the total throughput of the system, and
the advantage of our scheme becomes more obvious as the
number of trains increasing compared with the scheme I.
As the number of trains increases, the total throughput of
the system also increases. However, the increased T2T link
and T2W link quantities bring more co-channel interference,
which results in the slowdown of the increase rate of the
system throughput.

Fig. 8 shows the successful transmission probability of
T2T links as a function of the number of trains. It can be seen
that our scheme has the highest transmission success rate, and
with train quantities increasing, the transmission success rate
decreases less, which can effectively guarantee the reliability
of T2T links. It is because that the agent can attain the state
of transmission during the process of interacting with the
environment, which can increase the throughput of the T2T
links while improving the successful transmission probability
of T2T links.

Fig. 9 illustrates the probability for the agents to choose
power levels. After training, the maximum transmission
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power is selected with the highest probability. Combined with
Fig. 6 and Fig. 7, it can be seen that in order to get more
reward, the agent learns to select the maximum transmit-
ting power to improve the throughput of the T2T link and
learn to reduce the co-channel interference in the system
effectively.

V. CONCLUSION

T2T communication is proposed in the next generation train
control system, and the resource allocation problem is caused
by the T2T links multiplexing the T2W uplinks spectrum
resource. In this paper, we propose a distributed resource
allocation scheme based on MADRL. Simulation results
demonstrate that our scheme can effectively reduce the inter-
ference in the system. It can improve the throughput of T2T
links and the system, and ensure the successful transmission
probability of the T2T links within the specified time. Our
scheme can play an important role in resource allocation for
T2T communication.
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