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ABSTRACT Constrained image splicing detection and localization (CISDL) is a newly formulated image
forensics task and plays an important role in verifying the generating process of a forged image. CISDL
conducts dense matching between two investigated images and detects whether one image has forged regions
pasted from the other. In this work, we introduce a novel attention-aware encoder-decoder deepmatching net-
work named as AttentionDM for CISDL. An encoder-decoder with atrous convolution is newly designed for
hierarchical features dense matching and fine-grained masks generation. A novel attention-aware correlation
computation module is built on normalization operations and informative features recalibration with channel
attention blocks. Last but not least, VGG and ResNets are respectively formulated as feature extractors
for comprehensive comparisons in CISDL. Extensive experiments demonstrate the superior performance of
AttentionDM over the state-of-the-art methods.

INDEX TERMS Encoder-decoder, atrous convolution, normalization, channel attention.

I. INTRODUCTION
Malicious image forgery is becoming a global epidemic in
recent years, due to the rapidly declining cost of digital cam-
eras and quick development of sophisticated image editing
tools [1]. Forgers may use forged images to produce fake
news, spread rumors or give false testimony, which result
in negative social impacts [2]. Image forensics, which seeks
to distinguish forged images and prevent forgers from using
forged images for unscrupulous business or political purposes
[3], has attracted great attention in research and industrial
communities [4].

A variety of image forensics methods investigate an indi-
vidual image and detect its high-level [5]–[8] or low-level
inconsistencies caused by image manipulation [1], [2], [9].
However, it is still a challenging task to accurately distinguish
forged images, due to advanced image manipulation tech-
niques and limited information provided by a single image
[2], [3]. Moreover, these image forensics methods identify
forged images or regions without providing the source of
forged regions or specific tampering process, but these auxil-
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iary evidences can provide more clues and make results more
convincing in real applications [10].

Considering the afore-mentioned limitations, constrained
image splicing detection and localization (CISDL) is newly
formulated in the Media Forensics Challenge [10], [11].
Different from ‘‘conventional’’ splicing detection, ‘‘con-
strained’’ means that the inputs are two images: one is a
probe image and the other is a potential donor image. CISDL
can be depicted in Figure 1: given a probe image P and a
potential donor image D, CISDL aims to detect if a region
of D has been spliced into P, and consequently provide
mask images Pm and Dm indicating the region(s) of P were
spliced from D. In [12], Wu et al. proposed the pioneering
CISDL approach, i.e., Deep Matching and Validation Net-
work (DMVN). DMVN generates correlation maps by com-
paring high-level low-resolution feature maps of VGG [13],
and constructs an inception-based mask deconvolution mod-
ule [14] to locate suspected regions. However, low-resolution
feature maps restrict DMVN’s ability to detect accurate
boundaries and find small suspected regions. In [10], we pro-
posed a deep matching network based on atrous convolu-
tion (DMAC) to generate high-quality candidate masks from
high-resolution feature maps. The basic DMAC architecture
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FIGURE 1. Overview of the proposed AttentionDM. In Encoder, three pairs of feature maps with the same size are generated by integrating
atrous convolution. Each pair of feature maps are processed by L2 normalization and channel attention. The correlation computation with
pre/post-normalization and attention blocks is called attention-aware correlation computation. Then, we use Decoder with ASPP (Atrous
Spatial Pyramid Pooling) to generate fine-grained masks.

achieves significant improvements than DMVN, and a hybrid
adversarial learning framework was proposed to further opti-
mize the pretrained DMAC. Although massive computations
are needed in the adversarial learning procedure, the perfor-
mance can not be dramatically improved. Besides, the sim-
ple scalar product in correlation computation of DMVN
and DMAC still limits the discriminative capability of deep
matching.

In this work, we propose a novel attention-aware encoder-
decoder deep matching network named as AttentionDM,
as shown in Figure 1. AttentionDM adopts an encoder-
decoder architecture with atrous convolution for fine-grained
masks generation. Different from our previous work [10],
we propose to construct a decoder with alternative convolu-
tional and upsampling operations to recover the spatial infor-
mation, instead of a single bilinear upsampling layer at the
end in DMAC. During correlation computation, normaliza-
tion operations are adopted to limit feature values to certain
ranges and filter redundant features. A novel channel atten-
tion block is proposed to highlight channel-wise informative
features in an innovative way, consequently a weighted scalar
product can be conducted in the correlation computation
procedure. To the best of our knowledge, we first propose to
use an attention mechanism [15] in CISDL and adjust it to fit
our task, e.g., constructing an embedding network to extract
channel-wise high-order features, integrating with our skip
architecture [10], [16].

The main contributions of the proposed AttentionDM can
be summarized in four folds:
• An encoder-decoder deep matching network with atrous

convolution is newly designed for CISDL.
• Attention-aware correlation computation is proposed

based on hierarchical feature normalization operations and
channel attention blocks.
• ResNets are firstly formulated as the feature extractor

in the CISDL task. Abundant comparisons are conducted
between VGG and ResNets.
• Extensive experiments on public datasets demonstrate

the superior performance of our AttentionDM.

II. RELATED WORK
Image Splicing Detection and Localization have been
widely studied in recent years. Because the forger generi-
cally tries to satisfy both high-level and low-level consistency
constraints during image manipulation, tampering detection
and localization can also be conducted from two levels.
In the aspect of high-level constraints, different cues can be
investigated, e.g., blur type inconsistency [6], shadows and
lighting inconsistency [7], traces of perspective and geometry
[8]. In certain contexts, forgery detection and localization
methods based on high-level traces can achieve excellent
performance, however they can not well adapt to complex
and practical scenarios [7]. Furthermore, low-level signatures
are exploited in a more general way, e.g., photo-response
non-uniformity noise [17], color filter array artifacts [18],
JPEG coding traces [19], steganalysis features [20]. There
are also many researches which are targeted at one specific
type of forgery, e.g. copy-move [1], [21], seam carving [22].
Despite the tremendous progress so far, much potential and
many more discoveries lie ahead because of the breakthrough
in deep learning [23], [24], many CNN-based methods are
investigated and achieve significant improvements [2], [5],
[9], [25]. However, as we describe in Section I, these methods
all investigate individual images and can not provide the
source of splicing images.

Image Matching using global features extracted by
Convolutional Neural Networks (CNNs) has attracted lots
of attention [26], [27]. These methods conduct dense
comparisons on high-level features extracted by CNNs.
A variety of networks have been proposed for estimating
inter-frame motion in videos [28] or instance-level homog-
raphy estimation [29]. These methods attempt to find high-
precision correspondences between images, while only need
to search surrounding areas with limited appearance varia-
tion and background clutter. Otherwise, some deep match-
ing methods were proposed for long-range category-level
matching [27], [30]. These methods target at finding objects
of the same category with similar appearance, which are
quite different from CISDL [10]. Wu et al. firstly utilized
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deep matching techniques to solve the CISDL problem, and
proposed DMVN [12]. In [10], we took advantage of the
advanced techniques in fully convolutional neural networks
[31], and proposed the DMAC network. Both DMVN and
DMAC adopt a naive scalar product operation to compute the
correlation maps between the two investigated images, and
we try to make use of the attention mechanism to enhance
this procedure.

Attention Mechanism can be viewed as a strategy to bias
the allocation of available processing resources to the most
informative components of an input signal [32]. It has been
widely applied to recurrent neural networks (RNN) and long
short termmemory (LSTM) [33] to tackle sequential decision
tasks. In [34], a sequence-to-sequence task was formulated
as an encoder-decoder network, in which a source sentence
was encoded into a fixed-length vector and then fed into
a decoder network. To solve the bottleneck problem of the
fixed-length vector, Bahdanau et al. [35] proposed to utilize
the attention mechanism to dynamically generate the vec-
tors. Consequently, a variety of attention-based models were
proposed to solve the sequence-to-sequence tasks [15]. The
attention mechanism is also applicable to image and video
problems in computer vision [36], e.g. image classification
[37], object detection [38], video classification [32], etc.

III. ATTENTIONDM
A. ENCODER-DECODER WITH ATROUS CONVOLUTION
1) BASIC ATTENTIONDM WITH VGG
Encoder-decoder with atrous convolution of AttentionDM is
highly motivated by its great success in the semantic segmen-
tation task [31], [39]. In our work, we investigate a decoder
architecture with ASPP to capture multi-scale features and
gradually generate fine-grainedmasks from correlationmaps.
And the correlation maps are computed from hierarchical
large feature maps of an encoder with atrous convolution and
a skip architecture.

Our detailed encoder-decoder architecture and parameter
settings are presented in Figure 2. The encoder is a variant
form of VGG [13] with atrous convolution. Let y(is, js) denote
the output of the atrous convolution of a 2-D input signal
x(is, js), and the atrous convolution can be computed as:

y(is, js) =
∑
k1,k2

φ(k1, k2)× x(is + rsk1, js + rsk2) (1)

where k1, k2 ∈ [−fl(K2 ),fl(
K
2 )] (fl(·) is a floor function),

φ(k1, k2) denotes a K ×K filter, rate rs denotes the sampling
stride of the input signal. Different from the original VGG,
we remove the last two maxpooling layers, and adopt atrous
convolution with rs = 2 in the last convolutional block
to keep their original field-of-views. A skip architecture is
used to capture hierarchical information, and three groups
of feature maps with the same scale can be generated, i.e.,
F3, F4, F5, which are all used for correlation computation.
In the decoder, atrous rates are set to {6, 12, 18}, and their
feature maps are concatenated and fed into the subsequent
layers which are constructed by alternative convolutional and

FIGURE 2. Encoder-decoder architecture and parameter settings based
on VGG16. ‘‘conv3-64’’ denotes a convolutional layer with 3× 3 filters and
64 output channels, ‘‘AC’’ denotes the atrous convolutional layer with a
default setting rs = 2 or ‘‘AC-6’’ means rs = 6.

upsampling layers to gradually recover high-resolution fine-
grained masks.

2) ATTENTIONDM BASED ON ResNet
As we all know, in computer vision tasks, e.g., image clas-
sification, object detection and semantic segmentation, deep
convolutional neural networks can significantly improve their
performance [40]. However, in previous CISDL methods
[10], [12], [41], they all use VGG16 as the basic feature
extractor, and we do not know whether deep networks can
improve the deep matching performance. Thus, we formulate
the popular ResNet50 and ResNet101 [42] as the feature
extractor, and utilize their hierarchical features by integrating
atrous convolution. The detailed architectures with atrous
convolution are presented in Table 1. In this formulation,
we still can get 3 sets of feature maps with the same size,
i.e., F3, F4 and F5. The same as the basic architecture of
VGG, these features are fed into correlation layers and mask
generation layers.

B. ATTENTION-AWARE CORRELATION COMPUTATION
As shown in Figure 1, the key component of our AttentionDM
is the attention-aware correlation computation module.
In fact, it consists of three parts, i.e., attention blocks, nor-
malization operations and correlation computation. We first
introduce our channel attention block. Then, we present the
whole correlation computation procedure with normalization
and attention operations.

1) CHANNEL ATTENTION BLOCK
Suppose we have two groups of c-channel h×w feature maps
F̄(k)
∈ Rh×w×c (k ∈ {1, 2}), and we flatten these feature

maps to d-dimensional (d = h × w) feature vectors and get
d×c feature matrices F̄(k)

flat. As these feature vectors have high
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TABLE 1. Feature extractor formulated based on ResNets.

dimensions and contain strong spatial information, we pro-
pose to use a two-layer embedding network to extract high-
order low-dimensional features. Referring to the definition
in attention-based sentence embedding of natural language
processing [33], our feature extraction network is called the
embedding network to extract embedded features:

E(k)
= Embed(F̄(k)

flat)

= δ(WE
2 δ(W

E
1 F̄

(k)
flat + bE1 )+ bE2 ) (2)

where WE
1 , W

E
2 denote the parameter matrices of two linear

layers with corresponding bias terms bE1 and bE2 , and WE
1 ∈

R
d
r ×d , WE

2 ∈ R
d
r2
×
d
r , bE1 ∈ R

d
r , bE2 ∈ R

d
r2 . δ refers to a

ReLU function. r is a reduction ratio, and is set to 4 in our
work. By constructing an embedding network, we get de ×
c embedded features E(k), and de = d

r2
. Channel attention

measures channel responses as follows:

a(k) = Atten(E(k))

= softmax(wA
2 tanh(W

A
1 E

(k))) (3)

where WA
1 ∈ R

de
r ×de , wA

2 is a de
r -dimensional vector. a(k) is

a c-dimensional vector which is designed to indicate channel
relations. By multiplying a(k) and F̄(k)

∈ Rh×w×c, we can
recalibrate informative channels to improve the discrimina-
tive capability of features. Details are presented as follows.

2) CORRELATION COMPUTATION
Let F(1), F(2) denote feature maps extracted by the encoder,
and Ef (1)(i1, j1) ∈ F(1), Ef (2)(i2, j2) ∈ F(2) denote c-dimensional
descriptors at specific coordinates. Before the attention and
correlation computation, L2-normalization is conducted:

Ēf (k)(ik , jk ) =
Ef (k)(ik , jk )

||Ef (k)(ik , jk )||2
(4)

By adopting L2-normalization, we can restrict the value
ranges of descriptors, and adopt two normalized feature maps
F̄(1), F̄(2). Then, we use F̄(k) (k ∈ {1, 2}) to get channel atten-
tion weights a(k) based on Eq. (2) and Eq. (3). Thus, we can
get channel attention weighted feature maps as follows:

F̈(k)
= a(k) · F̄(k), k = 1, 2 (5)

By constructing attention blocks, we can recalibrate infor-
mative features and improve the descriminative capabilities
of features. In fact, channel attention has been adopted for
enhancing image classification in [37]. They construct a SE
block for each convolutional block, while we only modulate
three groups of hierarchical features for the following cor-
relation computation. Thus, we can elaborately construct a
more complex architecture as Eq. (2) and Eq. (3), instead of
a lightweight gating mechanism in [37].

The correlation maps C(12) are generated by comparing
Ëf (1)(i1, j1) ∈ F̈(1) and Ëf (2)(i2, j2) ∈ F̈(2) under strong spatial
restrictions:

C(12)(i12, j12,m12) = Ëf (1)(i1, j1)T Ëf (2)(i2, j2) (6)

in which

i2 = mod(i1 + it , h)

j2 = mod(j1 + jt ,w)

i12 = i1, j12 = j1, m12 = wit + jt (7)

All the compared feature locations in the same channel m12
are under the same translation (it , jt ), i1, i2, it ∈ [0, h) and
j1, j2, jt ∈ [0,w). With the correlation maps C(12) at our
hands, match pooling operations are conducted to suppress
uncorrelated information in C(12). Average, maximum and
sorted correlation maps are generated:

C(12)
avg (i12, j12, 0)=

1
h× w

∑
p12

C(12)(i12, j12, p12) (8)
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Algorithm 1 Attention-Aware Correlation Computation

Input: Image I(1) and I(2)

1: ‘‘Hierarchical features extraction:’’
2: F(1)

3 ,F
(1)
4 ,F

(1)
5 = Encoder(I(1))

3: F(2)
3 ,F

(2)
4 ,F

(2)
5 = Encoder(I(2))

4: ‘‘Attention weighted feature maps generation for
hierarchical features:’’

5: for l = 3 to 5 do
‘‘L2 normalization of Eq. (4)’’

6: F̄(1)
l = L2_norm(F(1)

l )
7: F̄(2)

l = L2_norm(F(2)
l )

‘‘Refer to Eq. (2), Eq. (3) and Eq. (5)’’
8: F̈(1)

l = Attenl(Embedl(F̄
(1)
l )) · F̄(1)

l
9: F̈(2)

l = Attenl(Embedl(F̄
(2)
l )) · F̄(2)

l
10: end for
11: ‘‘Correlation computation based on hierarchical

attention weighted feature maps:’’
12: for l = 3 to 5 do

‘‘Refer to Eq. (11) based on Eq. (6)-(10)’’
13: Ĉ(12)

l = Corr(F̈(1)
l , F̈

(2)
l )

14: Ĉ(11)
l = Corr(F̈(1)

l , F̈
(1)
l )

15: Ĉ(21)
l = Corr(F̈(2)

l , F̈
(1)
l )

16: Ĉ(22)
l = Corr(F̈(2)

l , F̈
(2)
l )

‘‘Concatenate correlation maps’’
17: C(1)

l = {Ĉ
(12)
l , Ĉ(11)

l }

18: C(2)
l = {Ĉ

(21)
l , Ĉ(22)

l }

19: end for
‘‘Concatenate hierarchical correlation maps’’

20: C(1)
= {C(1)

3 ,C
(1)
4 ,C

(1)
5 }

21: C(2)
= {C(2)

3 ,C
(2)
4 ,C

(2)
5 }

‘‘ReLU and L2 normalization’’
22: C̄(1)

= L2_norm(max(C(1), 0))
23: C̄(2)

= L2_norm(max(C(2), 0))
Output: Correlation maps C̄(1) and C̄(2) of I(1) and I(2)

C(12)
max(i12, j12, 0)= argmax

p12
{C(12)(i12, j12, p12)} (9)

C(12)
srt (i12, j12, p)=C(12)(i12, j12, pt ), pt ∈Top_T_index

× (sortp12 (sum(C(12)(:, :, p12)))) (10)

where Top_T_index(·) denotes the function which selects
indexes of the top-T values. Finally, we can get the output
feature maps Ĉ(12)

= {C(12)
avg ,C

(12)
max,C

(12)
srt }, and Ĉ(12)

∈

Rh×w×(T+2), in which 2 dimensions are the average and
max correlation maps, and the other T dimensions are the
sorted maps. The afore-mentioned procedure (Eq. (6)-(10))
is denoted as:

Ĉ(12)
= Corr(F̈(1), F̈(2)) (11)

With three pairs of feature maps (in different levels as
shown in Figure 2, ResNets are shown in Table 1) as inputs,
i.e., F(k)

3 , F(k)
4 , F(k)

5 , the attention-aware correlation computa-
tion procedure can be summarized as Algorithm 1.

The generated raw correlation maps C(k) are followed by a
ReLU layer to zero out negative values. The consideration is
that features of close correlated regions should have the same
sign, thus the correlation values should be positive. We zero
out negative values to discard weak correlated regions and
reduce computational costs. Then these maps are processed
by L2-normalization (Eq. (4)) to get the normalized correla-
tion maps C̄(k). Finally, C̄(k) are fed into the decoder based on
ASPP introduced in Section III-A to generate the final mask.

IV. EXPERIMENTS
A. STEP-BY-STEP ANALYSES OF LOCALIZATION
PERFORMANCE
Localization performance is evaluated on our released syn-
thetic testing foreground pairs [43]. According to the ratios
rpa of the pasted areas, the image pairs are divided into
three sets, namely Difficult (1% ≤ rpa < 10%), Normal
(10% ≤ rpa < 25%), and Easy (25% ≤ rpa < 50%).
For each set, 3000 image pairs are generated with anno-
tated ground-truth masks. Localization performance is eval-
uated by the pixel-level IoU (Intersection over Union) [40],
MCC (Matthews Correlation Coefficient), NMM (Nimble
Mask Metric) [11]. We compute the average IoU, MCC and
NMM of all the tested image pairs. Note that since the
state-of-the-art CISDL methods [10], [12], [41] all adopt
VGG as the basic feature extractor, the default Atten-
tionDM adopts VGG and is directly denoted as ‘‘Atten-
tionDM’’. Models using ResNet50/ResNet101 are denoted
as ‘‘AttentionDM-ResNet50/ResNet101’’.

Compared with our previous work [10], three major
improvements aremade. In this section, we conduct a detailed
step-by-step analysis on the synthetic testing sets:
• Firstly, we test the effectiveness of the proposed encoder-

decoder architecture with atrous convolution, i.e., ‘‘Encoder-
Decoder’’ in Table 2. ‘‘Encoder-Decoder’’ directly utilizes
convolutional features extracted from encoder for correlation
computationwithout L2-normalization and channel attention.
‘‘Encoder-Decoder’’ can already achieve better performance
than DMVN and DMAC. Especially, a huge leap is achieved
on the Difficult set, which demonstrates its great ability to
detect small regions.
• Then, we attempt to normalize input hierarchical fea-

tures, and process computed correlation maps using ReLU
and L2-normalization, i.e., ‘‘Encoder-Decoder-Norm’’. The
localization scores are further improved, and the basic
encoder-decoder architecture with normalization builds a
solid foundation for our outstanding performance.
• Finally, we evaluate our channel attention block by build-

ing it on ‘‘Encoder-Decoder-Norm’’, i.e., ‘‘AttentionDM’’.
Figure 3 provides IoU scores across training iterations on
the Difficult set. Our channel attention block can yield con-
sistent improvements over the basic architecture both in the
training procedure (Figure 3) and the final scores (Table 2).
We successfully propose an effective channel attention block
which can measure channel relations and recalibrate channel-
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TABLE 2. Step-by-step analyses on the synthetic testing sets.

TABLE 3. Sliding window based matching strategy evaluation on the synthetic testing sets.

FIGURE 3. IoU scores across training iterations on the difficult set of
synthetic testing sets.

wise informative features. Our channel attention block tightly
integrates with our correlation computation and skip architec-
tures. AttentionDMonly builds three channel attention blocks
(Figure 1) with a slight increase of the parameter number,
while achieves a steady improvement of localization scores.

1) SLIDING WINDOW BASED MATCHING STRATEGY
EVALUATION
In [10], we propose a sliding window basedmatching strategy
to proccess high-resolution images. With the efficiency sacri-
fice (refer to Table 4 in [10]), they can achieve similar results
with our Encoder-Decoder-Normmodel. So, we also evaluate
the effectiveness of this strategy on our AttentionDM model.
Since this strategy contains two stages, i.e., sliding matching
and resizing matching, the methods adopted this strategy are
annotated with postfix ‘‘-SR256/128’’. ‘‘256/128’’ denotes
the sliding stride. Since with the decrease of the sliding

FIGURE 4. IoU scores comparisons on the synthetic testing sets.

stride, the computational complexity increases exponentially,
we only test stride 256 and 128 referring to the experiments in
[10]. The results are shown in Table 3. With the help of this
strategy, the localization scores can be obviously improved
on the Difficult set. In Normal and Easy sets, the sliding
window based versions can also achieve comparable perfor-
mance. Because AttentionDM can already achieve superior
performance, and has great ability to detect small regions
and accurate boundaries, with the help of sliding window
based matching, the score improvements are not as large
as DMAC, e.g., IoU scores 0.6911 − 0.5433 = 0.1478
vs. 0.7608 − 0.7228 = 0.0380 on the Difficult set. Even
though, our sliding window based version can achieve the
best performance to detect small regions.

2) ResNet FEATURE EXTRACTOR EVALUATION
AttentionDM with different feature extractors and the cor-
responding sliding window versions are evaluated on the
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TABLE 4. Feature extractor evaluation on the synthetic testing sets.

TABLE 5. Time complexity analyses.

synthetic testing sets, as shown in Table 4.With more compli-
cated feature extractors, the localization performance can be
improved slightly. However, the parameter number and com-
puting time obviously increase. Especially, AttentionDM-
ResNet50 and AttentionDM-ResNet101 can achieve compa-
rable performance, while AttentionDM-ResNet101 has much
more parameters. So we do not recommend the use of
ResNet101 for CISDL. In image classification and other
corresponding tasks, deep networks can provide richer high-
order semantic information. While in the CISDL task, this
high-order information is not very useful, and discriminative
features with more spatial information are more helpful. For
comprehensive comparisons, we compare the IoU scores of
CISDL methods and our variants on the synthetic testing sets
in Figure 4. It can be clearly seen that AttentionDM achieves
a siginificant performance leap, while there is no big gap
between the VGG version and ResNets versions.

3) COMPLEXITY ANALYSES
The testing time, parameters numbers and implemented
frameworks are reported in Table 5. All the experiments are
conducted on a machine with Intel(R) Core(TM) i7-5930K
CPU @ 3.50GHz, 64GB RAM and a single GPU (TITAN
X). With slightly more parameters, AttentionDM is slightly
slower thanDMAC.While AttentionDM indeed achieves sig-
nificant performance improvements. With more complicated
feature extrators and more parameters, the ResNets versions
are slower than the VGG version, i.e., AttentionDM.

B. DETECTION PERFORMANCE COMPARISONS
We evaluate the detection performance of AttnetionDM on
(1) The paired CASIA dataset: In [12], they generated 3, 642
positive samples by pairing the 1, 821 spliced images in

CASIA TIDEv2.0 dataset with their true donor images, and
collected 5, 000 negative samples by randomly pairing 7, 491
color images from the same CASIA-defined content cate-
gory. For the lack of ground truth masks, this dataset is
designed for evaluating detection performance [12]. (2) The
MFC2018 dataset: There are 1, 327 positive image pairs and
16, 673 negative pairs in the evaluation dataset of Media
Forensics Challenge 2018 [11]. Detection performance is
quantitatively evaluated, and the localization performance
is evaluated by visual comparisons for the large number of
negative pairs and some imperfect ground-truths. (3) The PS-
Battles dataset: it has 11, 142 subsets consisting of the orig-
inal image and several corresponding derivative fake images
for a total of 102, 028 images which are collected from the
online Reddit community of Photoshop battles [44]. The
detection performance is measured by the precision, recall,
F1-score, AUC (Area Under Curve), EER (Equal Error Rate)
and detection rate [10].

1) CASIA
In [12], the authors compared DMVN with copy-move
forgery detection methods [45]–[48] for the lack of other
CISDL methods. In the comparison on CASIA, we directly
borrow their scores from [12]. Using our AttentionDM,
the forged probabilities are computed as: for each generated
mask, we compute the average score {s(k)|k = 1, 2} of the
detected regions, and the final forged probability is computed
as their mean value (s(1) + s(2))/2. As shown in Table 6,
detection scores on CASIA have been lifted to a new level
by AttentionDM. All our scores of AttentionDM, i.e., pre-
cision, recall, F1-measure, and AUC, are greater than 0.9.
AttentionDM can achieve the highest recall, F1-score and
AUC scores. Visual comparisons are provided in Figure 5,
in which AttentionDM achieve clearly better performance.
It has strong ability to detect small regions and accurate
boundaries, and it is robust to deformation and rotation
changes. While the ResNet50 version can achieve higher
precision with lower recall, its F1-score and AUC are slightly
lower than the VGG version. The detection performance of
the ResNet101 version is even worse. Since the majority of
images in CASIA are smaller than 512× 512, we do not test
the sliding strategy in this dataset [10].
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FIGURE 5. Visual comparisons on CASIA.

6736 VOLUME 8, 2020



Y. Liu, X. Zhao: CISDL With Attention-Aware Encoder-Decoder and Atrous Convolution

TABLE 6. Comparisons on CASIA.

TABLE 7. Comparisons on MFC2018.

2) MFC2018
Since experiments on the CASIA dataset have demonstrated
the superiority over conventional copy-move forgery detec-
tion methods which have high computational complexity
[49], we compare AttentionDM with DMVN and DMAC
in the experiments on MFC2018. AUC and EER scores on
MFC2018 are shown in Table 7. AttentionDM can achieve
the highest AUC score, and AttentionDM-ResNet50 can
achieve the lowest EER score. Visual comparisons are pro-
vided in Figure 6. Apparently, AttentionDM can generate
more accurate boundaries and detect small regions. Besides,
the majority of images in MFC2018 have high resolutions,
we also compare the sliding window matching versions.
It shows that with the help of sliding window matching,
the performance of AttentionDM is further improved.

3) PS-BATTLES
Images in the PS-Battles dataset are elaborately designed and
edited by amateur or professional digital artists, and these
images have been uploaded to the online Reddit community.
There are many challenging image pairs which can evaluate

TABLE 8. Detection rates on the PS-Battles dataset.

the effectiveness of CISDL methods. Since all the image
pairs are correlated, in other words, one is a fake image,
and the other is the source image in one image pair. So we
use the detection rate to evaluate the compared methods,
as shown in Table 8. And visual comparisons are provided
in Figure 7. It can be seen that AttentionDM and its cor-
responding sliding-window version can achieve the high-
est detection rates, while the ResNets versions have lower
detection rates. Although the detection rate is slightly lower,
the ResNet50 version has better localization performance
according to Figure 7. While AttentionDM-ResNet101 has
a lower detection rate, higher computation complexity and
unremarkable localization performance. According to our
experiments on four datasets, we can conclude that Atten-
tionDMandAttentionDM-ResNet50 can achieve comparable
detection performance, while AttentionDM-ResNet50 can
achieve better localization performance. And we do not rec-
ommend the use of ResNet101 in the CISDL task.

C. IMPLEMENTATION DETAILS
AttentionDM is implemented on PyTorch, and is trained
using a single spatial cross entropy loss. The parame-
ters in the encoder are initialized using VGG16/ResNet50/
ResNet101 which are trained for image classification. Three
epochs of training are conducted, the batch size is set to
24, and more than 129, 000 iterations are conducted. The
Adadelta optimizer is adopted with PyTorch default settings.
AttentionDM is trained on synthetic training image pairs.

We automatically generate over one million synthetic
training image pairs from the MS COCO dataset [50].
We randomly select one annotated region in one image
under different transformations, and past it into another ran-
domly selected image. Five types of transformations are
adopted, i.e., shift U(−256, 256), rotation U(−30, 30), scale
U(0.5, 4), luminance U(−32, 32), deformation U(0.5, 2)
changes. Specifically, all pasted regions suffer from the
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FIGURE 6. Visual comparisons on MFC2018.

shift change. For other types of transformations, it has a
50% probability of suffering each transformation. The forged
regions in synthetic images may suffer from several types

of transformations. The selected regions all satisfy that their
areas should be larger than 1% of the images and smaller
than 50%, for that extremely small regions are too difficult to
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FIGURE 7. Visual comparisons on the PS-Battles dataset.
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detect and excessively large regions are meaningless. Finally,
over one million training pairs are generated with 1/3 fore-
ground pairs, 1/3 background pairs and 1/3 negative pairs.

V. CONCLUSION
In this work, an attention-aware encoder-decoder deepmatch-
ing network named as AttentionDM is proposed for CISDL.
An encoder-decoder architecture with atrous convolution is
constructed for hierarchical features dense matching and
fine-grained masks generation. Normalization operations are
designed to re-enforce the convolutional features and cor-
relation features. A channel attention block is proposed for
channel-wise features recalibration to enhance correlation
computation. Extensive experiments verify that AttentionDM
achieves a significant performance leap. To the best of our
knowledge, AttentionDM can achieve the best performance
among all the published CISDL methods.

Although AttentionDM can achieve excellent perfor-
mance, it still has some limitations. For example, similar as
the forerunners [10], [12], [41], it can only process fixed-size
images. The remedial measure of our sliding window based
matching strategy results in high computational complexity.
Besides, AttentionDM can achieve the lowest EER score on
MFC2018, however there are still many false-alarm images,
especially the majority of investigated images are uncorre-
lated or unforged in real applications [10]. The objects which
have similar appearance can mislead our detection. There is
still a long way to go for real application.

REFERENCES
[1] Y. Wu, W. Abd-Almageed, and P. Natarajan, ‘‘BusterNet: Detecting copy-

move image forgery with source/target localization,’’ in Proc. Eur. Conf.
Comput. Vis., Sep. 2018, pp. 170–186.

[2] Y. Liu, Q. Guan, X. Zhao, andY. Cao, ‘‘Image forgery localization based on
multi–scale convolutional neural networks,’’ in Proc. 6th ACM Workshop
Inf. Hiding Multimedia Secur. (IH&MMSec), 2018, pp. 85–90.

[3] H. Li, W. Luo, X. Qiu, and J. Huang, ‘‘Image forgery localization via inte-
grating tampering possibility maps,’’ IEEE Trans. Inf. Forensics Security,
vol. 12, no. 5, pp. 1240–1252, May 2017.

[4] W. Wang, J. Dong, and T. Tan, ‘‘A survey of passive image tampering
detection,’’ in Proc. 8th Int. Workshop Digit. Watermarking, Oct. 2009,
pp. 308–322.

[5] D. Cozzolino and L. Verdoliva, ‘‘Noiseprint: A CNN–based camera model
fingerprint,’’ IEEE Trans. Inf. Forensics Security, vol. 15, pp. 144–159,
2020.

[6] K. Bahrami, A. C. Kot, L. Li, and H. Li, ‘‘Blurred image splicing local-
ization by exposing blur type inconsistency,’’ IEEE Trans. Inf. Forensics
Security, vol. 10, no. 5, pp. 999–1009, May 2015.

[7] B. Peng, W. Wang, J. Dong, and T. Tan, ‘‘Optimized 3D lighting environ-
ment estimation for image forgery detection,’’ IEEE Trans. Inf. Forensics
Security, vol. 12, no. 2, pp. 479–494, Feb. 2017.

[8] W. Zhang, X. Cao, Y. Qu, Y. Hou, H. Zhao, and C. Zhang, ‘‘Detecting
and extracting the photo composites using planar homography and graph
cut,’’ IEEE Trans. Inf. Forensics Security, vol. 5, no. 3, pp. 544–555,
Sep. 2010.

[9] B. Bayar and M. C. Stamm, ‘‘Constrained convolutional neural networks:
A new approach towards general purpose image manipulation detection,’’
IEEE Trans. Inf. Forensics Security, vol. 13, no. 11, pp. 2691–2706,
Nov. 2018.

[10] Y. Liu, X. Zhu, X. Zhao, and Y. Cao, ‘‘Adversarial learning for constrained
image splicing detection and localization based on atrous convolution,’’
IEEE Trans. Inf. Forensics Security, vol. 14, no. 10, pp. 2551–2566,
Oct. 2019.

[11] The National Institute of Standards and Technology (NIST).
(2018). Media Forensics Challenge 2018. [Online]. Available:
https://www.nist.gov/itl/iad/mig/media-forensicschallenge-2018

[12] Y. Wu, W. Abd-Almageed, and P. Natarajan, ‘‘Deep matching and val-
idation network: An end-to-end solution to constrained image splicing
localization and detection,’’ in Proc. 25th ACM Int. Conf. Multimedia,
Oct. 2017, pp. 1480–1488.

[13] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), 2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Neural
Inf. Process. Syst., Dec. 2017, pp. 6000–6010.

[16] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, Apr. 2017.

[17] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva, ‘‘A Bayesian–MRF
approach for PRNU–based image forgery detection,’’ IEEE Trans. Inf.
Forensics Security, vol. 9, no. 4, pp. 554–567, Apr. 2014.

[18] P. Ferrara, T. Bianchi, A. DeRosa, andA. Piva, ‘‘Image forgery localization
via fine–grained analysis of CFA artifacts,’’ IEEE Trans. Inf. Forensics
Security, vol. 7, no. 5, pp. 1566–1577, Oct. 2012.

[19] T. Bianchi and A. Piva, ‘‘Image forgery localization via block–grained
analysis of JPEG artifacts,’’ IEEE Trans. Inf. Forensics Security, vol. 7,
no. 3, pp. 1003–1017, Jun. 2012.

[20] D. Cozzolino and L. Verdoliva, ‘‘Single-image splicing localization
through autoencoder-based anomaly detection,’’ in Proc. IEEE Int. Work-
shop Inf. Forensics Secur. (WIFS), Dec. 2016, pp. 1–6.

[21] Y. Liu, Q. Guan, and X. Zhao, ‘‘Copy-move forgery detection based on
convolutional kernel network,’’ Multimedia Tools Appl., vol. 77, no. 14,
pp. 18269–18293, Jul. 2018.

[22] K. Wattanachote, T. K. Shih, W.-L. Chang, and H.-H. Chang, ‘‘Tamper
detection of JPEG image due to seam modifications,’’ IEEE Trans. Inf.
Forensics Security, vol. 10, no. 12, pp. 2477–2491, Dec. 2015.

[23] P. Napoletano, F. Piccoli, and R. Schettini, ‘‘Anomaly detection in nanofi-
brous materials by CNN–based self–similarity,’’ Sensors, vol. 18, no. 2,
p. 209, Jan. 2018.

[24] P. Napoletano, ‘‘Visual descriptors for content-based retrieval of remote-
sensing images,’’ Int. J. Remote Sens., vol. 39, no. 5, pp. 1343–1376,
Mar. 2018.

[25] Z. Shi, X. Shen, H. Kang, and Y. Lv, ‘‘Image manipulation detection and
localization based on the dual–domain convolutional neural networks,’’
IEEE Access, vol. 6, pp. 76437–76453, 2018.

[26] D. Novotny, S. Albanie, D. Larlus, and A. Vedaldi, ‘‘Self–supervised
learning of geometrically stable features through probabilistic introspec-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3637–3645.

[27] I. Rocco, R. Arandjelovic, and J. Sivic, ‘‘End-to-end weakly–supervised
semantic alignment,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 6917–6925.

[28] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, ‘‘FlowNet: Learning optical
flow with convolutional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2015, pp. 2758–2766.

[29] D. DeTone, T. Malisiewicz, and A. Rabinovich, ‘‘Deep image
homography estimation,’’ 2016, arXiv:1606.03798. [Online]. Available:
https://arxiv.org/abs/1606.03798

[30] B. Ham, M. Cho, C. Schmid, and J. Ponce, ‘‘Proposal flow,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3475–3484.

[31] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[32] X. Wang, R. B. Girshick, A. Gupta, and K. He, ‘‘Non-local neural net-
works,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7794–7803.

[33] Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, ‘‘A structured self-attentive sentence embedding,’’ in Proc.
5th Int. Conf. Learn. Represent. (ICLR), 2017. [Online]. Available:
https://openreview.net/forum?id=BJC_jUqxe

6740 VOLUME 8, 2020



Y. Liu, X. Zhao: CISDL With Attention-Aware Encoder-Decoder and Atrous Convolution

[34] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. Neural Inf. Process. Syst., Dec. 2014,
pp. 3104–3112.

[35] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ in Proc. 3rd Int. Conf. Learn. Rep-
resent. (ICLR), 2015. [Online]. Available: http://arxiv.org/abs/1409.0473

[36] P. Napoletano, G. Boccignone, and F. Tisato, ‘‘Attentive monitoring of
multiple video streams driven by a Bayesian foraging strategy,’’ IEEE
Trans. Image Process., vol. 24, no. 11, pp. 3266–3281, Nov. 2015.

[37] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7132–7141.

[38] S. Woo, J. Park, J. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional block
attention module,’’ in Proc. Eur. Conf. Comput. Vis., Sep. 2018, pp. 3–19.

[39] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, ‘‘Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,’’ in Proc. Eur. Conf. Comput. Vis., Sep. 2018, pp. 833–851.

[40] Y. Liu, X. Zhang, X. Zhu, Q. Guan, and X. Zhao, ‘‘ListNet-based object
proposals ranking,’’ Neurocomputing, vol. 267, pp. 182–194, Dec. 2017.

[41] K. Ye, J. Dong, W. Wang, B. Peng, and T. Tan, ‘‘Feature pyramid deep
matching and localization network for image forensics,’’ in Proc. Asia–
Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC),
Nov. 2018, pp. 1796–1802.

[42] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[43] Y. Liu. (2018). DMAC Codes. [Online]. Available: https://github.com/
yaqiliu-cs/CISDL-DMAC

[44] S. Heller, L. Rossetto, and H. Schuldt, ‘‘The PS-battles dataset—An image
collection for image manipulation detection,’’ 2018, arXiv:1804.04866.
[Online]. Available: http://arxiv.org/abs/1804.04866

[45] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, ‘‘An eval-
uation of popular copy–move forgery detection approaches,’’ IEEE Trans.
Inf. Forensics Security, vol. 7, no. 6, pp. 1841–1854, Dec. 2012.

[46] W. Luo, J. Huang, and G. Qiu, ‘‘Robust detection of region–duplication
forgery in digital image,’’ inProc. 18th Int. Conf. Pattern Recognit. (ICPR),
2006, pp. 746–749.

[47] S. Ryu, M. Lee, and H. Lee, ‘‘Detection of copy-rotate-move forgery
using Zernike moments,’’ in Proc. ACM Workshop Inf. Hiding, Jun. 2010,
pp. 51–65.

[48] D. Cozzolino, G. Poggi, and L. Verdoliva, ‘‘Efficient dense-field copy-
move forgery detection,’’ IEEE Trans. Inf. Forensics Security, vol. 10,
no. 11, pp. 2284–2297, Nov. 2015.

[49] L. Verdoliva, D. Cozzolino, and G. Poggi, ‘‘A reliable order-statistics-
based approximate nearest neighbor search algorithm,’’ IEEE Trans. Image
Process., vol. 26, no. 1, pp. 237–250, Jan. 2017.

[50] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. Eur. Conf. Comput. Vis., Sep. 2014, pp. 740–755.

YAQI LIU received the B.E. and M.E. degrees
from Beijing Technology and Business University,
Beijing, China, in 2013 and 2016, respectively. He
is currently pursuing the Ph.D. degree in cyber
security with the State Key Laboratory of Infor-
mation Security, Institute of Information Engineer-
ing, Chinese Academy of Sciences, Beijing. His
research interests include multimedia forensics,
computer vision, pattern recognition, and image
processing.

XIANFENG ZHAO received the Ph.D. degree in
computer science from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2003. From 2003 to
2005, he was a Postdoctoral Fellow with the Data
Assurance and Communication Security Center,
Chinese Academy of Sciences (CAS), Beijing.
From 2006 to 2011, he was an Associate Profes-
sor with the State Key Laboratory of Information
Security (SKLOIS), Institute of Software, CAS.
Since 2012, he has been a Professor with SKLOIS,

which was moved to the Institute of Information Engineering, CAS, in 2012.
Since 2013, he has been a Professor with the University of Chinese Academy
of Sciences. His research interests are information hiding and multimedia
security, including watermarking, steganography, steganalysis, and multime-
dia forensics. He has published more than 100 articles. He holds 15 patents.
He has coauthored four books in these fields. He has served as a PC
Member or the Co-Chair for many conferences, such as IWDW, AVSS, and
InsCrypt. Since 2014, he has been an Associate Editor of the International
Journal of Digital Crime and Forensics.

VOLUME 8, 2020 6741


