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ABSTRACT In practical airborne radar, the interference signals in training snapshots usually lead to
inaccurate estimation of the clutter covariance matrix (CCM) in space-time adaptive processing (STAP),
which seriously degrade radar performance and even occur target self-nulling phenomenon. To solve this
problem, a knowledge-aided sparse recovery (SR) STAP algorithm based on Gaussian kernel function
is developed. The proposed method distinguishes clutter components and interference signals in training
snapshots by the priori knowledge that the clutter components are distributed along the clutter ridge, which
dislodges interference signals from training snapshots by Gaussian kernel similar degree. Thus, the CCM is
estimated by utilizing these snapshots. Finally, the proposed STAPweight vector is built, which is convenient
for the subsequent signal processing. The experimental results were performed to verify the effectiveness
and superiority of the proposed method. The test results also show that the proposed algorithm completely
removes the interference signals, accurately estimates CCM, and improves the moving target detection
performance in small-sample and non-homogeneous clutter environments.

INDEX TERMS Space-time adaptive processing, interference signals, clutter covariance matrix, Gaussian
kernel similar degree.

I. INTRODUCTION
Space-time adaptive processing (STAP) can improve the abil-
ity of suppressing clutter and detecting targets in airborne
radar [1]–[3]. Generally, we can compute the ideal weight
vector and the optimal space-time adaptive filter output
responses using the clutter covariance matrix (CCM) and
target space-time steering vector. The CCM is estimated with
its adjacent distance cell snapshots in practice [4]. In order to
accurately estimate the CCM, the training snapshots need to
satisfy the following conditions [5]: (i) if the output signal-to-
interference plus-noise ratio (SINR) loss is < 3dB, the num-
ber of training snapshots should be at least than twice the
system degrees of freedom. (ii) the training snapshots must
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be target-free and their clutter statistics characteristics are
the same as those of the cell under test (CUT), namely, the
independent and identically distributed (IID). In practice,
radars usually work in heterogeneous environments [6], [7].
It is difficult to meet the above-mentioned conditions, espe-
cially in small-sample. Therefore, the estimated CCM is not
correct, which results in the performance decline of clutter
suppression and the target self-nulling effects [8].

With the rise and development of compressed sensing
theory, sparse signal representation has become one of the
most important research hotspots in signal processing field
[9]–[11]. In recent years, STAP technology based on the
sparsity of clutter power spectrum can obtain the high resolu-
tion clutter power spectrum estimation in a small number of
training snapshots or single sample. Then, clutter suppression
andmoving target detection are realized by using the obtained
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space-time power spectrum. Several typical sparse recovery
(SR) STAP algorithms have been applied in the heteroge-
neous environments, such as SR-STAP algorithm [12]–[14],
direct data domain STAP algorithm and the improved algo-
rithm [15]. These algorithms can reconstruct the training
snapshots and CUT by sparse recovery. If the training snap-
shots contain the interference signals, the CCM estimated by
these algorithms is inaccurate, even leading to the target self-
nulling effect.

To solve the above problems, we need eliminate the inter-
ference signals of training snapshots. The usual methods
are mainly focused on the research of Non-Homogeneity
Detection (NHD) [16]–[18]. The generalized inner products
(GIP) algorithm deletes the contaminated training snapshots
by comparing the statistics with the designated threshold [16].
However, when there are many strong interference signals
in the training snapshots set, GIP method can’t completely
eliminate the contaminated training snapshots. In [19], GIP
non-uniform sample detection method based on knowledge-
aided structure is proposed, which offline constructs the accu-
rate CCM by using the prolate spheroidal wave functions
(PSWF). A robust training snapshots selection algorithm
based on the spectral similarity of the interference signals is
proposed in [20], which selects the snapshots whose spec-
trums are similar to that of the CUT as the final training
snapshots. However, in the situation of dense distribution of
interference signals or the limited number of the training
snapshots, the robustness of the above algorithms is poor.
Moreover, these algorithms can degrade the performance of
STAP owing to discard many contaminated snapshots in the
heterogeneous environment.

In this paper, a knowledge-aided SR-STAP algorithm
based on Gaussian kernel function is proposed for clutter
suppression and moving target detection in small-snapshots
and non-homogeneous clutter environments. The proposed
algorithm uses the prior knowledge of clutter spectrum
and Gaussian kernel similar degree to detect and elimi-
nate the interference signals in the training snapshots, and
accurately estimates the CCM. The simulated results show
that the proposed method achieves a significant perfor-
mance improvement for STAP in a small number of training
snapshots.

The remainder of this paper is organized as follows. The
STAP signal model is presented in section II. In Section III,
the proposed STAP approach is presented, including Gaus-
sian kernel similar degree and SR techniques. In section IV,
simulation results and discussions verify the effectiveness
of the proposed algorithm. Finally, section V draws the
conclusions.
Notations: scalars, vectors and matrices are denoted by

lowercase, bold lowercase and bold uppercase respectively.
(·)T , (·)H denote transpose and complex conjugate transpose
operators respectively.⊗, E[·] and |·| stand for the Kronecker
product, the expected value and the absolute respectively.
IM is the M × M identity matrix, and diag(a) denotes a
diagonal matrix whose diagonal elements are equal to the

column vector a. max(a) denotes the maximum element of
vector a. < · > is the inner product.

II. SIGNAL MODEL
The system under consideration is a side-looking airborne
phased array radar that consists of a uniform linear array
(ULA). The radar contains N antenna sensors with inter-
element spacing d and M transmitting pulses with pulse
repetition interval (PRI) Tr in a coherent processing inter-
val (CPI). Thus, ignoring the range ambiguity, the received
space-time snapshots for a range bin are expressed as

x = atv(ft , ϕt )+ xu (1)

where at denotes the unknown complex amplitude of the tar-
get. v(ft , ϕt ) = v(ft )⊗ v(ϕt ) is the corresponding space-time
steering vector, where v(ϕt ) = [1, e2π jϕt , . . . , e2π j(N−1)ϕt ]T

is the spatial steering vector at the normalized spatial fre-
quency and v(ft ) = [1, e2π jft , . . . , e2π j(M−1)ft ]T denotes
the temporal steering vector at the normalized Doppler fre-
quency. The normalized spatial and Doppler frequency can
be, respectively, denoted by

ϕt = d cos(θ )/λ (2)
ft = 2vTr cos(θ )/λ (3)

where θ is the target directions, λ is the wavelength of radar,
and v is the speed of the radar. The clutter plus noise data xu
can be expressed by

xu=
Nc∑
i=1

ac,iv(fc,i, ϕc,i)+n=
Nc∑
i=1

ac,iv(fc,i)⊗ v(ϕc,i)+n (4)

where Nc denotes the number of independent clutter patches
in azimuth domain, ac,i, fc,i and ϕc,i are the random ampli-
tude, the normalized Doppler and spatial frequency of the ith
clutter patch respectively. v(fc,i, ϕc,i) = v(fc,i)⊗v(ϕc,i) is the
space-time steering vector of the ith clutter patch. The cor-
responding spatial and temporal steering vector are, respec-
tively, described by

v(ϕc,i) = [1, e2π jϕc,i , . . . , e2π j(N−1)ϕc,i ]T (5)
v(fc,i) = [1, e2π jfc,i , . . . , e2π j(M−1)fc,i ]T (6)

n is the Gaussian distribution noise vector and its power is
σ 2
n . The normalized spatial and Doppler frequency of the ith

clutter patch can be, respectively, denoted by

ϕt,i = d cos(θi)/λ (7)
fc,i = 2vTr cos(θi)/λ (8)

where θi is the spatial cone angle of the ith clutter
patch. Assuming mutual independence of each clutter patch,
the clutter plus noise covariance matrix (CNCM) is expressed
as follows:

Ru = E
[
xuxHu

]
=

Nc∑
i=1

E(
∣∣ac,i∣∣2)v(fc,i, ϕc,i)vH (fc,i, ϕc,i)+ σ 2

n INM

= VPVH
+ σ 2

n INM (9)
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where V = [v(fc,1, ϕc,1), v(fc,2, ϕc,2), . . . , v(fc,Nc , ϕc,Nc )]
is the clutter space-time steering matrix, the clutter power
matrix is P = diag([E(

∣∣ac,1∣∣2),E(∣∣ac,2∣∣2), . . . ,E(∣∣ac,Nc∣∣2)]T ).
According to the minimum variance distortionless

response criterion, the optimal STAP weight vectors can be
respectively expressed as

w =
R−1u vt

vHt R
−1
u vt

(10)

where vt denotes the space-time steering vector of target.
In practice, Ru is unknown. It is usually estimated from
training snapshots which are assumed to be IID and target-
free, which is given by

R̃u =
1
L

L∑
l=1

x(l)x(l)H (11)

where x(l) denotes the lth target-free training snapshots and
L is the number of training snapshots.
However, the training snapshots may contain the interfer-

ence signals in practice, which degrade the STAP perfor-
mance significantly. Particularly, if the interference signals
have the same Dopple frequencies as the target, the target
will be filtered out as clutter, which causes the target self-
nulling effect. In general, the GIP approach can find and
get rid of interference signals. However, the GIP approach
can’t completely remove them when the interference signals
are distributed intensively. Particularly, when the training
snapshots are few, the GIP approach can hardly work owe
to throw away some contaminated snapshots. Actually, these
renounced snapshots have also valuable clutter information.

III. THE PROPOSED ALGORITHM
We can eliminate the interference signals and preserve the
clutter components in each snapshot to overcome the above
problems. Hence, a robust knowledge-aided SR-STAP algo-
rithm based on Gaussian kernel function will be described in
detail.

A. GAUSSIAN KERNEL SIMILAR DEGREE
In this section, we give the concept of Gaussian kernel func-
tion. Suppose X is a non-empty subset in RN , and 8 is a
nonlinear mapping from X to H. K (x, y) is defined as kernel
function, which is defined as

K (x, y) =< 8(x),8(y) > ∀x, y ∈ X (12)

whereH is a Hilbert space. The kernel function can change a
non-linear problem into a linear one. Thus, the similarity can
be calculated accurately by the kernel function [21]–[23].

Gaussian kernel function is one of the most popular kernel
functions. Gaussian kernel function has better smoothing
performance. In addition, it can approximate any nonlinear
function and has fewer parameters. Therefore, Gaussian ker-
nel is used to calculate the similar degree between x and y,

which is given by

k(x, y) =
1
2π

exp(−
‖x − y‖2

2σ 2 ) (13)

where σ is density of kernel function and one adjustable
parameter.

Making full use of all the information of each snapshot,
the Gaussian kernel function can capture the nonlinear cor-
relation between snapshots in the kernel function space and
obtain better comparable results. The larger the similar degree
of x and y is, the larger the kernel function value is, conversely
smaller. Therefore, the similar degree between snapshots can
be interpreted by the kernel function value, which is defined
as the Gaussian kernel similar degree. Gaussian kernel similar
degree discriminates and eliminates the interference signals
to accurately estimate the CCM in this paper.

B. SR TECHNIQUE
Since the clutter focuses on the clutter ridge, the whole
angle-Doppler plane is discretized into Ns = ρsN , Nd =
ρdM (ρs, ρd > 1) grids, where Ns and Nd are the number of
angle and Doppler cells, respectively. Hence, the clutter plus
noise data xu in (4) can be rewritten as

xu =
NsNd∑
i=1

ac,iv(fc,i, ϕc,i)+ n = 8a+ n (14)

where8 and a are theNM×NsNd over-completed space-time
steering dictionary and NsNd × 1 angle-Doppler profile with
nonzero elements representing the clutter spectrum, respec-
tively, as given by

8 = [v(fc,1, ϕc,1), v(fc,2, ϕc,2), . . . , v(fc,Nd , ϕc,Ns )]NM×NsNd
(15)

a = [ac,1, ac,2, . . . , ac,NsNd ]
T (16)

Generally, the clutter spectrum is sparse, so several cells
represent clutter components in the discretised angle-Doppler
plane [24]. If 8 is known, the sparse vector a can be formu-
lated by the least absolute shrinkage and selection operator as
shown by

a = argmin
γ
‖a‖1 , subject to ‖xu −8a‖2 ≤ ε (17)

where ε denotes the noise allowed error. If the training snap-
shots xu contain the interference signals, the performance
of SR-STAP algorithm will decline significantly, especially
in the case of small samples. Moreover, when the interfer-
ence signals are densely distributed in the training snapshots,
SR-STAP algorithm can’t work normally and even result in
target self-nulling effect. According to the prior knowledge
that all the clutter components distribute along clutter ridge
in the angle-Doppler domain, we can distinguish the clutter
components and the interference signals.
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C. THE PROPOSED ALGORITHM
To address the problem, we use the clutter prior knowledge
to select and eliminate the interference signals according to
the Gaussian kernel similar degree. The number of training
snapshots is L and Ns = Nd . al is the coefficient vector of
the snapshot x(l)(l = 1, . . . ,L) obtained by (17). The whole
procedure can be done as follows.
Step 1:Wefirst array al in descending order by the absolute

values of elements, and construct a new set 0 by the indices
of elements.
Step 2: The Gaussian kernel similar degree kji between

φ(:, 0(j)) and ϕi is calculated as

kji = exp(−

∥∥ϕi − φ(:, 0(j))∥∥2
2σ 2 ) (i = 1, 2, . . . ,P) (18)

where 0(j) denote the jth (j = 1, 2, . . . ,NsNd ) element of
0, and ϕi(i = 1, 2, . . . ,P) is the space-time steering vector
corresponding to the clutter ridge in angle-Doppler plane.
All Gaussian kernel similar degrees form a set Kj, which is
expressed as

Kj = [kj1, kj2, . . . , kjP] (19)

Step 3: Then, if max(Kj) > τ or j = NsNd , set

�(z) = 0(j) (20)

continue to step 4; otherwise, set j = j + 1 and return to
step 2, where τ denotes a threshold of Gaussian kernel similar
degree.
Step 4: The jth iteration CCM estimation using the SR is

given by [14].

Rl,j =

Z∑
z=1

|a(�(z))|2(8e�(z))(8e�(z))H (21)

where e�(z) = [01, · · · , 0�k (z)−1, 1�k (z), 0�k (z)+1, · · · ,
0NsNd ]

T and Z is the number of elements in set �.

Step 5: if j = 1, set j = j+1 and return to step 2; otherwise,
calculate the error value between the CCM power values of
two adjacent iterations, which is denoted by

1j = 10 ∗ log 10

(
xHR−1l,j−1x

xHR−1l,j x

)
(22)

If 1j < ξ or j = NsNd , stop the iteration. Otherwise, set
j = j+ 1, z = z+ 1 and return to step 2. ξ is error threshold.
Then the CCM estimation is Rl,Ol , where Ol denotes the last
iterative time.
Step 6: When we obtain CCM of all training snapshots,

the final available CCM is computed as

Rav =
1
L

L∑
i=1

Ri,Oi (23)

Step 7:The optimumfilter weight corresponding to theRav
is yielded as

w =
R−1av vt

vHt R
−1
av vt

(24)

FIGURE 1. Float chart of the proposed algorithm.

Thewhole procedure can be summarized in Fig. 1. Accord-
ing to STAP theory, the clutter spectrum is distributed on the
clutter ridge in the angle-Doppler plane, and the distribution
of interference signals is quite different from that of clutter.
This paper uses the prior knowledge to distinguish the clutter
and interference signals by Gaussian kernel similar degree
between the space-time steering vector of clutter ridge and
that of the vector al SR coefficient, which is calculated
by (18). Fig 2 shows the Gaussian kernel similar degrees
among different space-time steering vectors. The steering
vector whose normalized angle and Doppler frequency both
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FIGURE 2. Gaussian kernel similar degree (a) Normalized Doppler
frequency (b) Normalized spatial frequency.

are zero can be taken as the reference vector. The Gaussian
kernel similar degrees between the reference vector and 361
steering vectors whose normalized angle is zero and normal-
ized Doppler frequency distributes in −0.5∼0.5 are given
in Fig. 2(a). Fig. 2(b) shows the Gaussian kernel similar
degrees between the reference vector and 361 steering vectors
whose normalized Doppler frequency is zero and normalized
angle distributes in −0.5∼0.5. The results in the figure show
that the Gaussian kernel similar degree between the refer-
ence vector and its adjacent vector decreases as the distance
between them increases. Therefore, the interference signals
can be discriminated by the Gaussian kernel similar degrees.
Moreover, the performance of STAP is maintained by using
clutter information of the contaminated snapshots. When the
number of training snapshots is small and the distribution of
interference signals is dense, the advantage of the proposed
algorithm is particularly obvious. According to the simulation
results, when the similar threshold set τ = 0.7, the main
clutter components can be selected and the ability to suppress
interference signals is guaranteed.

Every iteration process will give a new clutter components
set �(z) corresponding to the vector al SR coefficient and
�(z) ⊃ �(z − 1), as is described in step 3. Thus, the CCM
estimation is updated by the new set �(z). GIP algorithm

mainly selects the training snapshots by calculating the value
of Q(l) = x(l)HR−1c x(l), where x(l) denotes the training
snapshots and Rc is the CCM of CUT. Inspired by the GIP
algorithm, the similar definition is defined to estimate the
CCM accurately, which is defined by

Ql(j) = xHR−1l,j x (25)

where x denotes the CUT and Rl,j is the CCM obtained
by the jth iteration of x(l). With the increase of iterations,
the closer Rl,j is the CCM of CUT, the smaller the value of
Ql(j) is. When the Ql(j) values of two adjacent iterations are
almost equal, the iteration stops. In this case, Ql(j) should
only have the target and noise components without clutter
residuals and interference signals. After that, 1j between the
two adjacent iteratives contains only the noise component
by (22). Consequently, the error threshold ξ is set to the noise
power, as is described in the step 5. When the CCMs of all
training snapshots are obtained, and their mean is used as the
final CCM of CUT. Finally, the optimal filter output response
can be given by (24).

IV. RESULTS AND DISCUSSION
In this section, the theoretical derivation is verified by numer-
ical experiments. To demonstrate the superior performance
of our proposed method, some popular methods including
SR-STAP [14] andGIP-STAP [16] are also employed as com-
parisons in the following experiments. The main parameters
of the side-looking airborne radar system are listed in Table 1,
and β = 1. We set ρs = ρd = 6, τ = 0.7, and σ 2

= 9.

TABLE 1. Main parameters of STAP radar.

A. BEAMPATTERNS IN ANGLE-DOPPLER
We use ten training snapshots to verify the performance
advantages of the proposed algorithm in a small number
of training snapshots. Five of them have dense interference
signals whose range of the normalized Doppler frequency
is 0.05-0.15. Beampatterns in angle-Doppler estimated by
IJDL-STAP (the training snapshots of JDL-STAP have no
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FIGURE 3. Beampatterns in angle-Doppler (a) IJDL-STAP (b) ISR-STAP (c) SR-STAP (d) GIP-STAP (e) Proposed approach.

interference signals), ISR-STAP (the training snapshots of
SR-STAP have no interference signals), SR-STAP, GIP-
STAP and Proposed approach are showed in Figs. 3(a)-(e).
Because the normalized Doppler frequency of target signal
is within those of the interference signals, it is found that he
SR-STAP algorithm has no response peak value at the target
position and the beampattern in angle-Doppler is seriously
damaged, as shown in Fig. 3(c). However, the GIP-STAP
algorithm can eliminate some training snapshots contained

interference signals, but some residual training snapshots
with interference signals form multiple response peaks to
increase false alarm probability. Moreover, the clutter power
of GIP-STAP is reduced compared with that of SR-STAP
algorithm because some training snapshots are eliminated,
as shown in Fig. 3(d). The proposed algorithm completely
overcomes the influence of interference signals. Its perfor-
mance is almost close to the ideal situation. This means that
the proposed algorithm can extract useful clutter information
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FIGURE 4. SCINR loss.

from each training sample to estimate the clutter power spec-
trum as accurately as possible.

B. SCINR LOSS
Fig. 4 shows signal-to-clutter-plus-interference-and-noise
power ratio (SCINR) loss of the tested approaches versus the
normalized Doppler frequency curves. As shown in Fig. 4,
the SR-STAP method can’t work normally because of the
CCM estimation error in the presence of interference signals.
GIP-STAP has no big loss except the main clutter area, but its
curve fluctuates greatly in the positions of interference signals
Doppler frequencies. Moreover, GIP-STAP gets rid of some
contaminated snapshots, which degrades the performance of
target detection and clutter suppression. Since the proposed
algorithm accurately estimates the CCM by using the clutter
information in each training snapshots, the SCINR-loss curve
is 12dB deeper than that of GIP-STAP in the main clutter
region. Moreover, the SCINR loss curve of the proposed
approach appears to be the optimal one except for the main
clutter area. Hence, the proposed approach is better than other
algorithms in clutter suppression and SCINR.

C. DETECTION ALONG RANGE CELLS
Next, we analyze the target detection along range cells by 100
Monte Carlo simulations. The same training snapshots from
100 range cells are processed by IJDL-STAP, ISR- STAP,
SR-STAP, GIP-STAP and the proposed approach, respec-
tively. Supposing that the target signal is located in the 100th
range cell. Its normalized Doppler frequency is 0.1, and SNR
is 10dB. The detection results along range cell is presented
in Figs. 5. As shown in Fig. 5, IJDL-STAP, ISR-STAP and the
proposed algorithm can effectively suppress the clutters and
distinguish the target. However, the IJDL-STAP cannot use
prior knowledge, its target detection results relatively poor.
Since the Doppler frequency of the target signal is within
that of interference signals, the normalized output power of
SR-STAP and GIP-STAP in the 100th range cell is less than
−10dB. It means that there’s target self-nulling.

FIGURE 5. Normalized stap filter outputs along range cell.

FIGURE 6. Probability of detection.

D. DPROBABILITY OF DETECTION
At last, Fig. 6 shows the probability of detection of IJDL-
STAP, ISR-STAP, SR-STAP, GIP-STAP and the proposed
algorithm respectively by 100 Monte Carlo simulations.
In the simulations, we set the false alarm rate to 10−6.The
results shown in Fig. 6 again demonstrate that the perfor-
mances of the proposed algorithm is best than that of the
tested approaches when the probability of detection is fixed.

V. CONCLUSION
In the present study, a knowledge-aided SR-STAP approach
based on Gaussian kernel similar degree was proposed. The
algorithm can improve the detection performance and avoid
target self-nulling phenomenon when the training snapshots
are contaminated by interference signals in the airborne
radar. The proposed algorithm decomposes the training snap-
shots by SR, selects the clutter components in the training
snapshots by using the prior knowledge of clutter spectrum
and Gaussian kernel similar degree. Finally, the CCM can
be accurately estimated by making full use of the clutter
information in each training snapshots. According to the sim-
ulation results, the proposed approach exhibits a better angle-
Dopple beampattern, higher probability of detection, superior
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target detection output and SCINR loss compared with other
methods in the presence of interference signals. Moreover,
the advantages of the proposed approach are distinguished
compared with other types approaches in a small number of
training snapshots.
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