IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 22, 2019, accepted December 30, 2019, date of publication January 3, 2020, date of current version January 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963625

Function of Content Defined Chunking
Algorithms in Incremental Synchronization

CHANGIJIAN ZHANG ~, DEYU QI -, WENLIN LI'*, AND JING GUO

Department of Computer Science and Engineering, South China University of Technology, Guangzhou 510000, China
Corresponding author: Deyu Qi (csa@scut.edu.cn)
This work was supported in part by the National Natural Science Foundation of China under Grant 61070015, in part by the Guangdong

Provincial Frontier and Key Technology Innovation Special Funds Major Science under Grant 201802020035, and in part by the
Technology Project under Grant 2014B010110004.

ABSTRACT Data chunking algorithms divide data into several small data chunks in a certain way, thus
transforming the operation of data into the one of multiple small data chunks. Data chunking algorithms
have been widely used in duplicate data detection, parallel computing and other fields, but it is seldom used
in data incremental synchronization. Aiming at the characteristics of incremental data synchronization, this
paper proposes a novel data chunking algorithm. By dividing two data that need synchronization into small
data chunks, comparing the contents of these small data chunks, different ones are the incremental data that
need to be found. The new algorithm determines to set a cut-point based on the number of 1 contained in the
binary format of all bytes in an interval. Thus it improves the resistance against the byte shifting problem at
the expense of the chunk size stability, which makes it more suitable for the incremental data synchronization.
Comparing this algorithm with several known classical or state of art algorithms, experiments show that the
incremental data found by this algorithm can be reduced by 32%~57% compared to the others with same
changes between two data. The experimental results based on real-world datasets show that PCI improves
the calculation speed of classic Rsync algorithm up to 70%, however, with a drawback of increasing the

Transmission compression rate up to 11.8%.

INDEX TERMS Data synchronization, chunking algorithm, data backup, increment.

I. INTRODUCTION

Data chunking algorithm reads the data as a byte stream.
In the process of reading, a single byte or multiple bytes are
selected as a boundary of chunk based on certain conditions.
The data between two ends of adjacent boundaries ends is
called a chunk. Chunking algorithms have been widely used
in many fields, such as network transmission [1]-[3], data
storage system [4]-[6], data synchronization system [7]-[9],
cache system [10]-[12], text recognition [13]-[15] and so on.
For example, in the field of text recognition, when parsing
natural language texts, a sentence needs to be chunked to
extract the subject, predicate, object and other key phrases
in it, and then get the true meaning of the sentence by
grammar analysis.

A. CLASSIFICATION OF DATA CHUNKING ALGORITHMS
According to the condition of finding boundaries, algorithms

can be classified into fixed-size chunking and content-defined
chunking (CDC).

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

5316 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

Fixed-size chunking, as its name implies, is to chunk data
based on a fixed length. The sizes of chunks in the results
of the algorithm are the same. This kind of chunking is
conditional on the subscripts of the read bytes when searching
for the boundary. When the subscript is equal to an integer
multiple of a preset value, it is set as a boundary here. Fixed-
size chunking algorithm is simple, easy to understand and
fast. However, because the boundaries are set according to
the subscripts of the read bytes, there is a problem of byte
shifting. For example, when a byte is inserted at the beginning
of an data stream, the chunks will all be changed, which will
reduce the efficiency of chunk-based application.

CDC algorithm, also known as variable-size chunking,
is based on the content of the read bytes to determine whether
it acts as a boundary. In this kind of chunking, the data is
read as a byte stream, and a data window is set up. For
each read byte, the data window moves one byte forward
as well. We can decide to set the boundary here when the
data in the window satisfies certain conditions. CDC needs
a more complex calculation because it is necessary to calcu-
late the data in the window to determine whether the preset

VOLUME 8, 2020

https://orcid.org/0000-0003-4515-2537
https://orcid.org/0000-0002-3095-5778
https://orcid.org/0000-0003-2030-686X
https://orcid.org/0000-0003-2784-3414

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

IEEE Access

Fixed-length chunking algorithm

«t ABCABCDABCDEABCDEFABCDEFGABCDE. . .

Index 2 3 567 8 9 1011 131415 16 17 18 1920 21 22 23 21 25 26 27 28 29 30

Content-defined chunking algorithm

«t ABCABCDABCDEABCDEFABCDEFGABCDE. . .

Index | 1 2 3 506 7 8 9 101112 131415 16 17 18 1920 21 22 23 21 25 26 27 28 20 30

FIGURE 1. The algorithm for random bytes insertion.

chunking conditions are satisfied. Since this kind of algorithm
is content-based, when byte shifting occurs, the data in the
window, which meets the preset conditions, will still satisfy
the ones and be set as boundaries. In CDC, byte shifting will
affect nothing but the current data chunk.

The difference between fixed-size chunking and CDC can
be seen roughly in Fig. 1. In fixed-size chunking algorithms,
a cut-point is set based on its index, which is equal to or as
many times as a fixed integer. On the contrary, in CDC, a cut-
point is set based on its content instead of index.

B. INCREMENTAL SYNCHRONIZATION

In data backup system and distributed service system, data
synchronization technology is used to keep the data in two
places consistent [16]. According to synchronization meth-
ods, it can be classified into full synchronization and incre-
mental synchronization. Full synchronization is to replace
the whole original data with the target data, so as to achieve
the purpose of synchronization. Incremental synchronization,
on the other hand, only applies the changed part of the data
to the original data, which saves the cost of data transmission
and others.

Incremental synchronization includes the following steps:
firstly, compare the target data and the original data to find
the changed parts of the data; secondly, send these parts
to the original data server, and finally process the changed
parts at the original data to achieve data consistency. In first
step, in order to make the next two steps more smoothly and
cheaply, it is particularly important to find the changed parts
of the data.

There are many traditional ways to find the changed parts.
Trigger mode is creating a trigger for every table in the
database [17]. When a table changes, it can be captured
by the trigger, and then increments can be found. However,
this mode will affect the performance of the database and
easily shut down the whole system because of some minor
omissions. Programming mode is to record the operation of
the database in the code [18]. Every insert, delete, update and
new operation are recorded. These operations are equal to the
increment of data.

VOLUME 8, 2020

Rsync mode [19], which is used in Linux system, is based
on a algorithm with the same name. Rsync can realize the
data synchronization between files, but it is very complex
and time-consuming during synchronization. Rsync algo-
rithm is a fixed-size chunking algorithm, although it avoids
the problem of byte shifting problem, but in exchange for
a large amount of computation. Rsync algorithm contains
three steps. First, the target file, which is to be synchronized,
is divided into fixed length chunks on the PC it belongs, and
a checksum with strong and weak check values of all chunks
is sent to the server. Second, the original file on the server
is chunked by a sliding window and two-stage check value
comparison is implemented with the checksum to get the diff-
chunks and send them back to target PC. Third, the target
PC will generate a new file as same as the original file based
on the diff-chunks. Because sliding check is implemented at
the second step, Rsync uses weak check to reduce the times
of strong check. However, in the case of huge changes in the
original file, weak check still consumes lots of computation.
In the experimental phase, we will compare the performance
of PCI and Rsync based on real data.

This paper searches the changed parts between two data
by chunking the target data and the original data into chunks
based on the data chunking algorithm, finding the different
chunks between the original and target data, and regarding
these chunks as changed data.

Our contributions are as follows.

1) In Section 2, we give a detail description of CDC
algorithms. Point out their ideas and shortcomings.
Update the requirements of CDC when used in data
incremental synchronization.

2) In Section 3, we develop a novel CDC algorithm PCI.
Describe its process and discuss its performance on the
requirements of CDC mentioned in Section 2. We show
analytically that PCI is more suitable in data incremen-
tal synchronization.

3) In Section 4, we discuss the time and space complexity
of all the algorithms mention in our paper.

4) In Section 5, we experimentally compare PCI with five
of state of art CDC algorithms for test items including
chunking speed, chunk size distribution, and incremen-
tal data discovery.

Il. BACKGROUND AND MOTIVATION
This section discusses the background of chunking algo-
rithms, their limitations, and motivations of our work.

A. BACKGROUND

To solve the problem of byte shifting in fixed-length algo-
rithm, a content-defined variable-length chunking algorithm
[20] is proposed, which reads files as a data stream and
generates chunks according to the Rabin fingerprint of a
window data. To solve the issue that it is difficult to find
the cut-off point in Rabin algorithm, it is proposed to adopt
two divisors instead of one [21], one is easy to achieve and

5317

IEEE Access

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

Algorithm 5: Algorithm for Rabin chunking
Input: input file,file; default value,Value;length of sliding window,W;
Output: cut point,I;

function RabinChunking(file,Value,W)
i=1
index=0
while(byte=readByte(file))
array[index%W+1]=byte
if array.length>=W then
if hashValue(array,index,W)==Value then
return i
end if
else
continue
end if
i=itl
end while
end function

FIGURE 2. The pseudo code of the Rabin algorithm.

Arbitrary numerical value W

Data window

FIGURE 3. The algorithm process of Rabin.

the other is opposite. At the beginning of finding a cut-off
point, the difficult divisor should be adopted. If the data is
not satisfied in a long data interval, it will be replaced by the
easy one, so that large chunks can be avoided. In addition,
Rabin fingerprint have a problem called size variance of
chunks. To dual with this situation, LMC(Local Maximum
Chunking) algorithm is proposed [22]. Instead of calculating
Rabin fingerprint, the algorithm decides to set a cut-off point
when the maximum value of a window data is in the middle
of the window, which saves the time of calculating Rabin
fingerprint. At the same time, because the window size can be
set, the size of the chunks can be limited, and the distribution
of the chunk size is relatively stable. In order to speed up
the validation of the window data, AE [23] and RAM [24]
algorithms are proposed. By changing the validation method,
which will be described in detail later, of window data,
the speed of chunking is accelerated. In addition, to achieve a
faster data chunking, the idea of parallel computing is applied
to data chunking algorithms. Won et al. developed a multi-
thread variable size chunking method, which exploits the
multi-core architecture of the modern microprocessors [25].
Another multi-thread content based file chunking system is
given by Tang et al. in CPU-GPUPU heterogeneous architec-
ture [26]. To improve the parallel performance, a two-stage
parallel CDC is proposed by Ni et al. to spit up the parallel
chunking process into two stages [27]. Beside, a muli-chunk
deduplication scheme is proposed by Niesen et al. to provide
an information-theoretic analysis of data deduplication for a
designed source model [28] and To address the file reliability

5318

Algorithm 4: Algorithm for LMC chunking
Input: input file,file; size of fixed window,W;
Output: cut point,I;

function LMCChunking(file,W)
i=1
start=1
while(byte=readByte(file))
if byte<=max.value then
if i==max.position+w and max.position>=start+w then
start=max.position+1
return max.position
end if
else
max.value=byte
max.position=i
end if
=i+l
end while
end function

FIGURE 4. The pseudo code of the LMC algorithm.

Max value

Arbitrary numerical value } W 1 W |

FIGURE 5. The algorithm process of LMC.

issue, Wu et al. proposes a Per-File Parity (short for PFP)
scheme to improve the reliability of deduplication-based stor-
age systems [29].

Next, the process and pseudo-code of Rabin algorithm,
LMC, AE and RAM algorithms are introduced separately.

1) RABIN CHUNKING ALGORITHM

During reading the data stream, a data window is set to
calculate the Rabin fingerprint of the data in the window.
If the result of calculation is equal to the preset value, the cut-
off point is set at the end of the window. Otherwise, move the
data window one byte forwards and repeat the above process
until all the cut-off points and chunks in the data stream
are found. The pseudo code and chunking process of Rabin
algorithm are shown in Fig. 2 and Fig. 3.

2) LMC CHUNKING ALGORITHM

In the process of reading data stream, a data window is set.
If the maximum value of bytes in the data window is right
in the middle of the window, the cut-off point is set at the
end of the window. Otherwise, move the data window one
byte forwards and repeat the above process until all the cut-
off points and chunks in the data stream are found [22]. The
pseudo code and chunking process of LMC algorithm are
shown in Fig. 4 and Fig. 5.

3) AE CHUNKING ALGORITHM
During reading data stream, a data window is set. If the
maximum value of bytes in the data window is located at the

VOLUME 8, 2020

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

IEEE Access

Algorithm 3: Algorithm for AE chunking
Input: input file,file; size of fixed window,W;
Qutput: cut point,l;

function AEChunking(file,W)
i=1
while(byte=readByte(file))
if byte<=max.value then
if i==max.position+w then
return i
end if
else
max.value=byte
max.position=i
end if
=i+l
end while
end function

FIGURE 6. The pseudo code of the AE algorithm.

Max value

N
Arbitrary numerical value W 1

Data window

FIGURE 7. The algorithm process of AE.

end of the window, the cut-off point is set at the end of the
window. Otherwise, move the data window one byte forwards
and repeat the above process until all the cut-off points and
chunks in the data stream are found [23]. The pseudo code
and chunking process of AE algorithm are shown in Fig. 6
and Fig. 7.

4) RAM CHUNKING ALGORITHM

In the process of reading data stream, a data window is set at
the starting point or after the last cut-off point. If a byte value
with no less than all byte values in the window is read out
of the window, a cut-off point is set at this byte. Otherwise,
continue to read the byte values and repeat the above process
until all the cut-off points and chunks in the data stream are
found [24]. The pseudo code and chunking process of RAM
algorithm are shown in Fig. 8 and Fig. 9.

B. MOTIVATION
CDC algorithm is mostly used in the field of duplicate
data deletion. To achieve a better deletion, there are several
requirements for CDC algorithm proposed by Zhang et al.
in [23].
1) Content dependence. The condition of chunking must
be based on data content. Only in this way can we resist

byte shifting and find more duplicate data between
similar files [30].

VOLUME 8, 2020

Algorithm 2: Algorithm for RAM chunking
Input: input file,file; size of fixed window,W;
Output: cut point,;

function RAMChunking(file,W)
i=1
while(byte=readByte(file))
if byte>=max.value then
if i>w then
return i
end if
max.value=byte
max.position=i
end if
i=it1
end while
end function

FIGURE 8. The pseudo code of the RAM algorithm.

Max value

W Arbitrary numerical value 1

Data window

FIGURE 9. The algorithm process of RAM.

2) Low chunk size variance. Since the output chunks
of the chunking algorithm are supposed to be stored
in disk during duplicate data deletion, the high size
variance will affect the efficiency of storage and the
performance of de-duplication [31].

3) Ability to eliminate low entropy strings. Low
entropy strings are strings which consist of repetitive
bytes or patterns. This challenge means it is preferable
for the algorithm to be able to eliminate the redundancy
within this kind of string [32].

4) High throughput [33]. It means fast running speed,
which must be considered in any algorithm.

However, when CDC algorithm is applied to incremental
synchronization, even the same algorithm will have different
focus due to the change of purpose, and these requirements
need to be revised.

1) Content dependence. This does not need to be changed,
because in incremental synchronization, finding data
increments must also be resistant against the byte shift-
ing, because if byte insertion causes all subsequent
chunks to change, then a file will look like a new file,
even if only a small part of it has been changed.

2) Low chunk size variance. This should be changed,
because in the field of duplicate data deletion, the sta-
bility of data length is guaranteed in order not to
waste disk space when storing chunks. However, in

5319

IEEE Access

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

Algorithm 1: Algorithm for MII chunking
Input: input file,file; length of incremental interval, W;
Output: cut point,I;

function MIIChunking(file,w)
i=1
increment=0
while(byte=readByte(file))
if byte>previous.value then
increment=increment+1
if increment==W then
return i
end if
else
increment=0
end if
previous.value=byte
i=it1
end while
end function

FIGURE 10. The pseudo code of the MII algorithm.

incremental synchronization algorithm, the goal of data
chunking is to find different parts of data, not to store
them. Therefore, in incremental synchronization sys-
tems, chunk size instability can be tolerated.

3) Ability to eliminate low entropy strings. This is still
important to ensure that a chunk remains one when it
has not changed.

4) High throughput. This is still important, because the
real-time requirements of current applications require
all processes should as faster as they can with the same
remaining conditions.

5) Performance. When we use a CDC algorithm,
we always have a purpose. This challenge is to make
sure we can accomplish the target of our purpose as
well as possible. An algorithm is used to accomplish
a task, and the quality of completion is the most
important index to judge whether the algorithm is
good or bad.

The reasons why we ignore the importance of ‘“‘the per-
formance of de-duplication” are: (1) the previous papers
(AE, RAM, etc) use CDC to reduce hard disk usage and the
resulting chunks are stored on disk directly and perhaps per-
manently, thus the resulting chunks should be equal to or as
many times as disk sector to reduce fragmentation on the hard
disk. (2) We use CDC only to find different parts between
two similar files. During incremental synchronization, it is
necessary to find out the difference between two files stored
in different places by means of network communication. The
generated chunks will only be stored temporarily, and will be
deleted after finding the difference data between files.

In the previous research of our team, MII algorithm was
proposed to achieve better ability of resistance against the

5320

Arbitrary numerical value W

Data window

FIGURE 11. The algorithm process of MII.

Algorithm 10: Algorithm for PCI chunking

Input: input file,file; size of fixed window,W; Preset threshold,
tsValue;

Output: cut point,[;

function PCIChunking(file,W)
i=1
index=0
array[]={-1}
while(byte=readByte(file))
array[index%W+1]=byte
if Content(array)>=W then
if ParityCheck(array,index, W)>=tsValue then
return i
else
continue
end if
end if
i=it+l
end while
end function

FIGURE 12. The pseudo code of the PCI algorithm.

byte shifting by sacrificing the stability of chunk size [32].
The pseudo code and chunking process of MII algorithm are
shown in Fig. 10 and Fig. 11.

However, the effect of the algorithm is not good enough.
Our previous work is difficult to adjust the average chunk
size. When we need to compress the transmission cost as
much as possible, we need to reduce the data contains all
the difference between two files, which is difficult for MII
to do. To improve the effect of finding incremental data,
we proposes a more flexible CDC algorithm. By using a more
flexible cut-point search method, we can better locate the
changed part of the data and reduce the amount of data needed
to be synchronized. The experiments show the number of
incremental data found by our new algorithm can be reduced
by 32%~57%.

Ill. PARITY CHECK OF INTERVAL
We propose a novel algorithm called Parity Check of Inter-
val(PCI) to locate changed data more accurately by adopting
a flexible cut-point search strategy.

A. ALGORITHM PROCESS

Suppose there is a file that needs to be chunked. First step,
read the file as a data steam and set up a data window with
length of W. The starting point of the data window is the first
byte of the file. Second step, read one byte at a time until
the file has finished reading. Third step, make the following

VOLUME 8, 2020

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

IEEE Access

Algorithm 10_1: Algorithm for Content function
Input: input array,array;
Output: number,num;

function Content(array)
i=0
w=array.length
num=0
while(i<w)
if array[i] !=-1 then
num=num-+1
end if
i=i+1
end while
return num
end function

FIGURE 13. The pseudo code of the content.

Algorithm 10_2: Algorithm for ParityCheck function
Input: input array,array; start index, index; length of window,W;
Output: number,num;

function ParityCheck(array,index, W)
i=index
num=0
parityOfByte[]={0,1,1,**+,8} // size:256
while(i!=index-1)
num=num-+parityOfByte[array[i]]
i=(i+1)%W
end while
return num
end function

FIGURE 14. The pseudo code of the Parity Check.

Arbitrary numerical value W

Data window

FIGURE 15. The algorithm process of PCI.

decision: if the data window is filled with bytes and the
number of Is in binary form(NO1BF) of all bytes is not
less than the preset value, set cut-off point at the end of the
data window, move the starting point of the data window to
the next byte of the cut-off point and return to the second
step; If the data window is not filled with bytes, return to
the second step; If the data window is filled with bytes but
NOI1BF of all bytes is less than the preset value, move the
data window forward by one byte and return to the second
step. The pseudo code and chunking process of PCI algorithm
are shown in Fig. 12, Fig. 13, Fig. 14 and Fig. 15.

B. HOW TO PRESET THE THRESHOLD

In the PCI algorithm, there are two values to be preset,
the threshold of total NO1BF in data window and the length
of data window. A byte value is between 0 and 255. NO1BF of
a byte value is between 0 and 8. If a byte is random, then its

VOLUME 8, 2020

NOI1BF obeys the discrete uniform distribution with values
ranging from O to 8. If the sum of N bytes is limited, only
some N bytes can be guaranteed to meet the conditions. Based
on this, PCI algorithm calculates the NO1BF in a fixed data
window, and then compares this value with the preset value
to determine whether to set a cut-off point. Assuming that the
size of the data window is W and the threshold value of total
NOI1BF s V, the probability of a random data window meet-
ing the condition can be calculated by a given formula [34].
Since this paper do not discuss this mathematical problem,
here just set the probability to p as we can see in the follow
formula.

(V) =P{X1+X2+...+X, >=V}=p

In this formula, X;, {i = 1, 2, ... w} stands for NO1BF.

By setting the values of W and V, we can adjust the dif-
ficulty of finding the cut-off point, and then roughly control
the size of the chunks. The larger W, the smaller V, the easier
it is to find the cut-off point, and vice versa.

In this paper, W is set to 5 and V is set to 34. The purpose
of this setting is to ensure that there is approximately the
same number of chunks compared with other algorithms in
the experiment section, which means that the bandwidth cost
of the first data transmission in the synchronization are almost
same among algorithms. In practical application, two preset
values can be adjusted freely according to the actual situation
and demand, which shows the algorithm is much flexible.

C. CHUNKING SPEED

In terms of chunking speed, the algorithm only needs to tra-
verse the file once for a file, and only needs assignment, addi-
tion and value-taking during searching the cut-off point with
less computation. When calculating the same file, the algo-
rithm will not take the disadvantage of chunking speed from
other algorithms. Specific comparisons of running time will
be made in the section of time complexity, and the compar-
isons of the chunking speed of the same file will be given in
the following experimental section.

D. CHUNK SIZE VARIANCE

In introducing the principle of the algorithm, it is pointed
out that for a random data window, it can calculate a certain
value of the probability when it satisfies the cut-off points
condition. So finding cut-off points in the algorithm can be
regarded as a Bernoulli experiment. Then, starting from the
previous cut point, the distance N from reading to the next
cut-off point roughly follows a geometric distribution. The
distance N is actually the size of the chunks. Consequently,
the size of the chunks is not stable enough. The smaller the
length of the chunks, the more the ones, and vice versa.
However, when the algorithm is used to discover incremental
data, the diversity of chunk size will not cause too much
impact, because the chunks are not for storage, but to find
different parts. In practical applications, it is necessary to
merge the different chunks found together and send them to

5321

IEEE Access

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

-
-

the server that needs data synchronization. Therefore, chunk
size does not have much importance.

i

FIGURE 16. Resistance to byte shifting (Step1).

i J L 5

FIGURE 17. Resistance to byte shifting (Step2).

I

L4 L12? ’ L5

FIGURE 18. Resistance to byte shifting (Step3).

E. BYTE SHIFTING RESISTANCE

The main purpose of this algorithm is to find the same parts
of two similar files, so the ability to resist byte shifting is
the most important index. To ensure that the same content in
two files falls into the same chunk as much as possible, it is
necessary to ensure that the same data has the same boundary.
This also means that the same boundaries need to withstand
the impact of changes in nearby data. Byte shifting resistance
refers to whether changes in bytes nearby will affect the
original chunk. The ability of the algorithm to resist byte
shifting is demonstrated by deduction as follow.

Assuming that there is a piece of data as shown in Fig. 16,
where L1, L2 and L3 are three boundaries satisfying the
presupposition of the algorithm, Chunk1(L4 + L2) and
Chunk2(L5 4+ L3) are two chunks. When byte shifting occurs
in the middle of two boundaries, assume that it occurs in
L4. If no new boundaries are generated because of the byte
shifting, only Chunkl changes. If byte shifting results in
new boundaries, as shown in Fig. 17, Chunkl becomes
two chunks, Chunk1; and Chunk1,. However, Chunk2 and
chunks before L1 are unaffected. If byte shifting occurs right
on a boundary, assuming that it occurs on L2, as shown
in Fig. 18, we regard L4, L2 and L5 as a large chunk and do
not care whether L2 will be changed into a data window that
does not meet the preset conditions, then the chunks before
L1 and after L3 will not be affected. In summary, when byte
shifting occurs, only the chunk in which it is and the one after
it are affected, and the rest are not affected.

F. ABILITY TO ELIMINATE LOW ENTROPY STRINGS

For low-entropy strings, the principle of the algorithm is
that the NO1BF in a data window is greater than or equal
to the preset value. So even if a string is roughly the same

5322

TABLE 1. Time complexity contrast among algorithms.

Algorithm | Time complexity | each loop(operation)

Rabin O(n) 1ADD 4+ 2M + 2ASS+1C +1H
LMC O(n) 4ADD + 2ASS 4 3C

AE O(n) 2ADD + 1ASS +2C

RAM O(n) 1ADD + 3ASS + 2C

MII O(n) 2ADD + 3ASS +2C

PCI O(n) 1ADD +2ASS +2C +1FUNC

value, the original data window that meets the preset con-
ditions will still be the data window. If the low-entropy
string does not change, it will be included in a chunk by
the original data window. When looking for duplicate data,
it will be considered as the same data without affecting sub-
sequent chunks. For example, assume that there is a string
10001101’ cut — point1’000000000000’ cut — point2'1011100
in the source file. In the destination file, the string 'cut —
point17000000000000’ cut — point2’ will not be in the differ-
ent parts unless this string is changed in the destination file.

IV. TIME AND SPACE COMPLEXITY
In this section, we discuss the time and space complexity
of five algorithms which are the newest or state of art and

our algorithm. The algorithms covered in this section include
Rabin, LMC, AE, RAM MI]I, and PCI.

A. TIME COMPLEXITY
The processes and pseudo-codes of these algorithms have
been introduced in the previous section. It can be seen from
the pseudo-codes that only one loop is contained in these
algorithms, that is, the time complexity of them is O(n). But
the number of operations of each algorithm is different in a
loop, so the actual operands of each algorithm are given here,
as shown in Table 1. ADD means addition, M means modular
reduction, ASS means assignment, C means comparison, H
means hash operation and FUNC means function.

Although these algorithms mainly use comparisons to find
a cut-point, there are some other operations during the chunk-
ing process and these operations cost non-ignorable time. For
example, LMC needs an array to store the information of
the bytes in the two windows and updates it in every loop.
We only counted the total operations in the pseudocodes of
these algorithms whether or not they will actually be imple-
mented in the "each loop(operation)" part. This is unsuitable
and the true operations of each algorithm can be found in
its pseudocode. And the running time can be optimized by
programming.

B. SPACE COMPLEXITY

In Rabin algorithm shown in Fig. 2, it is necessary to record
all the byte values of the sliding window because they will
be used next time when the current matching of Rabin finger-
print fails. Therefore, the space complexity of the algorithm
is O(1), specifically an array of length W (W is the length of
the sliding window).

VOLUME 8, 2020

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

IEEE Access

TABLE 2. Space complexity contrast among algorithms.

TABLE 3. The datasets used for experiments of chunking algorithms.

Algorithm | Time complexity | exact space used name size(bytes) generating algorithm
Rabin o(1) Array[W],W is the length of the slid- datal 2% 109 Mersenne Twister Pseudo-Random
ing window Number Generator
LMC o(1) Array[2W +1],W is the length of the data2 2 %109 Mersenne Twister Pseudo-Random
fixed window Number Generator
AE O(1) one integer variable data3 2% 10° Mersenne Twister Pseudo-Random
RAM o(1) one integer variable Number Generator
MII o(1) two integer variables data4 1.5 % 10° Mersenne Twister Pseudo-Random
PCI O(l) Array[W =+ 1],W is the length of the Number Generator
data window datas 1.5 % 10° Mersenne Twister Pseudo-Random
Number Generator
data6 1.5 % 10° Mersenne Twister Pseudo-Random
Number Generator
In LMC algorithm shown in Fig. 4, it uses a circular queue data7 1%10° Mersenne Twister Pseudo-Random
to store the data in the sliding window. All the bytes in it o Number Generator
are used to exchange space for time. Therefore, the space data8 1+10 zlerseme Twister - Pseudo-Random
. b . o umber Generator
complexity of the algorithm is O(1), specifically an array of data9 1 %109 Mersenne Twister Pseudo-Random
length 2W + 1 (W is the length of the fixed window). Number Generator

In AE algorithm shown in Fig. 6, it just need to remember
the maximum byte value in the sliding window, and then
compare the read byte to this maximum byte. Therefore,
the space complexity of the algorithm is O(1), specifically
one integer variable.

In RAM algorithm, the space complexity is O(1), specifi-
cally one integer variable, because only the maximum value
is needed during current and next comparisons as we can tell
from Fig. 8.

In MII algorithm shown in Fig. 10, there is an integer
variable to store the current byte value during comparison
with the next byte value. Besides, another integer variable
is needed to store the length of current incremental interval.
Therefore, the space complexity of the algorithm is O(1),
specifically two integer variables.

In PCI algorithm shown in Fig. 12, when NO1BF of the
data window misses the target, we need to slide one byte for-
ward to calculate NO1BF of the new window, which means it
is necessary to record all the byte values of the data window.
Therefore, the space complexity of the algorithm is O(1),
specifically an array of length W + 1 (W is the length of the
data window, 1 is used to realize a circular queue).

The Contrast between space complexities of algorithms is
shown in Table 2.

V. EXPERIMENTS OF CHUNKING ALGORITHMS
This section discusses the experiments of the article.

A. OBJECTIVE
Compare the items including running time, chunk size dis-

tribution and incremental data discovery among the Rabin,
LMC, AE, RAM, MII and PCI algorithms.

B. DATASETS

There are two problems in using the real documents when
choosing the experimental data. One is that individual algo-
rithms may have special effects on some data, which will lead
to inconsistent conclusions in the comparison of algorithms;
the other is that because of the variety and quantity of actual

VOLUME 8, 2020

documents, only a few ones can be selected in the experiment
section of the article, which can not represent all the actual
data. It is inappropriate to judge which algorithm is better
only based on a few actual documents.

In this paper, when choosing the datasets, we adopt the
method of random file generation, which can maximize the
non-particularity of the file to ensure that the experimental
data are random and common. We choose the Mersenne
Twister Pseudo-Random Number Generator [35], which
has quite good pseudo-random characteristics, to generate
datasets. The experimental data consist of nine files, includ-
ing three files about 2G in size, three files about 1.5G in size
and three files about 1G in size, as shown in Table 3. The
reason why the number of experimental data is nine is that
the data are all randomly generated and there will be no kind
of sampling. Although more experimental data will be more
convincing, nine are enough.

C. CHUNKING SPEED

In this section, the chunking speed is compared among these
six algorithms through the experimental results. As to an
experimental file, the running time of each algorithm, i. e.
chunking time, can be obtained by implementing the six
algorithms separately. In the case of the same file, the shorter
the chunking time, the faster the chunking speed will be.
The experimental results of nine experimental files are shown
in Fig. 19.

The experimental results show that PCI algorithm is not
the fastest one among these algorithms, but in an order of
magnitude, which is acceptable in the processing of massive
data. Among these algorithms, RAM algorithm has the fastest
chunking speed, followed by AE, MII, RABIN and LMC
from fast to slow.

D. CHUNK SIZE DISTRIBUTION
In this section, the size distribution of chunking results among
six algorithms is discussed with the help of experimental

5323

IEEE Access

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

x10*
gl q
——LMC
36 —o—AE
33F RAM | |
RABIN
3r — MIl
27 —=—PCl
24
[}
Ey
@
£1s8
15
12+
0.9
06
03f

datal data2 data3 data4 data5 data6 data7 data8 data9
Test datas

FIGURE 19. The running time of chunking algorithms in different datasets.

10000 i ; datad . :
rrrrrr LMC
9000 R I AE 4
| RAM
8000 |- RABIN| 1
g w00} 4 b 4
© roor R [PCI
=
S 6000 [1
£
o
5 5000 4
5]
€ 4000 1
>
=
@ 3000 | 4
ES]
2000 |, 4
1000 | 1
0 L i S
0 500 1000 1500 2000 2500 3000 3500
chunk size(byte)

FIGURE 20. The chunk size distributions of chunking algorithms in datal.

10000 : : data2 ‘ :
-LMC
00} . | |
RAM
8000 | raBIN|
80l VI re
@ vooor b e PCI
=
€ 6000 | 1
=
Q
%5 5000 | 1
z
2 4000 1
=3
=
© 3000 1
£
2000]
1000 1
0
0 500 1000 1500 2000 2500 3000 3500

chunk size(byte)

FIGURE 21. The chunk size distributions of chunking algorithms in data2.

results. As to an experimental file, six chunking algorithms
are used to process it separately, and the results, including
all the chunks, of each chunking algorithm can be obtained.
By accumulating all the chunks with the same length, size
distribution of the chunks can be obtained. The experimental
results of nine experimental files are shown in Fig. 20, Fig. 21,
Fig. 22, Fig. 23, Fig. 24, Fig. 25, Fig. 26, Fig. 27 and Fig. 28.

5324

10000 : ; i :
E—Y
%00} aE |
\ RAM
8000 - | RABIN
Y T mil
© 7000 v = rol |
< 1
S 6000 -
=
o
5 5000 F -
z
£ 4000
3
=
© 3000
<
2000 | i
1000 | -
0 1 L L =
0 500 1000 1500 2000 2500 3000 3500

chunk size(byte)

FIGURE 22. The chunk size distributions of chunking algorithms in data3.

7000 — datad ; ‘
“Lvc
————— -AE
6000 |- A
RABIN

a1 X | Ml
1] - 4

5000
o -pPCI
3
=
3 4000 1
[}
kS
2 3000
£
=3
(=
2 2000 1

1000

o . ‘ e
0 50 1000 1500 2000 2500 3000 3500

chunk size(byte)

FIGURE 23. The chunk size distributions of chunking algorithms in data4.

7000 ‘ : data5 ; ;
e -LvMC
| - AE
6000 | | RAM
RABIN

. 1 Ml
1] L 4

5000
S -PCI
<
=
2 4000 b
o
5
2 3000 F
S
=3
c
£ 2000 f, E

1000

0 L L L S
0 500 1000 1500 2000 2500 3000 3500

chunk size(byte)

FIGURE 24. The chunk size distributions of chunking algorithms in data5.

As can be seen in these figures, the chunk size of LMC, AE
and RAM algorithms has a minimum value and the fluctua-
tion of size is small, which is related to the sliding window set
up. The existence of sliding window makes the size of chunks
not less than the length of sliding window. In the experiment
of this section, the sliding window is set to 700, the pur-
pose of which is also to make the total number of chunks

VOLUME 8, 2020

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

IEEE Access

7000 -

6000 |- 1\

—_ N B
5000 |- 1 w

4000

3000 |

the number of chunk(PCS

2000 f

1000 |

L L s Sa
0 500 1000 1500 2000 2500 3000 3500
chunk size(byte)

FIGURE 25. The chunk size distributions of chunking algorithms in dataé.

5000 daar

rrrrrr LMC
400f v AE
RAM
4000 | RABIN
& =Ml
sso0f %
8 PCI
X
S 3000
=
o
5 2500
]
£ 2000
=3
c
o 1500
£
1000 f;
500
0 L 1 it
0 500 1000 1500 2000 2500 3000 3500

chunk size(byte)

FIGURE 26. The chunk size distributions of chunking algorithms in data7.

5000 _ data8

rrrrrr LMC
4500 | e AE
a RAM
4000 - \X RABIN
g 3500 | ké 777777 pe
£ § -PCI
x
<€ 3000 | \
2 \
=]
5 2500
2
£ 2000
=}
=
@ 1500
£
1000 f, "™
500 |
0 I L e
0 500 1000 1500 2000 2500 3000 3500

chunk size(byte)

FIGURE 27. The chunk size distributions of chunking algorithms in data8.

among these six algorithms is roughly the same. If the total
number of chunks of all the algorithms are designed almost
the same during the experiments. Since we use MDS5 as the
fingerprint, the data transferred(fingerprints) are almost the
same for all the algorithms. The chunk size distributions
of RABIN, MII and PCI are basically in conformity with
geometric distributions, and the size fluctuations are large,

VOLUME 8, 2020

5000 datad

4500 |

4000 |

C
@
&
=]
S

3000

2500 |

2000 |

1500 |

the number of chunk(PCS)

1000

500 |-

0 500 1000 1500 2000 2500 3000 3500
chunk size(byte)

FIGURE 28. The chunk size distributions of chunking algorithms in data9.

which have been discussed in the previous section. However,
to find incremental data in data synchronization, chunks are
not used for storage. The process of data synchronization
is as follow: fingerprints of the chunks in source file are
transferred to destination file location, different fingerprints
between source file and destination file are transferred back
to source file location after comparison, and then the original
chunks, aka different parts between two files, of the different
fingerprints are transferred to destination file location, finally,
a same version of source file is composed in destination file
location. All the chunks generated during this process are
deleted after the same version of source file is composed.
So the diversity of chunk size will not affect the ultimate
purpose of chunking, which is positioning different parts
between two files and make these two the same.

E. INCREMENTAL DATA DISCOVERY

In this section, we discuss how much incremental data can
be found in the chunking results of each algorithm with the
help of experimental results. The steps are as follows. As
to an experimental file daral, firstly, new files datal,dd,
datal gelete and datal;nsert are obtained by means of addi-
tion, random deletion and random insertion algorithms. The
addition algorithm is shown in Fig. 29, the random deletion
algorithm is shown in Fig. 30, and the random insertion algo-
rithm is shown in Fig. 31. Secondly, one chunking algorithm
is used to process datal and datal ,dd respectively to find out
the incremental data datal ,dd;nc in the case of addition. Then
the incremental data datalgelete;nc, in the case of random
deletion, and datal;nsert;nc, in the case of random insertion,
are obtained by the same method. Then repeat the above steps
with the other five chunking algorithms, and the incremental
data found by six algorithms in three cases, which are addi-
tion, random deletion and random insertion, can be obtained.
Finally, by repeating the above steps for the remaining eight
experimental files, we can get the incremental data found by
each algorithm in three cases under different experimental
files. The results in three cases are shown in Fig. 34, Fig. 33
and Fig. 32.

5325

IEEE Access

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

Algorithm 9: Algorithm for Adding
Input: Input file,fileln;
Output: Output file,fileOut;

function Add(fileln)
i=0
j=0
while(byte=readByte(fileln))

fileOut.write(byte)
end while
for j 0 to 20000 by 1 do
fileOut.write(Random(0,255))

end for

end function

FIGURE 29. The algorithm for random bytes addition.

Algorithm 8: Algorithm for Deleting
Input: Input file,fileln;
Output: Output file,fileOut;

function Delete(fileln)
i=0
=0
while(byte=readByte(fileln))
i=i+1
if j==0 then
fileOut.write(byte)
else
=-1
end if
if 1%10000==0 then
=100
end if
end while
end function

FIGURE 30. The algorithm for random bytes deletion.

As can be seen from the figures, in the case of addition,
the incremental data found by the six algorithms are roughly
the same, because the addition is made at the end of the file,
so the original part remains unchanged, and the data found
by all the algorithms are basically the last additional data.
In the case of random deletion and insertion, the incremental
data found by PCI is significantly lower than the other five
algorithms, because in these two cases, the changes of new
data will change the original data, which may affect the data
chunk. If the resistance against byte shifting of the algorithm
is not strong enough, the original chunk boundary is easy to

5326

Algorithm 7: Algorithm for Inserting
Input: Input file,fileln;
Output: Output file,fileOut;

function Insert(fileln)

i=0
while(byte=readByte(fileln))
i=it+1
fileOut.write(byte)
if i%10000==0 then
for j 0 to 100 by 1 do
fileOut.write(Random(0,255))
end for
end if
end while

end function

FIGURE 31. The algorithm for random bytes insertion.

x108 Insert

——LMC

8 —6—AE

RAM
a RABIN|
——Mi
——PcCl

o
T

Increment(bytes)
IS o

w
T

N}
T

Test Data

FIGURE 32. The incremental data discovery of the chunking algorithms in
random bytes insertion case.

x10° Delete

——LMC
—©—AE
RAM
RABIN
—MIl
—PCl

.o
T

~
T

w
T

Increment(bytes)

N
T

Test Data

FIGURE 33. The incremental data discovery of the chunking algorithms in
random bytes deletion case.

be changed because of the data, which leads to the change of
a whole chunk. The most important feature of PCI algorithm

VOLUME 8, 2020

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

IEEE Access

%10 Add

Increment(byte)

Test Datas

FIGURE 34. The incremental data discovery of the chunking algorithms in
random bytes addition case.

is its strong ability of resistance against byte shifting, which
makes PCI algorithm keep chunks from changing when the
data nearby changes, so it can better identify the duplicate
data when looking for incremental data, thus reducing the
incremental data found. As can be seen from the figures, PCI
algorithm can delineate the location of the incremental data in
a smaller range and less is better, which is reduced by about
32%~57% compared with other algorithms. In incremental
synchronization system, most of the changes are random
deletion and insertion, thus PCI algorithm can locate the
changed data more accurately in incremental synchronization
system and reduce the bandwidth cost of data transmission.

VI. EXPERIMENTS BETWEEN PCI AND CLASSIC RSYNC

A. OBJECTIVE

Compare the items including proceeding time, actual amount
of data transferred and ideal amount of data transferred
between the Rsync and PCI algorithms.

B. DATASETS

Our datasets adopt the operating system snapshots mentioned
in the literature [23], [27], [36], which can be downloaded
to the website http://tracer.filesystems.org/. These snapshots
were collected on a Mac OS X Snow Leopard server running
in an academic computer lab. The server runs the following
services:

1) LDAP: OpenDirectory (user/group management).
2) SMTP: Postfix.

3) MySQL for Bugzilla.

4) HTTP: Apache.

5) FTP.

6) Calendar server (CalDAV).

7) Wiki server.

8) Contacts server (CardDAV).

There are over 250 users in the system, many are current
and ex-students, some guests, and collaborators. At any given
time, between 20-30 users are actually active. We mod-
ify the snapshots according to the way mentioned in the

VOLUME 8, 2020

TABLE 4. The datasets used for experiments between PCI and classic
Rsync.

Name Size(Gb) | Files(pieces)
datal 13.70 7

Source
http://tracer.filesystems.org/

data2 13.11 7 http://tracer.filesystems.org/
data3 12.82 7 http://tracer.filesystems.org/
data4 11.55 7 http://tracer.filesystems.org/

paper [23], [37] to simulate the changes of the file in prac-
tice. Our modification includes three ways: append, random
delete and random insert. The experimental data set is shown
in Table 4.

We use the latest version 3.1.3 of Rsync algorithm, which
can be downloaded at the website https://rsync.samba.org/.
Since we only force on the incremental synchronization
performance at a chunk level, we do not consider the
incremental synchronization at the file level. During the
experiments, we use two virtual machines to simulate the
two servers in the real environment. The communication
between virtual machines is realized based on Netty. Due
to the communication between virtual machines, there will
be almost no network congestion, so we compare the actual
amount of transferred data to judge the performance of net-
work transmission. The processing time in the experiments
includes the chunking time on the target file, the time of
producing the checksum, the chunking time on the original
file and the time of finding the difference chunks, with-
out the time of network transmission. The actual amount
of transferred data contains all the data transferred in two
transmissions. The ideal amount of data transferred equals
the changed data. We adjust the parameters to ensure that
the number of chunks generated by the two algorithms is
almost the same. Our project can be found at the website
https://github.com/zhang03091354/Sync.

C. PROCESSING TIME

In this section, we discuss the proceeding time of PCI and
Rsync. The experiment results based on appending, random
deletion and insertion modifications are shown in Fig. 35,
Fig. 36 and Fig. 37 respectively.

As we can see, PCI has less processing time than Rsync.
In the case of appending, although PCI as a CDC algorithm
is slightly slower than fixed length chunking algorithm, PCI
only needs to calculate one strong check, while Rsync needs
to calculate weak check more. It can be seen from the Fig. 35
that the processing time of PCI is about 24% less than Rsync
algorithm. In the case of deletion, because Rsync adopts the
sliding check in step 2, and in the case of random deletion,
it results in byte by byte sliding check, which consumes a
lot of computation. From the Fig. 36, it can be seen that the
processing time of PCI is about 52% less than that of Rsync.
In the case of insertion, there will be more sliding checks,
which will increase the time-consuming of Rsync. It can be
seen from the Fig. 37 that the processing time of PCI is about
70% less than that of Rsync algorithm.

5327

IEEE Access

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

6000

5000 [1

4000 [4

)

@
3000 [1

time

2000 & 1

1000 1

0
data1 data2 data3 datad
Test datas

FIGURE 35. The processing time on appending modification.

6000 T T

5000 [1

4000 [1

s)

GE_J 300 77— —"-—7--o -— 1
= —
2000 [1
—_—mm
1000 [1
0 . \
data1 data2 data3 data4

Test datas

FIGURE 36. The processing time on deletion modification.

6000

5000 |- 1
L

4000 | T

3000 1

time(s)

2000 [1

1000 1

0 L L
data1 data2 data3 data4
Test datas

FIGURE 37. The processing time on appending modification.

D. ACTUAL AMOUNT OF DATA TRANSFERRED

In this section, we discuss the proceeding time of PCI and
Rsync. First, let’s introduce a concept: TCR(Transmission
Compression Rate), which is the compression rate when
transferring data for Incremental synchronization. TCR can
be calculated with the following formula.

D1
CTR = —
D2

5328

30

——PCl
—E5—RSYNC

20 q

TPR(%)

0 L
append delete insert
Modification

FIGURE 38. The TCR on datal.

30

20 b

TPR(%)

0 L
append delete insert
Modification

FIGURE 39. The TCR on data2.

30 T

TPR(%)

0 .
append delete insert
Modification

FIGURE 40. The TCR on data3.

where D1 denotes the actual amount of data transferred and
D2 denotes the file size to synchronize. The experiment
results based on datal, data2, data3 and data4 are shown
in Fig. 38, Fig. 39, Fig. 40 and Fig. 41 respectively.

As we can see, PCI basically transmits more data than
Rsync. However, in the case of appending, PCI's TPR is about
0.5% less than Rsync, which is because PCI only needs to
transmit a strong check in the first transmission. Although the
amount of difference data found is slightly more than Rsync,

VOLUME 8, 2020

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

IEEE Access

30

PCI
—6—RSYNC

20

TPR(%)

delete insert
Modification

0
append

FIGURE 41. The TCR on data4.

the total amount of data transmitted is still slightly less than
Rsync. In the case of deletion, PCI has about 5.8 percentage
points more TPR than Rsync. In the case of insertion, PCI has
about 11.8 percentage points more TPR than Rsync.

To sum up, PCI increases the processing speed by
24%~7T70% when it loses part of the transmission compres-
sion rate compared to Rsync.

VII. CONCLUSION

In this paper, a novel data chunking algorithm is proposed
to find incremental data between two similar files. In the
field of data incremental synchronization, chunks are used
to search for changed data instead of being stored, so the
instability of chunk size does not cause much impact. The
ability to resist byte shifting can better maintain the status
quo of unchanged chunks, thus greatly reducing the amount
of changed data found. This algorithm is designed to get a
better performance of finding incremental data by improving
the byte shifting resistance at the expense of the chunk size
stability in the algorithm results. Experiments show that the
algorithm can delineate the location of the incremental data
in a smaller range, which is reduced by about 32%~57%
compared with other algorithms. During comparison with
Rsync algorithm based on real-world datasets, PCI has a
better performance on calculation speed and a drawback of
increasing the Transmission compression rate.

ACKNOWLEDGMENT
(Changjian Zhang and Deyu Qi contributed equally to this
work.)

REFERENCES

[1] Q. N. Nguyen, M. Arifuzzaman, K. Yu, and T. Sato, “A context—aware
green information—centric networking model for future wireless commu-
nications,” IEEE Access, vol. 6, pp. 22804-22816, 2018.

[2] S. Sanyal and P. Zhang, “Improving quality of data: IoT data aggre-
gation using device to device communications,” IEEE Access, vol. 6,
pp. 67830-67840, 2018.

[3] J. Li, J. Wu, and L. Chen, “Block-secure: Blockchain based scheme for
secure P2P cloud storage,” Inf. Sci., vol. 465, pp. 219-231, Oct. 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
$0020025518305012

VOLUME 8, 2020

[4]

[5

—

[6]

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

T.-Y. Youn, K.-Y. Chang, K.-H. Rhee, and S. U. Shin, “Efficient client—
side deduplication of encrypted data with public auditing in cloud storage,”
IEEE Access, vol. 6, pp. 26578-26587, 2018.

Y. Zhou, Y. Deng, L. T. Yang, R. Yang, and L. Si, “LDFS: A low
latency in-line data deduplication file system,” IEEE Access, vol. 6,
pp. 15743-15753, 2018.

Y. Zhou, D. Feng, Y. Hua, W. Xia, M. Fu, F. Huang, and Y. Zhang,
“A similarity-aware encrypted deduplication scheme with flexible access
control in the cloud,” Future Gener. Comput. Syst., vol. 84, pp. 177-189,
Jul. 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X17309238

D. Rasch and R. Burns, “In-place rsync: File synchronization for mobile
and wireless devices,” in Proc. Annu. Conf. USENIX Annu. Tech. Conf.
(ATEC), 2003, p. 15.

M. Constantinou, “Tuning of rsync algorithm for optimum cloud
storage performance,” Dept. Comput. Sci., Univ. Bath, Bath, UK,
Tech. Rep. CSBU-2013-10, 2013.

J. Ma, C. Bi, Y. Bai, and L. Zhang, “UCDC: Unlimited content—defined
chunking, a file—differing method apply to file-synchronization among
multiple hosts,” in Proc. 12th Int. Conf. Semantics, Knowl. Grids (SKG),
Aug. 2016, pp. 76-82.

K. Thar, N. H. Tran, S. Ullah, T. Z. Oo, and C. S. Hong, “Online caching
and cooperative forwarding in information centric networking,” IEEE
Access, vol. 6, pp. 59679-59694, 2018.

H. Noh and H. Song, ‘“‘Progressive caching system for video stream-
ing services over content centric network,” [EEE Access, vol. 7,
pp. 47079-47089, 2019.

X. Zhang, N. Wang, V. G. Vassilakis, and M. P. Howarth, “A dis-
tributed in-network caching scheme for P2P-like content chunk delivery,”
Comput. Netw., vol. 91, pp. 577-592, Nov. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128615002959

X. Ren, Y. Zhou, Z. Huang, J. Sun, X. Yang, and K. Chen, “A novel text
structure feature extractor for chinese scene text detection and recogni-
tion,” IEEE Access, vol. 5, pp. 3193-3204, 2017.

W. Lu, H. Sun, J. Chu, X. Huang, and J. Yu, “A novel approach for video
text detection and recognition based on a corner response feature map
and transferred deep convolutional neural network,” IEEE Access, vol. 6,
pp. 4019840211, 2018.

M. Huang and R. M. Haralick, “A method for discovering knowledge in
texts,” Pattern Recognit. Lett., vol. 124, pp. 21-30, Jun. 2019. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0167865518
300801

F. Xhafa, “Data replication and synchronization in P2P collaborative
systems,” in Proc. IEEE 26th Int. Conf. Adv. Inf. Netw. Appl., Mar. 2012,
p.-7.

E. Bertino, G. Guerrini, and I. Merlo, “Trigger inheritance and overriding
in an active object database system,” [EEE Trans. Knowl. Data Eng.,
vol. 12, no. 4, pp. 588-608, Jul. 2000.

J. Lee, K. Kim, and S. Cha, “Differential logging: A commuta-
tive and associative logging scheme for highly parallel main mem-
ory database,” in Proc. 17th Int. Conf. Data Eng., Nov. 2002,
pp. 173-182.

A. Tridgell. Effcient Algorithms for Sorting and Synchronization.
Accessed: Feb. 1999. [Online]. Available: https://www.samba.org/~tridge/
phd_thesis.pdf

M. Rabin, “Fingerprinting by random polynomials,” Center Res. Com-
put. Techn., Aiken Comput. Lab., Harvard Univ., Cambridge, MA, USA,
Tech. Rep. TR-15-81, 1981.

R. Raju, M. Moh, and T.-S. Moh, “Compression of wearable body sen-
sor network data using improved two-threshold-two-divisor data chunk-
ing algorithms,” in Proc. Int. Conf. High Perform. Comput. Simulation
(HPCS), Jul. 2018, pp. 949-956.

N. Bjgrner, A. Blass, and Y. Gurevich, “Content-dependent chunking
for differential compression, the local maximum approach,” J. Comput.
Syst. Sci., vol. 76, nos. 3—4, pp. 154-203, May 2010, doi: 10.1016/j.jcss.
2009.06.004.

Y. Zhang, D. Feng, H. Jiang, W. Xia, M. Fu, F. Huang, and Y. Zhou,
“A fast asymmetric extremum content defined chunking algorithm for data
deduplication in backup storage systems,” IEEE Trans. Comput., vol. 66,
no. 2, pp. 199-211, Feb. 2017.

R. N. Widodo, H. Lim, and M. Atiquzzaman, “A new content-defined
chunking algorithm for data deduplication in cloud storage,” Future Gener.
Comput. Syst., vol. 71, pp. 145-156, Jun. 2017.

5329

http://dx.doi.org/10.1016/j.jcss.2009.06.004
http://dx.doi.org/10.1016/j.jcss.2009.06.004

IEEE Access

C. Zhang et al.: Function of CDC Algorithms in Incremental Synchronization

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Y. Won, K. Lim, and J. Min, “MUCH: Multithreaded content-based
file chunking,” IEEE Trans. Comput., vol. 64, no. 5, pp. 1375-1388,
May 2015.

Z. Tang and Y. Won, “Multithread content based file chunking system in
CPU-GPGPU heterogeneous architecture,” in Proc. Ist Int. Conf. Data
Compress., Commun. Process., Jun. 2011, pp. 58-64.

F.Ni, X. Lin, and S. Jiang, “SS—CDC: A two-stage parallel content-defined
chunking for deduplicating backup storage,” in Proc. 12th ACM Int. Conf.
Syst. Storage (SYSTOR), 2019, pp. 86-96, doi: 10.1145/3319647.3325834.
U. Niesen, “An information—theoretic analysis of deduplication,” IEEE
Trans. Inf. Theory, vol. 65, no. 9, pp. 5688-5704, Sep. 2019.

S. Wu, B. Mao, H. Jiang, H. Luan, and J. Zhou, “PFP: Improving the reli-
ability of deduplication-based storage systems with per—file parity,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 9, pp. 2117-2129, Sep. 2019.

Y. Tan and Z. Yan, ‘“Multi—objective metrics to evaluate deduplication
approaches,” IEEE Access, vol. 5, pp. 5366-5377, 2017.

W. Tian, R. Li, Z. Xu, and W. Xiao, “Does the content defined chunking
really solve the local boundary shift problem?”” in Proc. IEEE 36th Int.
Perform. Comput. Commun. Conf. (IPCCC), Dec. 2017, pp. 1-8.

C. Zhang, D. Qi, Z. Cai, W. Huang, X. Wang, W. Li, and J. Guo, “MII:
A novel content defined chunking algorithm for finding incremental data
in data synchronization,” IEEE Access, vol. 7, pp. 86932-86945, 2019.
B. Chapuis, B. Garbinato, and P. Andritsos, “Throughput: A key perfor-
mance measure of content—defined chunking algorithms,” in Proc. IEEE
36th Int. Conf. Distrib. Comput. Syst. Workshops (ICDCSW), Jun. 2016,
pp. 7-12.

D. M. Bradley and R. C. Gupta, “On the distribution of the sum of n non-
identically distributed uniform random variables,” Ann. Inst. Stat. Math.,
vol. 54, no. 3, pp. 689-700, Sep. 2002, doi: 10.1023/A:1022483715767.
J. Draghi and G. P. Wagner, “Evolution of evolvability in a developmental
model,” Evolution, vol. 62, no. 2, pp. 301-315, Feb. 2008.

M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore speed for
backup systems that use inline chunk-based deduplication,” in Proc. 11th
USENIX Conf. File Storage Technol. (FAST), 2013, pp. 183-198. [Online].
Available: http://dl.acm.org/citation.cfm?id=2591272.2591292

V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok, “Generating realistic datasets for deduplication analysis,” in
Proc. USENIX Conf. Annu. Tech. Conf. (USENIX ATC), 2012, p. 24.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2342821.2342845

CHANGIJIAN ZHANG received the B.S. degree
from the Department of Computer Science and
Technology, Xi’an Electronic and Engineering
University, in 2013. He is currently pursuing the
Ph.D. degree in computer science and technology
from South China University of Technology.
Since September 2015, he has been studying on
data synchronization for big data at South China
University of Technology. His research interests
include data synchronization, data compression,

data storage, and their applications in cloud computing and big data.

5330

DEYU QI received the M.S. degree from the
National University of Defense Technology and
the Ph.D. degree from the South University of
Technology. He is currently a Full Professor and
a Doctoral Supervisor with the School of Com-
puter Science and Engineering, South China Uni-
versity of Technology, an Academic Team Leader
of the Advanced Computing Architecture, and the
Director of the Research Institute of Computer
Systems, South China University of Technology.
His research interests include software developing method and architecture,
software developing environment and tools, distributed computing systems,
new generation computer architecture, and computer system security. He
has published more than 200 journal articles, one monograph, and two
educational materials. He also holds many patents for invention and software
copyright. He has also held the 863 Project and NSFC Project. He pro-
posed the VLSI dynamic analysis method Fanalysis, object-oriented LOODS
abstract model, the large granularity distributed application system inter-
operation model XIOM, and multidatabase middle-ware DoD.

WENLIN LI received the B.S. and M.S. degrees
from Northeast Forestry University, in 2013 and
2016, respectively. She is currently pursuing the
Ph.D. degree in computer science and technology
with the South China University of Technology.

JING GUO received the B.Eng. degree from
Sun Yat-sen University and the M.S. degree from
Soochow University. He is currently pursuing the
Ph.D. degree (by Research) with the Research
Institute of Computer Systems, South China Uni-
versity of Technology. He has authored or coau-
thored some articles in the areas of numerical
solution of differential equations. His research
interests are mainly on numerical analysis,
data analysis, machine learning, and software
engineering.

VOLUME 8, 2020

http://dx.doi.org/10.1145/3319647.3325834
http://dx.doi.org/10.1023/A:1022483715767

