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ABSTRACT This paper proposes a probabilistic health index-based method for estimating the apparent age
of power transformer. Compared with the conventional weighted-score-sum based health index, the proba-
bilistic health index is calculated as a data fusion result of kinds of transformer condition monitoring data
through a constructed Bayesian belief network. The regression result of such a probabilistic health index
is then applied to estimate the apparent age of the transformer through a few steps listed in the paper.
The apparent age not only embodies an overall health status a transformer but also helpful for sorting a
transformer fleet based on the estimated apparent age or even make it easy to make comparisons between
transformer fleets. The estimated apparent age can be taken as a reference for power utilities to prioritize
transformers and pay attention to the unit who owns the maximum apparent age among a fleet, thus helps
to schedule replacement plans. Case studies with different transformers verify the usability and prove the
advantages of the proposed method.

INDEX TERMS Apparent age, Bayesian belief network, condition monitoring data, health index, power
transformer.

I. INTRODUCTION
In the electrical power system, the transformer plays a very
important role in energy conversion and distribution. So far,
a large number of power transformers in-service are almost
approaching their designed life (25-30 years in general).
However, for economic and other safety considerations, most
of them are not replaced and still functioning satisfactorily.
As the insulation material of the transformer usually exposes
in a multi-stress coexisting condition including the thermal,
the electrical, and the mechanical effect as well as the chem-
ical erosion during service, degradation of the insulation
and aging of the transformer is inevitable [1], [2]. It thus
becomes crucial to evaluate the ‘‘real age’’ or ‘‘real life’’ of
a transformer for scheduling its retirement, and also helps to
schedule the maintenance and replacement plan.

As two coupled parts for the oil-paper insulation system
of the oil-immersed transformers, the kraft paper usually
coordinates with mineral oil or nature ester to ensure the
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safe and stable operation of the transformer. The kraft paper,
formed with 90% cellulose, 6%-7% lignin, and pentosans,
can become very brittle once exposed to thermal, electrical
stresses, or both of themwithin a specified period [3]–[5]. For
cellulose, the depolymerization process can reduce its chain
length of polymer molecular during long-term service, thus
resulting in a decrease of the mechanical strength. Usually,
the loss in mechanical strength of the kraft paper can be
measured by the degree of polymerization (DP). For newly
manufactured paper, its DP typically varies from 1100 to
1600 [6], [7], which can be reduced alongwith its aging. Once
the value of DP decreases to 200, it is considered the kraft
paper almost reaches its end-of-life.

During aging, the insulating paper can generate some
feature byproducts like furaldehyde and furans compounds
as a single or synthetic effect of pyrolysis, hydrolysis, and
oxidation [8]–[10]. Most of such hydrocarbon byproducts
will be absorbed in Kraft paper only with a small portion
dissolved in oil, which has been utilized as one of the reli-
able and effective indicators for aging assessment of the
insulating paper [4], [11]. Once incipient faults (both the
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electrical and the thermal) like arcing, corona, discharges,
sparking, and overheating occurred, the mineral oil would
be decomposed, and combustible gases, carboxy compound
might be released consequently. The main components of
these gases are hydrogen (H2), methane (CH4), acetylene
(C2H2), ethylene (C2H4), ethane (C2H6), carbon monoxide
(CO), and carbon dioxide (CO2) [12]–[14]. By utilizing such
byproducts obtained from oil tests and routine inspection,
it is feasible to conduct a comprehensive health condition
assessment of the oil/paper insulation system or even an entire
transformer.

Although studies prove that the gas ratio of CO2 and CO is
useful for a rough estimation of the service life for insulating
paper [15], [16], it is still hard to determine the service life
of a transformer based on such ratio since this value can
vary greatly for different units. Approaches like the IEEE/IEC
method, the kinetic model, and some statistical techniques are
mainly focused on the thermal effect on the insulation of the
transformer [17]–[19], so a complete load and temperature
profile are thus needed. Such information, however, is always
incomplete. Sometimes the estimated life of a transformer
through these approaches can be very old and even reaching
the end-of-life, but they are still functioning well, while a
particular transformer with an estimated younger life may
have kinds of defects or even retired before that time.

For power utilities, themanagersmay paymore attention to
the health condition of a transformer group, or namely, their
focus is on which unit exhibits the most miserable state in
the fleet. Face with this, the health index is thus regarded
as an effective tool for achieving such a goal [20]–[32].
By combining condition monitoring data obtained from types
of measurements, routine tests, maintenance records, failure
statistics, and also the experience summarized from human
experts, it is feasible to implement a comprehensive health
assessment of power transformer. From the health index
result of all transformers, it is possible to rank a single unit
among the fleet. Furthermore, one can also judge whether
the condition of a single unit is beyond or below the average
health level of the population through regression of the health
index results. This will give a more intuitive reflection of a
single unit’s health condition, and thus provides a reference
to maintainers pay more attention to those below the average.

Based on the health index mentioned above, a new
approach for estimating the ‘‘apparent age’’ of power trans-
former using the results of a probabilistic health index given
in [33] is proposed in this paper. The apparent age can
be useful for making a judgment of a single transformer
fleet, and also makes it easy to select the poorest condition
unit from a transformer group. Therefore, it is helpful for
ranking transformers among a fleet and useful for guiding
maintenance, replacement, and investment strategy. There
are essential differences between the proposed apparent age
and the traditional service life or transformer age since the
former can be taken as a metric for assessing the overall
health condition of a single transformer among a large group.
It is different from traditional methods for transformer life

FIGURE 1. Schematic for transformer health index based on
weighted-score sum approaches.

calculation since condition data from different sources are
taken into consideration, which covers most of the stresses
that can result in the aging of a power transformer.

The rest of the paper is organized as follows: Section II
presents the realization of a probabilistic health index based
on Bayesian information fusion followed by a brief review of
transformer health index, Section III details the estimation of
transformer apparent age from health index results calculated
in Section II. Case studies and discussions are carried out in
Section IV. Finally, conclusions are drawn in Section V.

II. REALIZATION OF PROBABILISTIC HEALTH INDEX
This section will briefly introduce how a probabilistic health
index is created based on the Bayesian information fusion
theory. A brief review of general approaches to calculating the
health index is firstly given in Section A. By summarizing the
shortcomings of general health indices, a probabilistic health
index is then proposed in Section B.

A. BRIEF REVIEW OF TRANSFORMER HEALTH INDEX
The transformer health index is a comprehensive index that
integrates a variety of condition monitoring data to indicate
the overall health condition of a transformer. Since various
new techniques and advanced measures have been applied
for transformer condition monitoring, the health index thus
becomes more and more reliable.

So far, different types of health indices have been devel-
oped. Among all, the weighted-score-sum based health
index has been widely accepted and put into service by
power utilities [20]–[24], while the artificial intelligence
(AI) algorithms-based health index is more popular in
academia [25]–[32]. The realization of the two different cat-
egories of health index is summarized below.

1) WEIGHTED-SCORE-SUM BASED HEALTH INDEX
The weighted-score-sum based transformer health index can
be realized as a summation of weighted-score for different
types of condition monitoring data, e.g., in [20], seven gases
(H2, CH4, C2H2, C2H4, C2H6, CO, and CO2), six oil test
parameters (including dielectric strength, IFT, acid number,
water content, color, dissipation factor), furan compound,
dissolved gas analysis (DGA) of on-load tap changer (OLTC),
loading profiles, and maintenance records are taken into con-
sideration to calculated the transformer health index. As illus-
trated in Figure 1, such health index is easy to be realized
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FIGURE 2. Artificial intelligence (AI) algorithms based transformer health
index.

using the following equation.

HI =
n∑
i=1

ki × HIi,HIi =
m∑
j=1

Sjwj/
m∑
j=1

wj (1)

where HIi is the local health index of the transformer, i.e.
health index for oil or tap changer, ki is the corresponding
weight of HIi with

∑
wi = 1, Sj is the score of a specific

condition monitoring data and wj is the identical weight
factor, n is the number of condition monitoring data.

The condition score Sj is generally determined according to
assessment functions (or score rules) that have been defined
in published papers or relevant guidelines/standards or sub-
jectively assigned by human experts, or even a synergy of
them. In Figure 1, the condition data can be either digital
or textual (e.g., the water content in the oil is digital, but
maintenance records of a bushing are in text).

For the weighted-score-sum based health index, the local
or partial health index HIi can refer to different items, it can
either represent a sub-index of a number of condition moni-
toring data with similar attributes or stand for the local health
condition of a certain part/component of a transformer. For
example, the HIi mentioned in [22] indicated the overall
condition of different gases dissolved in transformer oil.
However, in [23], it was used as a local index to represent
the condition of the transformer winding.

2) ARTIFICIAL INTELLIGENCE ALGORITHMS-BASED
HEALTH INDEX
Except for the abovementioned weighted-score-sum based
approaches, some AI algorithms that applied for fault clas-
sification, regression or prediction, fuzzy synthesis, and
probability inference, etc., also show their applicability in
transformer health index calculation. For these approaches,
the AI algorithms usually act as an inference engine, while
kinds of transformer condition monitoring data and the health
index are taken as their input and the output, respectively. This
kind of health indices are shown in Figure 2 and can also be
realized through the following formula (2).

HI = f (v1, v2, · · · , vi, · · · , vn) (2)

where vi is the i-th type of conditionmonitoring data collected
from the power transformer, while f is a nonlinear mapping
relationship between the input (condition monitoring data) vi
and the output (health index HI).
Among the AI algorithms, the neural network and its modi-

fied methods [25], [26], as well as the support vector machine
(SVM) [27] are usually taken as classifiers or regressors in the

case of a certain number of labeled condition monitoring data
(with known health index) are available. Such labels (health
index), generally, are firstly determined by the weighted-
score-sum based health index through formula (1). Similar
to ANN or SVM, such labeled data are also essential to
the regression-based health index [28], [29]. The goal of
this type of health index is to find the optimal curve that
can fit the relationship between the condition data and the
health index to the greatest extent. Either the ANN/SVM
method or the regression-based method health index relies
less on expert experience. In contrast, the fuzzy-logic-based
health index mainly depends on the knowledge of human
experts [30], [31]. To realize this type of health index, a mem-
bership function needs to be assigned to each of the condition
data according to relevant standards or regulations firstly,
after then the knowledge of human experts is transformed to
a number of fuzzy-logic rules, which can be used for fuzzy
synthesis and the final health indices are thus derived.

In order to get a reliable transformer health index, either
using those weighted-score-sum based approaches or AI
algorithms, the experience of human experts cannot be
ignored, i.e. the determination of the weights in weighted-
score-sum based health index relies on the expertise of human
experts, although kinds of feature selection methods are
applied to reduce the subjectivity. Additionally, label identi-
fication (a specific health index) of the transformer condition
data also depends on experts’ judgment. Therefore, the results
of such health indices are subjective in nature as human
experience varies from person to person, which significantly
affects the calculated health index as a consequence.

Confront with such an issue, a probabilistic health index
based on Bayesian information fusion is proposed in [33],
where a probabilistic graphical model is constructed and
applied to infer the relationship between the condition data
and the health index of a transformer. This probabilistic health
index is more objective since it emphasizes on the use of
a variety of different types of transformer condition data,
including the online monitored, the offline measured, as well
as the failure statistics. A brief review of this health index will
be given below.

B. REALIZATION OF PROBABILISTIC
TRANSFORMER HEALTH INDEX
In the field of data fusion, the graph-based method for infer-
encing cause-effect relationships like the Bayesian belief net-
work (BBN) is widely used [34]. Its probabilistic structure,
in combination with the fault tree of power transformer [35],
can fit the calculation of health index very well. The fault tree
given in [35] defines the cause-effect relationship between
the condition monitoring data and the health status of a
transformer’s component is thus referenced for establishing
a four-layer BBN shown in Figure 3.

Once a BBN is established and its structure parameters are
fixed, the transformer health index can then be calculable if
a new set of condition monitoring data is available. The main
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FIGURE 3. BBN implemented for probabilistic health index calculation as
a result of dynamic information fusion.

procedures for realizing such a probabilistic health index are
as follows.

1) CONSTRUCTION OF THE BBN FOR
PROBABILISTIC INFERENCE
For the constructed four-layer BBN, various condition moni-
toring data of power transformer like online monitored DGA,
offline routine tests, maintenance records, as well as failure
statistics can be utilized for determine its structure parame-
ters, i.e., the prior probability of father nodes (the nodes that
arrows start from) and the conditional probability table (CPT)
for child nodes (the nodes that arrows pointed) in Figure 3.

In this four-layer BBN, each node in the data layer stands
for one kind of condition data, the condition of a node in the
factor layer is usually decided by several nodes in the data
layer. Similarly, the state of an individual component can be
determined by several nodes in the factor layer. The health
index of a transformer is a combined result of all components’
condition. In the BBN, six components are considered, i.e.
transformer winding, core, oil, bushing, tap changer, and the
combination of tank and auxiliaries. Note that in data layer,
the node ‘‘Dissolved gases’’ represents seven types of gases
dissolved in oil (H2, CH4, C2H2, C2H4, C2H6, CO, and CO2),
while the node ‘‘Oil characteristics’’ includes four types of
test data, i.e. dielectric strength, acid number, moisture in
oil and dissipation factor. Similarly, the node ‘‘Bushing dis-
solved gases’’ indicates four dissolved gases (CH4, C2H2,
C2H4, and C2H6).

2) DETERMINATION OF THE PRIOR PROBABILITY
For each node in the data layer of the BBN in Fig.3, its
condition state is categorized into four levels, i.e., Good, Fair,
Poor, and Faulty. The prior probabilities of these state levels
of each node are determined according to relevant standards
and the experience of human experts. Details can refer to [33].

TABLE 1. Determination of condition state levels – An example.

TABLE 2. Prior probability from data statistics – An example.

Hence, the final form of the heath index from the BBN
represented as the probability of an individual state, which
is unique from the conventional health index formatted as a
score.

To illustrate how the condition state level is determined,
an example is given in Table 1. In the Table, the condition
state levels of Data A and Data B are divided into different
intervals, where ‘‘a1’’, ‘‘b1’’, ‘‘c1’’, ‘‘a2’’, ‘‘b2’’ and ‘‘c2’’
represents limits defined in relevant standards. For example,
Data A usually represents the indices, which are the smaller
the better. Namely, when the data value bellows ‘‘a1’’, then it
can be categorized as ‘‘Good,’’ while the data locates between
‘‘a1’’ and ‘‘b1’’, it is then classified as ‘‘Fair’’, etc. In contrast,
Data B stands for the indices of the bigger, the better. For
illustration, the condition data of H2 and DP are given here.
Once the condition state level is determined, the statistics

of available data can then be used for determining the prior
probability, as illustrated in Table 2.

After the condition state levels defined in Table 1, the con-
dition data can be classified into different groups concerning
each condition state level. For Data A in Table 2, the sum
of the prior probability belongs to each state is 1, namely,
A%+B%+C%+D%=1. For example, the prior probability
of H2 that will be used for the case study in Section IV-B,
is determined according to the collected data of onsite trans-
formers, which is 88.6% for ‘‘Good’’, 9.8% for ‘‘Fair’’, 1.0%
for ‘‘Poor’’ and 0.6% for ‘‘Faulty’’.

3) DETERMINATION OF CONDITIONAL PROBABILITY TABLE
Here, a serial relationship between two elements in factor
layer (the DGA factor and oil quality factor) and a component
in component layer (Oil) in Fig.3 is taken as an example to
illustrate the determination of a CPT. In Fig.3, the condition
of ‘‘Oil’’ is decided by ‘‘DGA factor (DGAF)’’ and ‘‘Oil
quality factor (OQF)’’, while the importance of each of them
to the oil condition is assigned as 40% and 60%, respectively.
Such an ‘‘importance degree’’, however, is decided by human
experts. Thus, a condition score table is derived in Table 3 to
show the transform from condition score to probability.
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TABLE 3. Condition score and corresponding probability of ‘‘Oil’’.

FIGURE 4. Calculation of the transformer apparent age. (a) Overall
condition of a transformer fleet as a function of age, (b) Apparent age
from health condition.

In Table 3, when the condition of DGAF is ‘‘Good’’, given
‘‘Poor’’ to the state of OQF, the calculated condition score is
2.4 with a weighted-score sum given in [33]. According to
Fig.4, the corresponding probability is [0, 0.655, 0.345, 0].
Namely, the likelihood of Oil in a ‘‘Fair’’ state is 0.655, in a
‘‘Poor’’ state is 0.345, and 0 for both ‘‘Good’’ and ‘‘Faulty’’
state.

In Table 3, when the condition of DGAF is ‘‘Good’’,
given ‘‘Poor’’ to the state of OQF,. it can be calculated that
the condition score is 2.4 with a weighted-score sum given
in [33]. According to Fig.4, the corresponding probability
is [0, 0.655, 0.345, 0]. Namely, the likelihood of Oil in a
‘‘Fair’’ state is 0.655, in a ‘‘Poor’’ state is 0.345, and 0 for
both ‘‘Good’’ and ‘‘Faulty’’ state.

4) CALCULATION THE JPD AND DATA FUSION USING BBN
With the CPT of each child node determined, the JPD can
be readily calculated through (3). Once new condition data

becomes available, its health index can be calculated through
the above constructed BBN.

Apparently, by applying the BBN, various kinds of data
can be integrated by multi-source information fusion. This
means the BBN acts a functionF and has the ability to process
the transformer data set xi through information fusion within
it [36]:

F(xi) = F(e) =

∑
U\{Xi}P(U , e)
P(e)

(3)

whereF(xi) is the fusion result based on the evidence e. In this
paper, e refers to different types of measurement or condition
monitoring data of a transformer.

The output2 is the posterior probability of hypotheses that
need to be inferred. In this paper, it is the final health index,
which can be expressed as:

2 = P(Xi|e) (4)

Obviously, for traditional approaches, the importance of a
single condition monitoring data to the overall condition of
a transformer is represented by the ‘‘weight’’ assigned by
human experts. While for the BBN, this is delivered by the
CPTs defined from layer to layer, which aremainly developed
from the statistics of condition monitoring data, test results,
but only partially relies on the experience of human experts.
It means human experts cannot be ignored in the development
of CPT for BBN, but their subjectivity can be greatly reduced
since the proposed BBN introduces the CPT.

III. TRANSFORMER APPARENT AGE
The transformer apparent age is a combination of a trans-
former’s service age and its health condition, which first
originated from the need for asset overhaul, retirement,
replacement, and investment decision [37]. The apparent age
is an adjusted value given the condition of all transformers
among a fleet is known, the process of estimating the trans-
former apparent age from the results of health condition is
illustrated in Figure 4.

As an example, the transformer’s health condition
of 180 units is calculated and drawn in Figure 4a (the blue
dot). Note that the health condition of the transformer is
defined in percentage, e.g., 100% means a transformer in
an excellent condition while 0% stands for a transformer
in bad condition. In order to find a formula to describe the
correlation between the actual age of transformer and its cor-
responding health condition, linear regression was adopted
and the result can be seen in Figure 4a. The red regression
line indicating the condition of the entire transformer. Thus,
the blue dots below the line means the state of the correspond-
ing transformer is worse than average, and vice versa.

With such regression curves available, the transformer
apparent age can be readily determined as shown in Figure 4b.
The actual age of either transformer T1 or T2 is all 33 years,
but the health condition of T1 is worse than T2 as it is located
under the red line in Figure 4b. The arrow line originated from
either T1 or T2 has a point of intersection with the regression
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TABLE 4. Basic information for transformers used for case study.

line, the corresponding value in abscissa is 50 and 21, which
means the apparent ages for T1 and T2 are 50 years and 21
years, respectively.

Sometimes, the estimated apparent age may have extreme
abnormal values like the difference of apparent age and actual
age is too large, two measures are suggested to avoid that:
1) disregarding the outliers stand for extreme values in regres-
sion, and 2) applying the limit values proposed in [37] to
adjust the final apparent age. Such measures can be sum-
marized in one, namely, the maximum difference between
the apparent age and the actual age should be smaller than
15 years.

IV. CASE STUDY AND DISCUSSION
To illustrate the proposed transformer apparent age, case
studies with both data collected from publications and real
transformer condition monitoring data are presented in this
section, respectively. Comparison between the apparent age
estimated from the BBN based probabilistic health index
and other types of conventional health indices are provided,
as well as that between different transformer groups is also
provided in this section.

A. CASE STUDY WITH LITERATURE PUBLISHED DATA
Condition monitoring data of seven transformers [23] are
adopted to implement the proposed transformer apparent age,
including contents of dissolved gases, oil test results, textual
maintenance records, service age, oil temperature profiles,
and records of transformer external stresses are provided.
Essential information like voltage and power of seven trans-
formers are given in Table 4.

Considering some of the condition data like moisture in
oil, DP, bushing power factor, bushing maintenance records
of the bushing, OLTC, tank, and auxiliaries are unavailable,
a rough estimate of DP is obtained through (5) with trans-
former winding temperature profiles provided in [38]. The
content of moisture-in-paper (MIP) is transformed from the
moisture equilibrium curves given in [39]. In addition to DP
and MIP, other missing information that cannot be ignored
is replaced with statistical results from condition monitor-
ing data of a large number of power transformer. The data
of 192 transformers in China is adopted for such purpose. For
the calculation of DP, this paper uses:

1
DP0

(
DP0
DPt
− 1

)
= A× e

−EA
RT × T (5)

where A is a constant relating to the chemical environment
(2×108), R is the molar gas constant, T is the absolute
temperature in Kelvin, EA the activation energy (111KJ/mol),

FIGURE 5. Linear regression for health index results. (a) Results of HI
score from [23], (b) Results of probabilistic HI of seven transformers,
(c) Results of probabilistic HI of transformers (exclude the one with the
inferior condition).

DP0 and DPt are the initial and the current DP value,
respectively.

To estimate the proposed apparent age, the probabilistic
health indices of seven transformers were firstly calculated
through GeNIe [40], the apparent age was then obtained
follow the procedures mentioned in Section 3. Details for the
realization of the probability health index can refer to [33].

For comparative study, the transformer apparent ages were
also calculated using a weighted-score-sum based health
index proposed in [23]. Calculated results of health index
and estimated apparent age were summarized in Table 5 and
shown in Figure 5. The probabilistic health indices with pro-
posed BBN (Figure 5b, the probability of HI= ‘‘Good’’) have
a good agreement with that derived from the weighted-score-
sum based health index (Figure 5a). When a linear regression
was performed for the calculated health index for all trans-
formers (defined as original, Table 5), the regression equation
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TABLE 5. Probabilistic health indices and apparent ages of seven transformers.

in Figure 5a (above the red line) indicates the initial state of
this fleet has an excellent condition, owning a health score
up to 93.026. The health condition of this fleet deteriorates
with a rate of 0.6008/year, along with the service time (actual
age). In contrast, the regression result in Figure 5b (under the
black dash line) shows this fleet initially has a probability
of 0.6698 in a ‘‘Good’’ condition, which decreases with a
likelihood of 0.0072/year against the service time. Besides,
the probability health index also shows this fleet initially has
a probability of 0.3158 and 0.0146 in a ‘‘Fair’’ and ‘‘Poor’’
condition, and the situationworsenswith a rate of 0.0046/year
and 0.0026/year, respectively.

Considering the health condition of transformer T5 is the
worst among all, a new regression (exclude T5 as an outlier)
is then conducted. The result is shown in Figure 5a (equation
under the red dot line) and Figure 5c. Corresponding apparent
ages are also calculated in Table 5. Table 5 shows that,
after adjustment, the sequence for the apparent age of above
seven transformers estimated from the weighted-score-sum
based health index is {T6> T5> T4> T7> T3> T2> T1}.
In contrast, that sequence for the proposed method is
{T5> T6> T7> T4> T3> T2> T1}.
Obviously, from the perspective of asset prioritization for

overhaul and replacement purposes, the apparent age is more
persuasive since the transformer T5 already exhibited with
the most unsatisfactory condition. Its apparent age ought
to be the oldest among all. For transformer T6, based on
the result of conventional weighted-score-sum based health
index or that from the probabilistic health index, its status is
believed better than transformer T5 since its apparent age is
58.6 years as estimated. This can be largely attributed to the
probabilistic health index used for apparent age estimation
integrates different sources of condition monitoring data of
the transformer.

B. CASE STUDY WITH FIELD COLLECTED DATA
To further verify the effectiveness of the proposed appar-
ent age, condition monitoring data collected from a group
of 192 transformers in China are utilized for the case study.
The data include dissolved gases, oil characteristic tests, age,
and failure statistics. The transformer group has 116 trans-
formers rated at 220kV (with actual age varies from 0 to 35)
and 76 transformers rated at 330kV (with actual age ranges
from 0 to 65). The calculation result is given in Figure 6.

In Figure 6a, the calculated probabilistic health indices of
all transformers are presented. Considering the probability
of condition, ‘‘Faulty’’ of almost all transformers is below
0.001 (except eight transformers with known faults), which
was disregarded in the figure. For the purpose of prioritizing
transformers with the highest apparent age to the lowest
and comparing the overall health condition of two fleets,
the apparent ages of these transformers against actual age are
presented in Figure 6b. In Figure 6b, the linear regression
results (solid line) of the relationship between the apparent
age and actual age are above the dash-dot line y = x repre-
senting the apparent age is equal to the actual age.

From Figure 6b, it is evident that the average apparent
age of this transformer fleet is older than the actual age,
which means these transformers are aged with an accelerated
speed. The apparent ages of most transformers are below
42 years. Whereas some of them even exceed 120 years as the
actual age of the oldest transformer is only 65 years, which
indicates that most transformers are working satisfactorily.
However, some of them should be paid close attention and
even overhaul or replaced.

Once separates these transformers by the voltage ratings,
the relationship between the apparent age and the actual age
of the 220/330kV fleets are much different from each other,
as summarized in (6).{

Lapparent = 0.9504Lactual + 5.0044 (220kV)
Lapparent = 1.4122Lactual − 14 (330kV)

(6)

with Lapparent, Lactual represents the apparent age and actual
age of the transformer, respectively.

Since the faulty transformers can enlarge the apparent age
of the transformers, three 220kV transformer and five 330kV
transformers in a faulty condition are screened out, and the
final fitted relationships are redrawn in Figure 6d as the
equations are given below.{

Lapparent = 1.0496Lactual + 3.8727 (220kV)
Lapparent = 1.1469Lactual − 8.3816 (330kV)

(7)

It indicates that the transformers of the 220kV fleet are more
prone to retirement than that of the 330kV fleet, which can
mainly attribute to the 220kV fleet contains more new trans-
formers than the 330kV fleet. This can be validated by the
transformer statistics provided in Figure 7.
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FIGURE 6. Apparent age calculated from the probabilistic HI-age.
(a) Probabilistic HI of all 192 transformers, (b) Apparent age against
actual age of 192 transformers, (c) Apparent age against actual age
of 220kV (116 units) and 330kV transformers (76 units), (d) Apparent age
against actual age of 220kV (113 units, excludes 3 units with known
faults) and 330kV transformers (71 units, excludes 5 units with known
defects).

According to the well-known bath curve, both inadequate
and faulty specimens fail can result in a high infant mortality
rate when the new equipment was put into service. When the
equipment approaches the end of their lifespan or steps into

FIGURE 7. Quantity of transformers in two fleets. (a) the fleet of 220kV
transformers, (b) the fleet of 330kV transformers.

its twilight years, it can also have an inferior condition due
to wear out. As shown in Fig.7, the 220kV fleet has 52 units
below ten years (red in Fig.7a), while the 330kV fleet only
has 16 units below ten years and ten units above 50 years
(red in Fig.7b). Such results are thus convincible as it is in
line with the bath curve.

From the case studies with either literature published data
or field-collected data, it proves that the proposed transformer
apparent age estimation approach is effective and useful for
prioritizing units among a transformer fleet. The probabilistic
health index based apparent age is not only a reflection of the
real condition but also helpful for utility retirement, replace-
ment schedule.

V. CONCLUSION
The applicability of the proposed apparent age estimation
method for transformers based on the probabilistic health
index was implemented in this paper. Different from the
conventional transformer age or remaining life calculation
approaches, the apparent age estimation method proposed in
this paper used the results of the probabilistic health index as
its basis through regression. The probabilistic health index
was realized as a multi-source information fusion results
within the BBN, with integrated kinds of condition monitor-
ing data of the power transformer. The apparent age, there-
fore, can be taken as an indication of the ‘‘real service age’’ of
a power transformer. For utility asset managers, the proposed
apparent age can provide a reference for decision making of
an overhaul, replacement or retirement for power transform-
ers to a certain extent.
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