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ABSTRACT High complexity, meaning a model in which components interact in multiple ways and follow
certain local rules, is a huge challenge for brain research. This paper presents a semantic vector-driven
closed-loop model, namely THINKING-LOOP, for brain computing to improve the understanding and
development of complex cognition. The proposed model is a three-layer fusion of data, information and
knowledge with human intelligence, which exploits ontological knowledge modeling, rule-based reasoning
and a human-computer interaction mechanism. The interaction and collaboration within the model depend
on a pair of complementary schemes in a loop: the top-down scheme from the knowledge layer to the data
layer that is used to search for stable cognitive patterns; and the bottom-up scheme from the data layer
to the knowledge layer that is used to deeply analyze cognitive functions. As a key factor, human beings
participate in the whole learning process of the model, which in turn assists human beings to make decisions.
To verify the applicability of the present model in cognitive research, a series of fMRI experiments and
analytic methods (e.g. statistical tests and network topology analysis) were conducted. The results show that
the proposed model is able to take into account the characteristics of different types of brain patterns and
cognitive functions, thereby achieving reasonable decision-making level.

INDEX TERMS Expert systems, human computer interaction, brain informatics, fMRI, data mining.

I. INTRODUCTION
Cognition is the most basic but complex process of human
beings, which is an important topic of academic study in
fields including psychology, neuroscience and artificial intel-
ligence. In understanding cognitive aspects, we usually focus
on their definitions and purposes from the perspective of theo-
ries and concepts, as well as their information processing and
transformationmechanisms from the perspective of informat-
ics. Obviously, this is one of the greatest research challenges
today, and the challenge mainly comes from two aspects.
From the perspective of brain informatics, the information
processing and change mechanisms of human cognition are
extremely complicated. For example, human cognitive activi-
ties are accompanied by complex physiological and chemical
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changes, which implies many unique informatics paradigms
and functional mechanisms. From the perspective of social
psychology, the complex environment may cause a great
disruption for the study of cognitive mechanisms induced
by a single factor. For example, in the process of interac-
tion between individuals and environments, they are often
affected by multiple factors in the environment, thereby can
be induced to a variety of cognitive processes. At present, the
understanding and development of cognition are still in its
infancy. But even facing such a big challenge, the pace of
scientists and researchers in different fields to explore brain
cognition has not been stopped.

Many technologies and methodologies have been used to
study human cognition from behavioral experiments, brain
imaging, computational modeling, and their combination,
etc. [1] In particular, with the development of magnetic res-
onance imaging (MRI) technology, neuroimaging research
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has received widespread attention. For example, the Human
Connectome Project [2] has recently completed imaging of
over 1000 young adults and the OpenfMRI database [3] also
contains large-scale images from over 3000 subjects across
all datasets. As time goes by, the category and scale of neu-
roimaging data will only increase and not decrease. Mean-
while, a large number of electronic literature resources related
to neuroimaging techniques and methods are also increasing.
Obviously, neuroimaging research has entered the era of big
data [4]. Especially in the field of cognitive neuroimaging,
specificity and complexity are its prominent features. On
the one hand, traditional cognitive experiments require lim-
iting the number of stimulus conditions and tasks, whose
purpose is to reduce interference between multiple cognitive
processes. This design approach is suitable for studying a
single cognitive process. However, it is a big challenge for us
to combine these datasets to realize the comparative analysis
of multiple cognitive processes. Therefore, how to organize
the diversity of data with different cognitive specificity based
on contextual information and knowledge for further analysis
from the perspective of big data will be an important research
tendency. On the other hand, the complexity are reflected in
the indicator calculation and pattern analysis methods. Up
to now, a variety of computational analysis methods have
been proposed to gain insight into the information-processing
patterns and mechanisms of cognitive processes. However,
their effectiveness still needs to be verified. Therefore, how
to mine the stable indicators and analysis methods is another
important direction.

Starting from the above consideration, this paper presents
a semantic vector driven closed-loop model, namely
THINKING-LOOP, for brain computing to systematically
analyze the brain patterns and its cognitive characteristics by
combining ontological modeling, statistical tests, rule-based
inference, and a human-computer interaction mechanism. In
particular, an ontology in the knowledge layer with different
conceptual entities and entity hierarchical relations is used to
uniquely describe the context, which gives a common seman-
tic understanding for different brain data. The information
layer, as a bridge between knowledge and data, provides
a priori conditions for human-computer interaction. The
statistical principles of the data are explored in the data layer
for verifying and mining new information and knowledge.
The complementary closed-loop scheme with the three-layer
fusion of data, information and knowledge is described to
understand the THINKING-LOOP, as shown in Figure 1.

To explain information processing in the
THINKING-LOOP, two types of learning and inference
schemes are distinguished: top-down (K 7→ I 7→ D) and
bottom-up (D 7→ I 7→ K ) processing. In the top-down
procedure, high-level semantic knowledge or contextual
information guide information processing. The bottom-up
process, in contrast, is carried out in the opposite direc-
tion; from the stimulus to high-level conceptual understand-
ing, with each successive stage performing an ever more
complex analysis of the input. In the current scenario, the

FIGURE 1. Closed-loop learning and thinking in the THINKING-LOOP with
the top-down and bottom-up schemes.

top-down scheme is designed to select significant brain
patterns and explore effective computational methods. And
the bottom-up scheme is designed to understand cognitive
characteristics and its information-processing mechanisms.
In this closed-loop model, human as a key factor participate
in the process of human-computer interaction (HCI) and
contribute to their wisdom [5]. Conversely, the output of the
model provides valuable decision-making support for people.
In conclusion, this paper considers the systematic integration
and analysis problems of the multiple source components in
brain informatics [6]. The main contributions of this work
may be summarized as below.

• It proposes a novel closed-loop model, namely
THINKING-LOOP, which is capable of personally min-
ing the prior knowledge and incorporating the mined
knowledge to interact with data and/or information
for systematic analysis more deeply. A complementary
dual scheme (the top-down and bottom-up processing)
is designed for a learning algorithm that embeds the
THINKING-LOOP in an iterative way, to continuously
improve the learning and inference results.

• It proposes a semantic vector to improve the expressive-
ness and quantification of complex brain functions using
a simple representation. And that may make it easier for
computers to integrate and process the three-layer fusion
of data, information and knowledge using a systematic
methodology.

• It performs an empirical evaluation of the presented
model on real functional MRI (fMRI) data for emotion
perception, human reasoning, and problem-solving pro-
cesses. The structural and functional characteristics of
complex brain cognition are explored and re-recognized
from the network topology perspective.

The remainder of this paper is organized as follows.
Section II reviews previous work related to the use of
computational and analytical methods on cognitive assess-
ment concerning fMRI scans and human-in-the-loop HCI
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methodologies. Section III describes the theoretical frame-
work and computational mechanism of the proposed
THINKING-LOOP. Section IV sets out the experimentation
with the results. Before concluding in Section VI, Section V
discusses the current experimental results and presents some
other application scenarios of the THINKING-LOOP.

II. RELATED WORK
The past decade has seen an explosion of research papers and
newspaper articles involving the technique of functional neu-
roimaging, most notably fMRI. This technique can provide
the measure of activity at/between different locations within
the human brain while people are performing various cog-
nitive tasks. Here, we briefly discuss existing computational
and analytical methods in fMRI studies and review relevant
research pertaining to the THINKING-LOOP.

The earliest methods compared the measurements at each
location (volumetric pixels or ‘‘voxels’’) [7] statistically
using correlation coefficients and t-tests, etc. The first step
in fMRI statistics is almost to construct a ‘‘map’’ of such
statistics, and then estimate the change in each voxel’s activity
in response to the experimental manipulation, showing the
distribution of activity over the brain [8]. Moreover, some
methods for looking further into particular regions (Regions
of interest, ROIs) [9] have been proposed, such as voxel-wise
analysis [10]. This, in a manner, makes up for the disadvan-
tages of voxel-level analysis, such as to control for Type I
error, explore one’s data simply, select functional areas and
so on. Early work focused on examining individual voxels
and regions from a univariate analysis perspective.

As opposed to univariatemethods, themultivariate analysis
considers the synergistic effect of two or more independent
variables, such as multivoxel pattern analysis (MVPA) in
the field of fMRI. The MVPA, which can proceed along
two main branches of analysis, considers spatial patterns of
activity over ensembles of voxels to recover what informa-
tion they represent collectively: classifier-based MVPA and
pattern-similarity MVPA [11]. The former uses classifiers
from machine learning to learn a weight for each voxel,
and these weights together determine the decision boundary
between experimental conditions [12]. The latter, comput-
ing the matrix of pairwise distances between fMRI patterns
and (optionally) comparing this matrix to other similar matri-
ces, focuses on the similarity of voxel patterns [13]. Activity
patterns are viewed as points in a high-dimensional voxel
space, where the distance between points indicates their sim-
ilarity [14]. Many or most of the above methods assume that
cognitive functions are attributable to the isolated operations
of single brain areas, which do not consider the connection
characteristics between nodes or regions.

Our brain consists of spatially distributed, but function-
ally linked regions that continuously share information with
each other. Brain connectivity analysis is another type of
key technology and methodology to understand the neural
underpinnings of cognition by revealing how cognitive func-
tions arise from interactions within and between distributed

brain systems, such as static and dynamic connectivity anal-
ysis whether anatomical, functional, or effective. On the one
hand, the brain’s structural and functional systems have fea-
tures of complex networks (such as small-world topology,
highly connected hubs, and modularity) at the whole-brain
scale of human neuroimaging [15]. Details of some related
technologies have been explored, such as brain templates
and atlases [16], complex network construction [17] and
graph indicators calculation [18]. Moreover, the dynamic
aspect of brain connectivity also attracted a lot of attention
in the fMRI community [19]. The above methods mainly
focus on the indirect measurement of neural processes. On
the other hand, two key approaches (including Dynamic
Causal Modelling and Granger Causality Mapping) have
been proposed to explore directed influences between neu-
ronal populations (effective connectivity) in fMRI data [20].
Up until now, fMRI studies in functionally linked subnet-
works have reported fruitful results to inspire our practice and
re-cognition. There are two large opposing network systems
in the brain, one including the brain’s default mode net-
work [21] and the other composed of attentional or task-based
systems, such as somatosensory, visual, or attention net-
works [22], [23].

There is no doubt that the above computational analysis
methods have greatly promoted the development of cog-
nitive neuroscience. However, the innovation in computing
methods alone cannot meet the demand for neuroscience big
data, and a new computing framework is urgently needed.
The main reason is that the typical experimental paradigm
limits the diverse expression of cognitive functions, so that
most of the shared data can only be studied from a single
cognitive perspective. If we want to take advantage of the
comparative analysis by integrating multiple datasets and
methods, several challenges will be encountered, such as
the multi-centrality problem. The meta-analysis is an effec-
tive tool for multi-angle comparative research, and has been
widely applied. However, it mainly focuses on the compari-
son of results and ignores the synchronous participation and
integration of data, information and knowledge. In addition,
human beings as the most advanced agent should actively
participate in the interaction with the computational model.

Today, HCI methodologies have been widely applied to
many fields including mechanical engineering and automa-
tion, biological health monitoring, assisted driving, robotic
techniques, and so on. Working in this growing field requires
a synergetic combination of research on human intelligence
in cognitive space and machine intelligence in computational
space. On the one hand, machine intelligence techniques,
especially the automatic machine intelligence techniques
whose aim is to free human practitioners and researchers
from these menial tasks, is the fastest growing technical field
for health informatics [24]. However, brain informatics-based
big data is full of uncertainty and complexity, which
makes the application of fully automated approaches dif-
ficult or even impossible, or at least the quality of results
from automatic approaches might be questionable [25].

VOLUME 8, 2020 4275



H. Kuai et al.: THINKING-LOOP: Semantic Vector Driven Closed-Loop Model for Brain Computing

Moreover, the complexity of brain cognitive function has
detained non-experts from the application of such solu-
tions. Consequently, the integration of the knowledge from
a domain expert with the information and data can some-
times be indispensable, and will greatly enhance the knowl-
edge discovery process. Hence, interactive learning puts the
‘‘human-in-the-loop’’ to enable what neither a human nor a
computer could do on their own [26]. This idea is supported
by a synergistic combination of methodologies of two areas
that offer ideal conditions toward unraveling such problems:
HCI and knowledge discovery/data mining, with the goal of
supporting human intelligence with machine intelligence to
discover novel, previously unknown insights into data [27].

Inspired by these research achievements and their valu-
able results, this work proposes a semantic vector driven
closed-loop model exploiting a combination of ontological
knowledge representation, statistical tests, complex network
analysis and HCI methodologies to enable effective compu-
tation for the model with the provision of wisdom services. In
particular, the applications of the THINKING-LOOP model
in the fields of brain and cognitive sciences with the com-
putational theory are discussed in the paper. To understand
our proposal, a description of the THINKING-LOOP (in
Section III) and examples with the realistic experiments of
task-related fMRI data (in Section IV) is given.

III. THINKING-LOOP: CONCEPTUAL AND
COMPUTATIONAL FRAMEWORK
In this section, the proposal is described for the
THINKING-LOOP. Some principal components of the
closed-loop model include the human-machine interac-
tion and semantic vector combined with the rule-inference
mechanism. Here, all components will be individually
described in the Section III-B, after a introduction about
the architecture and information-processing pipeline of the
THINKING-LOOP in Section III-A.

A. ARCHITECTURE OF THE THINKING-LOOP
The key mechanism of the THINKING-LOOP is to inte-
grate the actions of human thinking and interaction into
the data mining and knowledge discovery process. Sup-
port for decision-making is realized by combining the
advantages of data- and knowledge-driven methods. Based
on the constraints and definitions, the comprehensive
information-processing architecture for the THINKING-
LOOP is shown in Figure 2.

The input of the THINKING-LOOP is multiple Thinking-
Entities (TEs > 3) composed of the three-layer fusion of for-
matted data, information and knowledge organized by ontol-
ogy technology. Semantic vectors (SVs) serve as an impor-
tant interface to connect computers and people to implement
human-computer interactive operations. The output of the
presented model is a list of the association pairs between con-
cepts in the knowledge layer and patterns/indicators defined
in the information layer whose feature properties are observed
in the data layer, after rule-based inference. In this model,

FIGURE 2. The architecture and information-processing pipeline of the
THINKING-LOOP. The dotted arrows indicate two schemes from top-down
and bottom-up perspectives respectively. The red arrows indicate
multiple human-computer interaction processes between human and the
model. The blue arrows indicate information flows that run within the
model. Details of various processes are described as follow:
1© Knowledge-driven process: In this process, the ability of participants is
continuously improved by learning the existing theory and knowledge.
2© Data-driven process: Participants obtain new information and
knowledge by observing, summarizing and analyzing phenomena at
different angles from data. 3© Practical process: In the course of the
practice, participants will get new observation data based on experience
and knowledge, which is a sub-process from 2©. 4© Data mapping
process: The knowledge representation of the data is implemented in this
process. 5© Heuristic learning process: The computer will generate
different symbols to control the initial conceptual weight
change (excitement, suppression or constant) in this human-computer
interaction process. 6© Active learning process: Participants can
selectively forget some of the weight activation symbols generated in the
previous step based on the contextual environment of Thinking-Entities.
The action symbols obtained by the 5© and 6© processes are synthesized
to control the next change in weight. Iterate between the processes 5©
and 6© until the condition of convergence is reached. 7©, 8© and 9© are the
processes of rule inference. Through the above learning and inference
processes within human-computer interaction, some explicit knowledge
will be discovered to be integrated into the factual knowledge base for
forming new knowledge and raising awareness. And some tacit
knowledge will also be discovered to be integrated into the extended
knowledge base for promoting and inspiring the participant’s rethinking,
re-practice, and re-recognition.

the hybrid data-driven and knowledge-driven strategies in
learning and inference stages are defined:

• The top-down scheme: In the learning stage, the SVs
are obtained from prior knowledge with the concep-
tual description of the Thinking-Entity, and the metric
and/or pattern characteristics of the data are measured
concurrently; in the inference stage, some information
is obtained from the knowledge layer to the data layer,
in the purpose of verifying indicators with stability and
measuring patterns with special significance.

• The bottom-up scheme: In the learning stage, the SVs
are obtained by an iterative human-computer interaction
process and the characteristics of original data are also
evaluated concurrently; in the inference stage, some
information is obtained from the data layer to the knowl-
edge layer, in the purpose of exploring more meaningful
semantic knowledge or contextual information related to
patterns and/or indicators.

This current closed-loop model is not only one that gen-
erates evidential information to complement and correct
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TABLE 1. List of essential symbols and abbreviations.

existing knowledge but also one that generates hypothetical
information to inspire us for carrying out the next phase
of experimental design and related work. Therefore, the
ability of participants is continuously improved during the
never-ending learning process of interacting synergistically
with the model. This section explains the connectionist archi-
tecture of each element in THINKING-LOOP, and then its
details are described as follows. For the convenience of read-
ers, a list of essential symbols and abbreviations are shown
in Table 1.

B. DETAILED DESIGN IN THE THINKING-LOOP
Figure 2 systematically describes the architecture of the
THINKING-LOOP and its input, output, and information
processing. Assuming those constraints, some important
issues need to be identified: (1) How to construct a seman-
tic vector with the integration and processing of multiple
resources (from the data layer, the information layer, and
the knowledge layer) for systematic brain research; (2) How
to implement semantic vector-driven interactive learning in
the current closed-loop model; and (3) How to make infer-
ence and judgment to generate new meaningful and valu-
able decision-making, and then guide further experiments for
obtaining more evidence in the new loop.

1) CONSTRUCTION OF THE SEMANTIC VECTOR
Figure 3 illustrates the overall information flow of construct-
ing semantic vectors, which considers the multi-dimensional
integration of resources from the data layer (DataL),
information layer (InfoL), and knowledge layer (KnowL),
simultaneously.

In particular, the formalization and characteristics of
semantic vectors are given below.
Definition 1. The semantic vector is the concept space

with weight coefficient using ontological modeling, and
these weights are obtained through the systematic analysis
within a human-computer interaction, which is given by

SV = {c1 : v1, c2 : v2, ..., cn1+n2 : vn1+n2} (1)

FIGURE 3. Construction of the semantic vector, in which n1 to n2 are
numbers of different dimensions of concepts and instances.

where ci refers to the ith concept in semantic vectors, vi
refers to the value of the weight coefficient corresponding
to the ith concept.
The multiple brain data with different contexts, that are

organized as different entities in the model, can be mapped
to the same semantic vector space for further study using
knowledge- and data-drivenmethods. Several important char-
acteristics are included in the semantic vector.

• Maneuverability. The maneuverability of semantic
vectors is reflected in the concept of expansion or reduc-
tion in the ontology of the KnowL and personalized
data mapping. For example, the concept in the ontology
can be adjusted by the expert during the analytical pro-
cess. The adjusted ontology will affect the distribution
of concepts in the semantic vector and may affect its
dimensions. In addition, the concepts defined in the
KnowL can be encoded as binary features (i.e., c1, ..., cn
in Equation 1) as follows: the concept was 1, if the
corresponding context and meaning is related to the
generation process of brain data; otherwise the concept
was 0. At this point, the brain data is mapped to a
semantic vector space with "0-1" properties, such as
DSV = {c1 : 0, c2 : 1, ..., cn : 0}.

• Computability. The computability of semantic vectors
means that the semantic distance between brain data
with different contexts can be measured based on the
respective semantic vectors. For example, the difference
between DSVs can be measured by the Hamming dis-
tance algorithm and used to determine the semantic simi-
larity between brain data. Furthermore, each concept can
also correspond to a weight from zero and one. Then we
can measure the contribution of the cognitive process
corresponding to the concept defined in semantic vec-
tors for different experimental tasks. The new semantic
vector, such as LSV = {c1 : 0.3, c2 : 0.24, ..., cn : 0.1}
whose weights are acquired through human-computer
interaction, is constructed.

• Comparability. The comparability of semantic vectors
means that the semantic similarity between multiple
pairs of data defined in the Thinking-Entity is com-
parable. Since multiple sets of data are mapped into
the same semantic space, this provides a prerequisite
for comparing multiple datasets at the same latitude.
Then, the semantic distance between different datasets
is measured by the above distance calculation method.
Finally, the relative approximation properties between
the datasets are obtained by comparison. For example,
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FIGURE 4. Example of Thinking-Entity in the THINKING-LOOP.

three sets of data are analyzed, representing Da, Db and
Dc, respectively. If Dist (Da,Db) > Dist (Da,Dc) is
obtained after the above semantic mapping and similar-
ity calculation procedure, it shows that there is a stronger
semantic approximation between Da and Dc compared
with Db.

Moreover, the Thinking-Entity, which is the basic
operating unit involved in the whole life cycle of the
THINKING-LOOP, is interpreted and defined for systemat-
ically constructing and computing semantic vectors. As an
example, Figure 4 shows the core elements in a Thinking-
Entity, which is organized by three-layer resources from the
DataL, InfoL, and KnowL.

Next, we introduce the definition of each layer in the
THINKING-LOOP.
Definition 2. The DataL is described as a four-ingredient
tuple, which includes the following four types of data in
the systematic analysis process:

DataL = (CD,OD,PD,RD) (2)

where original data, denoted by OD, is the original signal
obtained by sensors or devices. A contextual data (CD) is a
description of the circumstance for the OD. Especially, the
acquisition of original experimental data often corresponds
to a certain experimental purpose for the study of brain
cognition, that is, theOD has direct and indirect correlation
with one or more functional concepts in the KnowL. At
this time, the text description with the concept description
corresponding to the current experimental task is stored
in the CD, which becomes an important source and basis
for understanding the meaning of the original data and
clarifying the purpose of the experiment. Furthermore, it
is necessary to record and store some procedural or result
data for improving the efficiency of the model and realize
multi-aspect analysis quickly. The procedural data (PD)
can be intuitively understood as the data generated during
preprocessing and feature extraction. The result data (RD)
refers to a collection of features and/or indicators with
special meaning, which may be some cognitive biomarkers
for the brain research.

Definition 3. The InfoL is described as a three-ingredient
tuple, which includes the description and definition of a
piece of brain information:

InfoL = (PrI ,FrI ,ArI ) (3)

where the PrI (Pattern-related Information) is the
pre-defined patterns or information-processing mecha-
nisms in the brain, FrI (Function-related Information)
indicates that some specific cognitive functions correspond

to a certain pattern, and ArI (Analytical Information)
includes the mathematical models and qualitative methods
used in the pattern analysis. The information may come
from both current data analysis results and published
literature sources, which is amessage that contains relevant
meaning, implication, or input for decision and/or action.

Definition 4.TheKnowL is a hierarchical ontology organized
by multiple concepts, and it can be expressed as:

KnowL = (PC,DC) (4)

where primitive concepts (PC = {PC1, ...,PCn}) are
those that have only necessary conditions (in terms of
their properties) for membership of the class; defined con-
cepts (DC = {DC1, ...,DCm}) are those whose description
is both necessary and sufficient for a thing to be a member
of the class.
A formal knowledge representation will serve as a bench-

mark for individualized operations and learning, enabling the
integration and comparison of different Thinking-Entities. In
particular, the concept refers to the name of the basic unit
that can constitute an ontology-based empirical knowledge
representation to express a visible or invisible entity. It is
a high-value form of information that is ready to apply to
decisions, actions, and interactions with the person in variable
environments.

2) SEMANTIC VECTOR DRIVEN INTERACTIVE LEARNING
In the previous section, we mainly introduced the semantic
vector and its several important definitions. In this section, we
introduce the semantic vector-based learning and interaction
methods in the THINKING-LOOP.

a: Top-down Learning Method
As mentioned earlier, obtaining effective patterns and indica-
tor calculation methods in the study of cognitive and behav-
ioral characteristics is one of the most important directions in
the field of brain sciences. However, as we all know, there are
thousands of definitions and calculation methods for existing
patterns and indicators. How to choose quantitative indicators
and evaluation methods has become a huge challenge in the
process of cognitive research. The purpose of the top-down
learning method in the THINKING-LOOP is to compare the
effectiveness of different indicators and patterns by utilizing
prior knowledge in the KnowL, which is similar to the feature
or pattern selection process in machine learning.

In the top-down learning method, multiple datasets result-
ing from variable environments or experimental tasks are
regarded as entities of learning, and the main processes
include:

1) Based on the prior knowledge and information
defined in the THINKING-LOOP, the semantic dis-
tance (SemanDist) among different Thinking-Entities
is measured by the knowledge-driven method;

2) Data features within different indicators and patterns
are measured by the data-driven method, and their
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differences can be compared by statistical theory,
as shown in Algorithm 1.

Algorithm 1 Top-down learning scheme
Input:

N Thinking-Entities TEs with different DSVs, TEs =
{TE1, ...,TEi, ...,TEN |N > 2};

the indicators and/or analysis methods from InfoL,
PASet = {< PIk ,AIk > |1 < k < M}.
Initialize:

Sdif = zeros(1,A2N )
Ddif = zeros(M ,A2N )

Output:
Sdif and Ddif

1: PROCEDURE in KnowL & InfoL
2: Setting m = 1
3: for i=1, i<N, i++ do
4: for j=i+1, j<N+1, j++ do
5: Sdif [m] = SemanDist(DSVi, DSVj)
6: m++
7: end for
8: end for
9: PROCEDURE in DataL
10: for k=1, k<M+1, k++ do
11: for i=1, i<N+1, i++ do
12: Calculating data features of TEi (FTEi) based onPIk

and AIk
13: end for
14: Setting n = 1
15: for i=1, i<N, i++ do
16: for j=i+1, j<N+1, j++ do
17: Ddif [k, n] = Dist(FTEi, FTEj)
18: n++
19: end for
20: end for
21: end for

The results obtained through the top-down learningmethod
will be used as input to the rule engine, and then used to select
relatively effective patterns and feature extraction methods.

b: Bottom-up Learning Method
The main purpose of the bottom-up learning method is to
mine the different connotation-related concepts implied by
patterns or data features. In this procedure, comprehensive
learning in KnowL and InfoL is still an important part of
the entire knowledge discovery process. Its computational
procedure is described in Algorithm 2.

Obviously, the difference from the top-down learning
procedure is the acquisition and calculation of the weight
coefficient in the semantic vector. In the top-down learning
procedure, the weights (only 0 or 1) in the semantic vector
are set by experts or users. In the bottom-up learning method,
however, the weights (from 0 to 1) are obtained through
human-computer

Algorithm 2 Bottom-up learning scheme
Input:

N Thinking-Entities TEs with different DataL.CD,
TEs = {TE1, ...,TEi, ...,TEN |N > 2};

the metrics and analysis methods in InfoL, PASet = {<
PIk ,AIk > |1 < k < M};

the maximum number of iterations, maxiter , and the level
of marginal significance, P− Value.
Initialize:

Kdif = zeros(n1 + n2,A2N )
Ddif = zeros(M ,A2N )
LSVs = rand(n1 + n2,N )

Output:
Kdif and Ddif

1: PROCEDURE in KnowL & InfoL
2: for i=1, i<N, i++ do
3: for j=i+1, j<N+1, j++ do
4: Randomly initialize LSVi and LSVj within 0 to 1;
5: while maxiter 6= 0 do
6: Convergence conditions analysis with LSVi and

LSVj;
7: if Satisfy convergence conditions then
8: break;
9: else
10: Step 1: Generating random weight adjust-

ment (enhancement and suppression) symbols
by machine for each concept in SV ;

11: Step 2:Changing the adjustment symbols gen-
erated in Step 1 by the user based on the infor-
mation obtained;

12: Step 3: Updating weights in LSVi and LSVj
according to symbols from Step 1 and Step 2;

13: maxiter −−;
14: end if
15: end while
16: Kdif [:,m] = ABS(LSVi− LSVj)
17: m++
18: end for
19: end for
20: PROCEDURE in DataL like Algorithm 1

interaction processes with multiple iterations. The following
steps describe this procedure that differs from the top-down
learning method in detail.

• Convergence conditions. Steps 1 to 3 in Algorithm 2
are iterated until the algorithm reaches a predefined
stopping criterion; in particular, the procedure is stopped
if the statistical significance is reached between LSVi
and LSVj corresponding to different Thinking-Entities
in an iteration or after a predetermined number of
iterations. As mentioned above, a comparative analy-
sis strategy is defined in the THINKING-LOOP, that
is, comparing the semantic and data characteristics of
two Thinking-Entities at each time. The basic consen-
sus here is that when human performs multiple tasks
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using a domain-specific knowledge framework, the exe-
cution strategies are more or less relevant among dif-
ferent tasks, but some take the same operation and
some take the opposite operation on details [28]. In
particular, when the behaviors are recorded from two
kinds of different circumstances or experimental tasks,
multiple identical or similar cognitive processes will
be called simultaneously, which reflects the overlap
and correlation [29]. However, due to differences of
pre-set goals, the degree of participation of the cogni-
tive process under each task is also different on details,
which leads to the positive or negative correlation trend
when evaluating the overall processes. Therefore, the
convergence condition is to determine whether there is
the statistical significance between the two LSVs (LSVi
and LSVj), including positive correlation and negative
correlation. Here, the semantic distance can be used
as a priori condition to judge the positive or negative
relationship between two Thinking-Entities. In partic-
ular, if there is a large semantic distance between two
Thinking-Entities, then it is considered to be a nega-
tive correlation in the calculation process of the cor-
responding LSVi and LSVj; otherwise, it is a positive
correlation.

• Weight computing. In Step 1, a control vector (CV)
consists of randomly generated three signs -1, 0, and 1,
and is of the same size as LSV . In this vector, sign -
1 means that the weight of the corresponding concept
in LSV will decrease in the next weight updating pro-
cess; sign 0 means that the weight will not be changed;
and sign 1 means that the weight of the corresponding
concept in LSV will increase in the next weight updating
process. During the interaction process, the user can con-
trol the symbol change inCV by judging the contribution
of the concept to each Thinking-Entity, thereby chang-
ing the next weight-updating action. In this paper, the
user can set these symbols to zero according to personal
understanding and observation in each iteration, that is,
forgetting the weight-updating action in an interactive
process. For example, if a concept ci in SV is considered
to be closely related to Thinking-Entity DOi, but sign -
1 in CV is randomly generated by computer for this
concept during the generation of control variables. Then
the sign -1 can be set to sign 0 so that it does not
participate in the next weight updating, and vice versa.
In the initial phase of each iteration, the number and
distribution of signs -1, 0, and 1 in the CV are random.
We consider to obtain one CV for two Thinking-Entities
during the processes of human-computer interaction in
Step 1. Then, how to update the weights of both LSVs
for different Thinking-Entities at one time. At this time,
the CV generated by the computer is set to control the
weight-updating process of the LSVi. And, the CV of the
LSVj is generated by comparing the semantic distance
between the two Thinking-Entities, which includes two
cases in Step 2.

- When the semantic distance is small enough to be
considered as positive correlation: If sign 1 appears in
CV during an iteration and the current weight of the
corresponding position in LSVi is greater than LSVj, the
corresponding position of CV for LSVj is also set to
sign 1. Conversely, the corresponding position is set to
sign -1. If sign -1 appears in CV during an iteration
and the weight of the corresponding position in LSVi is
greater than LSVj, the corresponding position of CV for
LSVj is also set to sign -1. Otherwise, the corresponding
position is set to sign 1. In other cases, LSVi and LSVj
have the same control symbol for CV .
- When the semantic distance is large enough to be con-
sidered as negative correlation: if sign 1 appears in CV
during an iteration and the weight of the corresponding
position in LSVi is greater than LSVj, the corresponding
position of CV for LSVj is set to sign -1. Conversely,
if the weight of the corresponding position in LSVi is
smaller than LSVj, the position is set to sign 1. If sign -
1 appears inCV during an iteration and the weight of the
corresponding position in LSVi is smaller than LSVj, the
corresponding position of CV of the LSVj is also set to
sign 1. Conversely, the corresponding position is set to
sign -1. In other cases, the CVs of LSVi and LSVj have
the same control signs.
The weight of concepts in the LSVi and LSVj is cal-
culated based on these signs after obtaining the CV in
Step 3. In combination with the above,

w(t + 1) =


w(t)+ 1−w(t)

RIN , sign in CV = 1
w(t) , sign in CV = 0

w(t)− w(t)
RIN , sign in CV = −1

wherew represents the weight of the concept, t indicates
the order of human-computer interaction, and RIN indi-
cates the number of remaining iterations.

Finally, the weight of each concept, which is the real
number of the closed interval [0, 1], is obtained by the
use of human-machine interaction design in the bottom-up
learning procedure for each Thinking-Entity. Obviously, we
will acquire more details of the knowledge layer for each
Thinking-Entity in this procedure, such as the contribution of
different concepts within one task or among multiple tasks.

3) KNOWLEDGE INFERENCE WITH RULES
Through the above learning process, we get Sdif =

zeros(1,A2N ), Kdif = zeros(n1 + n2,A2N ) and Ddif =
zeros(M ,A2N ). Here, the Sdif represents the semantic distance
between multiple Thinking-Entities; the Kdif represents the
weight differences corresponding to all concepts between
multiple Thinking-Entities; and the Ddif represents the dif-
ferences in patterns or indicators between multiple Thinking-
Entities. The first two are the results obtained through the
calculation in the KnowL and the InfoL, and the last one
is the result obtained through the calculation in the DataL.
These results will serve as input to the inference engine and
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then generate new information and knowledge based on rule
constraints.

Considering different learning schemes, two types of infer-
ence mechanisms are used in the rule engineering:

• Top-down inference rule. The top-down inference rule
is used to infer the learning results obtained by the Algo-
rithm 1, Sdif withDdif . First, we sort the elements in the
Sdif and the Ddif for each row from large to small and
get their positional indexes. Then, the positional indexes
of the Ddif for each row are compared with that of the
Sdif . When the positional indexes of Ddif for a row are
consistent with that of the Sdif , the < PrIk ,ArIk >

pair corresponding to the current row is output, which
is defined in the InfoL.

• Bottom-up inference rule. The bottom-up inference
rule is used to infer the learning results obtained by the
Algorithm 2,Kdif withDdif . Here, the elements ofKdif
andDdif for each row are also sorted from large to small
and get their positional indexes. Then, the positional
indexes of the Ddif for each row are compared with that
of the Kdif for each row. When positional indexes of
two rows are consistent by the above comparison, the
corresponding position of < PrIk ,ArIk > pair with
concept c is given and output by using a form of <<

PrIk ,ArIk >, c > pair, where c is the concept from the
SV .

Through this kind of inference mechanism based on com-
parative index-matching procedures, this model can select
some candidate patterns/indicators and investigate their fruit-
ful meaning in the knowledge layer for further study.

IV. EXPERIMENTS AND EVALUATION
From the above description, we can see that the current model
can be quickly converted and personalized in different fields
based on the customization of experts and users. In this paper,
we focus on the application of the THINKING-LOOP in the
field of brain cognition, especially the extensible mining and
analysis of the hidden correlation between complex cognitive
processes and brain function mechanisms. At this time, brain,
cognition, patterns, and indicators become several important
concepts involved in the current model.

Further, functional neuroimaging based network analysis
and mining methods have become an important research
direction in the field of cognitive science. Its main aim is
to explore subnetwork structures with unique cognitive and
functional characteristics from the whole complex network
and providemore efficient and effective indicators tomeasure
their information-processing mechanisms. Therefore, a real-
istic use case combining multiple fMRI datasets and network
analysis methods is used to evaluate the effectiveness of this
model. In order to realize the semantic vector driven complex
cognitive understanding and analysis, acquisition processing
and organization strategies of the resources are firstly defined
in the DataL, the InfoL and the KnowL of the THINKING-
LOOP.

A. DATA PROCESSING IN THE DataL
From the description in Section III, at least two Thinking-
Entities are required to achieve effective learning and infer-
ence in the THINKING-LOOP with sorting and comparison
strategies. In current work, three task-based fMRI datasets
mapped to three abstract Thinking-Entities were acquired for
emotional face recognition (EFR) task, number series com-
pletion (NSC) task, and number placement puzzles (NPP)
task to verify the effectiveness of this model, which are
primarily related to emotion, reasoning, and problem-solving
processes, respectively.

The usage data from 58 in total (female/male: 19/39;
ages 20-79 yr) Chinese healthy participants with a college (or
higher) education were finally adopted for group-level anal-
yses in the present study. Specifically, the number of par-
ticipants recruited for the EFR, NSC, and NPP was 30, 13,
and 15, respectively. All of the participants were right-
handed, had normal or corrected-to-normal vision, and
reported no history of neurological or psychiatric dis-
orders. Prior to their participation in the study, written
informed consent was obtained from each participant after
the nature and possible consequences of these studies were
explained. These experiments were approved by the Ethics
Committee of Xuanwu Hospital, Capital Medical Univer-
sity, Beijing. The detailed context of the original data and
the method of obtaining its procedural data are described
below.

1) EXPERIMENTAL DESIGN
The experimental design in detail for these three datasets is
defined by:

• The EFR experiment. The dataset was acquired by
performing an fMRI experiment designed in accordance
with the Hariri paradigm [30]. The participants were
displayed with blocks of trials that required them to
decide either of which two affective facial expressions
presented on the bottom of the screen match another
expression at the top of the screen. Four types of emo-
tionally valenced faces were presented, showing sad-
ness, anger, fear, and happiness expressions, respec-
tively. Trials were presented in blocks of 6 trials of the
same task, with the stimulus presented for 2 s and a 1 s
interval.

• The NSC experiment. A number series completion
task was performed for each of the participants, which
were required to predict the next number in the visually
displayed sequence (e.g., 2, 4, 6, 8, 10) [31]. On every
trial, five numbers in a number series were shown one
by one on the computer screen in white digits of 36 size
font against the black background. Participants were
required to make the choice between ‘‘A’’ and ‘‘B’’ by
pressing the button as exactly as possible after an option
of answers (e.g., ‘‘A. 16 B. 17’’) was presented. All
numbers including answers ranged from 0 to 99, and
only addition and subtractionwere needed. Additionally,
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totally 72 tasks were evenly and pseudo-randomly dis-
tributed in six sessions for each participant.

• The NPP experiment. Event-related fMRI data were
recorded while participants were solving simplified
number placement puzzles (Sudoku; Nikoli Publishing,
Tokyo, Japan) on a 4 × 4 grid [32]. The goal of this
experiment is to fill a 4×4 grid so that each column, each
row, and each of the four 2× 2 boxes contains the digits
from one to four only one time each. Each trial of the
experiment started with a red star shown for 2 seconds
as a warning (the stimulus was visually shown on a black
screen), and then the participants were asked to give the
answer for the cell marked with ‘‘?’’ in the grid by using
digits from one to four. For each subject, there were two
sessions each that contained repetition times of 360 or
more.

2) DATA PROCESSING
All the original fMRI data were acquired from different
experiments. The data preprocesses went through a unified
protocol before being input into the THINKING-LOOP. The
preprocesses of fMRI data were performed with SPM12 soft-
ware (the Wellcome Centre for Human Neuroimaging, Lon-
don, UK, http://www.fil.ion.ucl.ac.uk). Functional images
were corrected for slice-timing differences and realigned to
the median image to correct rigid body motion. Cases with
head movement exceeding 2 mm or 2 degrees were excluded
from further analysis. The high-resolution anatomical image
was co-registered with the mean image of the EPI series
and then spatially normalized to the Montreal Neurologi-
cal Institute (MNI) template. After applying the spatial nor-
malization parameters to the EPI images, all volumes were
re-sampled into 3 × 3×3 mm3 and smoothed with an 8-mm
FWHM isotropic Gaussian kernel. As nuisances, the motion
parameters and the global average of white matter (WM) and
cerebrospinal fluid (CSF) signals were regressed out from the
fMRI time series data. TheWM and CSFmasks were derived
from the standard set of tissue probability maps provided in
SPM and thresholded at 0.99 (for WM) and 0.90 (for CSF) to
minimize confounding with GM signals. The resulting resid-
ual time series was temporarily filtered to remove the effects
of low-frequency scanner drifts with 0.008 Hz high-pass. The
procedural data, which are intermediate results produced by
data preprocesses, are also stored in the THINKING-LOOP
for possible pattern analysis and metric calculations in the
future.

The fMRI time-series were extracted from spatially dis-
tributed brain regions based on pre-defined ROIs. For each
ROI, the average of BOLD signal intensity was calculated
among all the voxels within the region. For better understand-
ing the nature of the complexity of brain networks related
to the above experimental tasks, a hybrid brain atlas which
embracing the structural atlas of AAL (Automated Anatomi-
cal Labeling) [33] and the functional atlas of Dosenbach [34]
were proposed. The proposed brain atlas was extended on
the basis of the 160 ROIs of the entire Dosenbach by

TABLE 2. Functional networks and their related pattern information.

incorporating 10 ROIs from AAL. Similar to the ROIs
defined by Dosenbach atlas, the 10 ROIs from AAL in the
extended atlas were also considered as the corresponding
voxels with the center point MNI coordinates and the radius
of the ROI. In this paper, the 170 ROIs of the proposed atlas
were all represented as spheres with radius of 5 mm, i.e.
each sphere consists of 19 voxels and the size of each one
is 3× 3×3 mm3.

B. INFORMATION ORGANIZATION IN THE InfoL
The InfoL consists of three parts: the PrI , FrI , and ArI .
In current work, multiple representative brain networks
are discussed, such as the Default (Mode) Network (DN),
the Attention Network (AN), the Salience Network (SN)
and the Control Network (CN) [35]. In addition, we also
define an emotionally related network, the core affect archi-
tecture (CAA) [36]. Here, various brain network structure
information is represented in the PI , which is described
in Table 2.

These networks corresponding to functional meanings or
cognitive processes were stored in the FrI of the InfoL, which
comes from existing research work. For example, existing
research showed that the DN (including DNCORE , DNMTL
and DNSUB3) has a greater correlation with spontaneous
cognition, mental and emotional processes; the AN (includ-
ing DAN and VAN ) is the network for redirecting attention
from one entity to another; and the CN exhibits different
information-processing mechanisms during short-term and
long-term task execution. Obviously, these network char-
acteristics, on the one hand, can be used as the reference
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FIGURE 5. The definition of cognitive concepts in ontology of the
knowledge layer.

to evaluate the rationality of decision making, and on the
other hand, encourage us to discover new information and
knowledge on the basis of these existing patterns.

Some methods such as statistics, machine learning, and
network topology analysis are defined in the ArI of the
InfoL. In particular, three commonly used index calculation
methods, including the Clustering Coefficients Index (CCI),
the Local Efficiency Coefficients (LEC), and the Global Effi-
ciency Coefficients (GEC), are estimated in this paper. These
indicators will be measured during the learning process of the
DataL in the THINKING-LOOP.

C. CONCEPTUAL DEFINITION IN THE KnowL
Human cognition is usually summarized as some com-
plex mental activities such as human reasoning [37],
problem-solving [38] and decision-making [39] that typi-
cally rely on the combination and interaction of more ele-
mentary processes such as perception, learning, memory,
emotion [40], [41], etc. In this paper, these cognitive func-
tions or processes are represented as concepts, which are
organized into hierarchical ontology structures. And the
hierarchical relations in the ontology are constructed by
reference to the Cognitive Atlas that aims to develop a
knowledge base (or ontology) that characterizes the state
of current thought in cognitive science [42]. The cognitive
function-related ontology in the KnowL is shown in Figure 5.

D. COGNITIVE LEARNING AND INFERENCE IN THE
THINKING-LOOP
1) THE RESULTS OF COGNITIVE LEARNING
The goal of learning is to measure the level of difference
between Thinking-Entities. Through the interactive learning
processes defined in Section III, we can easily get the results
of the Sdif and Kdif .

a: Learning Results in Semantic Difference
First, we constructed DSVs of ERF , NSC , and NPP entities
from the definition of the KnowL, as shown in Figure 6.

FIGURE 6. The results of data mapping for EFR, NSC, and NPP entities.

TABLE 3. Semantic differences between Thinking-Entities.

FIGURE 7. The results of interactive learning in the bottom-up processing.

Then, the semantic distance between Thinking-Entities,
Sdif , was calculated by the hamming distance evaluation
method, as shown in Table 3.

b: Learning Results in Knowledge Difference
In the process of calculating Kdif , two parameters need to be
preset, namelymaxiter and P−Value. Here, the P−Valuewas
set to 0.01 in the convergence condition, and the maximum
number of interactions maxiter was set to 30 times. After
multiple interactions, the conceptual weights and their differ-
ences between Thinking-Entities were measured, as shown
in Figure 7.

c: Learning Results in Data Difference
The Ddif is measured by combining with the graph and
statistics related theory. First, the BOLD signal time series
of the task states from the scans for each participant was
extracted. Then, the Pearson correlation coefficient matrix
was calculated by the 170× 170 extended brain atlas. These
matrices used the Fisher transformation to calculate the
Z-score of each cell in the matrix. In addition, the adjacent
matrices of different subnets were constructed based on the
related ROIs defined by InfoL. Further, the indicators (includ-
ing, CCI, LEC, and GEC) of the subnet at 1-100 sparsity
were calculated separately. Finally, we used the analysis of
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TABLE 4. The comparison of differences between Thinking-Entities in the
DataL.

variance (ANOVA) statistical method to determine whether
there is a significant difference between Thinking-Entities
with the same indicator for the subnet at all sparsity levels.
Here, the P−Valuewas set to 0.05, and a variance homogene-
ity test was performed. In this paper, the number of sparsity
that shows a significant difference is counted for each subnet
and is used as a criterion for determiningDdif . Therefore, the
magnitude of the difference in theDataL is proportional to the
number of sparsity obtained by the above counting method.

In practice, we randomly selected 13−14 participants from
each dataset for maintaining an approximately consistent data
size. The assessment results of the difference between the
Thinking-Entities are finally obtained from the DataL, as
shown in Table 4.

2) THE RESULTS OF COGNITIVE INFERENCE
According to the two types of knowledge inference rules
defined in Section III, we have obtained some interesting
results.
• From the top-down inference scheme, we can select
some< PrIk ,ArIk > pairs that reflect better consistency
from knowledge to data. Here, some combinations of
DNCORE with CCI, VAN with LEC, CAA with CCI, and
CAA with LEC were selected.

• From the perspective of the bottom-up inference
scheme, we hope to verify the reliability of existing
information and obtain some new knowledge through
the constraints of the data layer. Here, the tacit knowl-
edge of some network patterns was explored in this
process, such as << CAA,CCI >,Emotion > and so
on. The complete inference results from a one-time run
of one expert are shown in Table 5.

V. DISCUSSIONS AND PROSPECTS
In this section, we discuss the usefulness, areas for improve-
ment, and summarize other potential applications in the
THINKING-LOOP.

A. DISCUSSIONS
In this paper, the THINKING-LOOP is presented to imple-
ment the top-down and bottom-up schemes for different
goals. The former focuses on the advanced feature analysis
of brain patterns, while the latter focuses on the cognitive

understanding of brain patterns. Therefore, we discuss cur-
rent learning and reasoning results from the above two
perspectives.
• The top-down loop. An experimental task is often
designed to observe specific cognitive processes. For
example, the EFR task is mainly to observe the pro-
cess of emotional cognition, the NSC task is mainly
to observe the cognitive process of reasoning, and
the problem-solving process is uncovered by the NPP
task. Considering the differences in experimental tasks
and cognitive functions, we can obtained the seman-
tic distance between different Thinking-Entities. From
Table 3, we can see that there is a large semantic distance
between EFR and NSC/NPP, but the semantic distance
between NSC and NPP is relatively short. These results
are consistent with current cognitive theory and previous
fMRI studies, on the one hand, which emphasizes the
correlation between reasoning and problem solving [43].
On the other hand, emotion is seen as an independent
factor that is perceived and studied for its impact on
advanced cognition [44], [45]. In addition, the quantita-
tive semantic distance allows us to visually and objec-
tively compare differences between Thinking-Entities
in detail. For example, we can further see that the dif-
ference between EFR and NSC seems to be greater
than that between EFR and NPP based on numerical
comparisons in Sdif . These quantified results in the
KnowL are used to constrain the observation results
of the DataL from Table 4, which in turn verify the
rationality of the hypothesis. For example, we find that
the CAA network corresponding to the features more
conforms to the cognitive rules of theKnowL, that is, the
emotions show greater specificity and correlation for the
CAA network. These findings are in line with analysis
results of emotion [36]. Moreover, we also find that the
emotional process has a correlation with DNCORE and
VAN from the inference results, which is similar to the
previous study [46], [47]. Furthermore, the calculation
methods for different types of indicators also serve as
an important factor affecting the results of learning and
inference. For example, the CCI and LEC that measure
the local transmission capacity of the network are more
conducive to express the network characteristics than the
GEC that measures the global transmission capacity of
the network from the distribution of inference results
in Table 4, which complements the Pan’s results in [48].

• The bottom-up loop. Table 5 shows the subnet-related
cognitive processes, which are the inference results
based on Figure 7 and Table 4. From these results,
we find that DNCORE , VAN , and CAA are all related
to the emotional process obviously, and these results
are also consistent with that in the top-down scheme.
The SN has a large correlation with reasoning, which
is similar to previous research studies [49]. The fMRI
studies have previously implicated both the FPCN and
COCN , which play dissociable roles in control, but their
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TABLE 5. The inference results obtained by the interactive processes of an expert from the bottom-up scheme.

respective contributions are unclear [50], [51]. From the
results in Table 5, we find that the reasoning results
between FPCN and COCN are significantly different,
which potentially supports the above conclusions. Fur-
ther, the FPCN exhibits a richer functional meaning
than the COCN , which may be closely related to the
attributes of the network. For example, the FPCN not
only reflect engagement of specific tasks, but also serve
as a code that can be transferred to facilitate learning
novel tasks. Especially, the FPCN is related to atten-
tion and perception [52], [53]. However, the COCN is
more related to word and language tasks [54]. We also
observed that the heuristic problem solving and emotion
processes have a higher co-occurrence than others. Does
this mean that they have a similar cognitive mecha-
nism, which deserves further exploration by designing
new experiment. The current results are drawn from an
expert. Obviously, with the changes of people, the output
of the model may be slightly different, which reflects the
individualized interaction and inference ability of this
dynamic model.

Based on the above discussion, we can find that the
top-down and bottom-up schemes in the THINKING-LOOP
constitute a supervisory loop, which can achieve mutual ver-
ification of decision rationality. And, towards never-ending
learning workflow interacting within the THINKING-LOOP,
more novel results will be discovered.

B. NEEDED IMPROVEMENTS
Some areas still need to be improved in the current study.
First, three or more types of Thinking-Entities driven by

research purposes (three types in our study) can trigger the
inference process of the model. In theory, the unlimited
number of Thinking-Entities can be considered, set, and run
simultaneously in the THINKING-LOOP. However, as the
number of Thinking-Entities running in the model increases,
the requirements for the robustness of the inference engine
also increase. Therefore, more rules need to be added. Sec-
ond, there may be slight differences of the operating results
from different periods in the process of an expert interacting
with the model. That is a very interesting phenomenon, and
the main reason may be that experts are affected by the
cognitive or real-time status of different periods. Therefore,
comparing and analyzing the results of experts’ practice in
different periods will be very meaningful work. However,
cold start problems will be encountered in the early stages of
practice. Meanwhile, this model is an open human-computer
interaction system, which means that the experimental results
vary from person to person and have personalized character-
istics. How to integrate the personalized results from different
experts, and then to draw more guiding conclusions, is a
future research direction. Third, the biological and functional
properties of the brain require more diverse data to verify,
which is a long-term practical process. While this shortfall
did not have an impact on the power required for our pri-
mary analysis, it does attest to the challenges of conducting
research related to brain, behavioral and cognitive sciences.

C. PROSPECTS
A study on human-in-the-loop systemic neurosciences will
attract more and more widespread attention because of its
ability to integrate the advantages of both human intelligence
and multi-layer fusion of data, information and knowledge,
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which can often lead to more novel and solid results. Faced
with this emerging field, a representative conceptual model
that takes into account the power of three-layer fusion of data,
information and knowledge has been proposed in existing
research, namely Data-Brain, which is a typical model with
static characteristics for systematic brain informatics [6].
However, these theories and methods ignore the important
role of human beings as a non-negligible factor in the pro-
cess of knowledge discovery, which has significant dynamic
characteristics. In this paper, the integrated advantages of
collective wisdom from the published information sources
and personal wisdom through human-computer interaction
are given full play in the proposed THINKING-LOOP, which
provides a feasible solution for systematic methodological
research. Although a representative case has been proposed to
demonstrate the current model in the field of brain cognitive
science, its other directions are worthy of attention.

1) HIGH FLEXIBILITY OF MULTI-VIEW TRANSFER
The advantage of domain transfer brings broad prospects to
the THINKING-LOOP, that is, the current model is not lim-
ited to be applied in the field of brain research. Considering
the conceptual framework for theKnowL is a domain-specific
ontology model, which guides the construction and compu-
tation of semantic vectors in computers. Hence, it will be
very convenient to implement the domain transfer of the
model by changing the conceptual ontology model in other
fields. Obviously, such a domain transfer usually brings about
changes in the InofL and DataL. In addition to the changes
mentioned above in the inter-domain transfer of the KnowL,
the intra-domain-multi-view transfer is also necessary in the
InfoL andDataL for achieving more reliable verification. For
example, switching and fusion among different information
carriers of text, graphics, sound and video with multiple data
modalities from multiple views (e.g. Genetics, Imaging, and
Praxeology) need to be given special attention.

2) HIGH ELASTICITY OF INTERACTION DESIGN
Human-in-the-loop is a very important mechanism of the
THINKING-LOOP in which human intelligence assists and
drives the never-ending learning of the model. In this pro-
cess, communication between people and computers can be
achieved through a variety of human-computer interaction
technologies, including voice interaction, image interface
interaction, somatosensory and so on. In the future, with the
development and integration of these human-computer inter-
action technologies, the interaction process will be smoother,
and the personal experience will be greatly enhanced.

VI. CONCLUSION
This paper has proposed a semantic vector-driven
closed-loop model, namely THINKING-LOOP, for brain
computing to systematically investigate the complex brain
cognitive functions and its information-processing mech-
anisms. The details of the operational, computable, and
comparable semantic vectors with the two human-computer

interaction schemes (including top-down and bottom-up pro-
cedures) and the three-layer fusion of data, information, and
knowledge mechanisms are described. Three fMRI experi-
ments for emotion, human reasoning, and problem-solving
were performed and analyzed for validating the rationality
and effectiveness of the model. It can be seen that the model
can not only realize the mining and verification of brain
patterns from the perspective of top-down thinking, but also
realize the understanding and analysis of brain cognition from
the perspective of bottom-up thinking, and realize the mutual
supervision of the two decision-making processes. Moreover,
the completion of a decision-making process does not mean
to stop forever, but the beginning of a new round in this
closed-loop model. Some interesting and innovative results
will be continuously discovered during the never-ending
learning process.
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