
Received November 5, 2019, accepted November 25, 2019, date of publication January 3, 2020, date of current version January 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963826

Implementation of RSA Signatures on GPU and
CPU Architectures
EDUARDO OCHOA-JIMÉNEZ 1, LUIS RIVERA-ZAMARRIPA 2,
NARELI CRUZ-CORTÉS 2, (Member, IEEE),
AND FRANCISCO RODRÍGUEZ-HENRÍQUEZ 1, (Member, IEEE)
1Computer Science Department, Cinvestav, Mexico City 07360, Mexico
2Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico

Corresponding author: Luis Rivera-Zamarripa (lriveraz@gmail.com)

This work was supported in part by Instituto Politecnico Nacional de Mexico.

ABSTRACT This paper reports a constant-time CPU and GPU software implementation of the RSA
exponentiation by using algorithms that offer a first-line defense against timing and cache attacks. In the case
of GPU platforms the modular arithmetic layer was implemented using the Residue Number System (RNS)
representation. We also present a CPU implementation of an RNS-based arithmetic that takes advantage of
the parallelism provided by the Advanced Vector Extensions 2 (AVX2) instructions. Moreover, we carefully
analyze the performance of two popular RNSmodular reduction algorithmswhen implemented onmany- and
multi-core platforms. In the case of CPU platforms we also report that a combination of the schoolbook and
Karatsuba algorithms for integermultiplication alongwithMontgomery reduction, yields our fastest modular
multiplication procedure. In comparison with previous literature, our software library achieves faster timings
for the computation of the RSA exponentiation using 1024-, 2048- and 3072-bit private keys.

INDEX TERMS Public key cryptography, RSA, RNS arithmetic, GPU, CPU, AVX2 instructions.

I. INTRODUCTION
Public key cryptosystems play an important role in communi-
cation systems that require the exchange of sensitive informa-
tion. Proposed by Rivest, Shamir and Adleman in 1978 [1],
RSA has become the most deployed public key cryptosystem
in practical applications. The signing/verification of digital
certificates is a heavily used application of RSA, as an impor-
tant fraction of commercial digital certificates have been cre-
ated using RSA as their cryptographic engine. However, due
to its relatively high latency, RSA must be carefully imple-
mented to achieve reasonable timing performance, memory
and code footprints. Moreover, the computation of RSAmain
primitives, quite especially modular exponentiation, must be
run in constant-time. This feature presents a first line of
defense against timing and cache attacks [2].

The RSA instantiation using 1024-bit keys
(a.k.a RSA-1024), has been widely used for computers on
networks and traffic handling across the Internet. For applica-
tions requiring to achieve the 112- and 128-bit security levels,
the National Institute of Standards and Technology (NIST)

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

recommended in [3] the usage of RSA-2048 and RSA-3072,
respectively. This recommendation should be contrasted with
the newest analysis of state-of-the-art integer factorization
algorithms [4], [5], which estimate that RSA-1024 and
RSA-2048 can barely achieve the 76- and 106-bit security
levels, respectively.

The RSA algorithm produces a public/private pair of
keys by first constructing a per-user unique 2k-bit modulo
N = p · q, where p, q are two k-bit prime numbers. The
RSA public key is the tuple composed by the modulus N
and a public exponent e, which is generally chosen as e =
216 + 1. The RSA private exponent is defined as d = e−1

mod φ(N), where φ(·) stands for the Euler’s totient function.
Given the RSA private key (d,N) and a message m, the Full
Domain Hash (FDH) signature s of m is computed as s =
H (m)d mod N , where H (·) represents a hash function that
mapsm toZN . It has been shown that the FDHRSA signature
is provably secure [6]. A standard trick based on the Chinese
Remainder Theorem trades the 2k-bit RSA exponentiation
s = H (m)d mod N , by the computation of two independent
k-bit modular exponentiations of the form, s1 = hd mod (p−1)

mod p and s2 = hd mod (q−1) mod q, where s1, s2 can be
calculated concurrently.

9928 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7349-8546
https://orcid.org/0000-0002-1779-421X
https://orcid.org/0000-0003-4827-0184
https://orcid.org/0000-0002-5916-6625
https://orcid.org/0000-0002-6502-472X

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

In this work, we focus our attention on the efficient parallel
computation of s1 and s2 in GPU and CPU software imple-
mentations.

Most Internet transactions are executed using desktop com-
puters, laptops and smartphones that are powered by multi-
core micro-architectures based on general purpose Central
Processing Units (CPUs). On the other hand, taking advan-
tage of their massive parallelism, General Processing Units
(GPUs) platforms have become an interesting option to
speedup high demanding computational tasks such as the
computation of several public key cryptographic primitives.
OUR CONTRIBUTIONS: In this work, two RSA constant-

time software implementations for 1024-, 2048-, and 3072-bit
RSA keys, are presented.

Our CPU software implementation of RSA uses a com-
bination of integer arithmetic algorithms and Montgomery
reduction that helped us to exploit the fine-grained paral-
lelism present in the latest Intel micro-architectures. We also
took advantage of the multi-core architecture of modern Intel
CPU processor to concurrently compute two RSA exponen-
tiations. Further, we explore the usage of the Advanced Vec-
tor Extension 2 (AVX2) for achieving an efficient Residue
Number System (RNS) field arithmetic, as an alternative
approach for the parallel computation of the RSA signature.
Likewise, our RSA GPU implementation also employs RNS
arithmetic, which permits to take a better advantage of the
massive parallelism available on this many-core architecture.

Our software implementation targeted four platforms,
namely, a GPU GeForce GTX TITAN running on a Kepler
architecture at 876 MHz, a GPU GeForce GTX 1080 running
on a Kepler architecture at 1.81 GHz and a CPU Intel core
i7 equipped with Haswell and Skylake micro-architectures
running at 2.6 GHz, 4 GHz and 1.8GHz, respectively.

Our experimental results show that computing one RSA
signature takes far less time when calculated using our CPU
software library. However, our GPU software scales better for
larger RSA key lengths, and offers better performance when
not one but many RSA signatures must be computed at once.

The experimental results presented in this work outperform
previously reported GPU RSA implementations [7]–[10]
by a factor of 1.24, 1.27 and 2.98 for RSA-1024 bits,
RSA-2048 bits, and RSA-3072, respectively. Regarding our
CPU implementation of RSA, our results outperform pre-
vious CPU software implementations [11], [12] by a factor
of 1.84 and 1.15 and 1.19 for the RSA-1024, RSA-2048 and
RSA-3072, respectively.

The remainder of this paper is organized as follows. In §II
a review of the main modular arithmetic algorithms used
in this work is given. Then, in §III and §IV we present a
detailed description of the CPU and GPU implementations of
the RSA exponentiation, respectively. Finally, we draw some
concluding remarks in §V.

II. ARITHMETIC BACKGROUND
One of the main objectives of this work is to perform a fast
and constant-time modular exponentiation, which is required

by the RSA signature algorithm. Hence, we start this section
by describing in §II-A the regular-recoding exponentiation
algorithm used for performing the RSA private operation.
Furthermore, throughout this work we use two different
approaches for computing the underlyingmodular arithmetic.
The first approach adopts the Montgomery representation
discussed in §II-B, whereas the second one uses an arithmetic
layer based on the Residue Number System (RNS) represen-
tation as explained in §II-C. In this section, we present an
overview of these two arithmetic representations.
NOTATION: Let N be a 2k-bit RSA modulus of the form

N = p · q, where p, q are two k-bit prime numbers. Since
an RSA exponentiation modulo N can be traded by two k-bit
exponentiations modulo p and q, in this work we focus our
attention on the computation of the operation y = xe mod p,
where it will be assumed that all the operands have a bit-
length of k bits. The integer representation of a k-bit integer
can be accommodated in n = d kwe words, where each word
has a size of w bits. Throughout this work, word sizes of
w = 32 and w = 64 bits will be assumed. An element a ∈ Zp
is represented in radix-r as the array a =

∑n−1
i=0 air

i, where
r = 2w and 0 ≤ ai < r .We say that the operand a has a word-
length of n words. For the sake of simplicity, we will only
consider operands with an even word-length. Particularly,
we are interested in the cases n = 8, 16, 24, required for
computing RSA-1024, RSA-2048 and RSA-3072 signatures,
respectively.

A. CONSTANT-TIME MODULAR EXPONENTIATION
We adopted a variant of the fixed-window exponentiation
method, which starts by producing a regular recoding of the
exponent. To this aim, we use the procedure proposed by
Joye and Tunstall in [13] as shown in Algorithm 1. Given a
k-bit exponent, Algorithm 1 provides an encoding of length
η =

⌈ k
ω

⌉
+ 1, whose digits belong to the set {1, 2, . . . , 2ω},

where ω is the prescribed window size.

Algorithm 1 Unsigned Exponent Regular Recoding [13]
Require: A k-bit exponent e, window size ω.
Ensure: f = (fη−1, . . . , f0) with fi ∈ {1, 2, . . . , 2ω} for 0 ≤

i < η.
1: i← 0 j← 1
2: while e ≥ 2ω + 1 do
3: d ← e mod 2ω

4: d ′← d + j+ 2ω − 2
5: fi← (d ′ mod 2ω)+ 1
6: j←

⌊
d ′/2ω

⌋
7: e← be/2ωc
8: i← i+ 1
9: end while
10: fi← e+ j− 1
11: return f

Algorithm 2 allows us to perform a constant-time mod-
ular exponentiation, which helps us to thwart basic timing
side-channel attacks. Since this windowed exponentiation

VOLUME 8, 2020 9929

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

algorithm requires to lookup a pre-computed table, it is neces-
sary to implement a mechanism that protects the correspond-
ing queries. Hence, whenever the pre-computed table 0 is
queried in Step 6, a linear pass memory access is performed
as a protective countermeasure [14]. This technique consists
of traversing the entire pre-computed table 0 every time that
a certain position is accessed. In this way we ensure that all
memory queries have the same running time. The protected
modular exponentiation that computes y = xe mod p is
shown in Algorithm 2. This algorithm has a cost of exactly⌊ k
ω

⌋
modular multiplications and k − 1 modular squaring

operations.

Algorithm 2 Protected Fixed-Window Modular
Exponentiation
Require: The k-bit integers x, e and p, and the window size

ω.
Ensure: A k-bit integer y such that y = xe mod p.
Precomputation:
1: Recode e using Algorithm 1 to obtain the encoding f of

length η =
⌈ k
ω

⌉
+ 1.

2: Compute 0[i]← x i mod p for i ∈ {0, . . . , 2ω}
Computation:
3: y← Perform a linear pass to recover 0[fη−1]
4: for i = η − 2 down to 0 do
5: y← y2

ω

6: z← Perform a linear pass to recover 0[fi]
7: y← y · z
8: end for
9: return y

B. MONTGOMERY MODULAR ARITHMETIC
In 1985, Montgomery proposed a novel method to com-
pute field multiplications without using trial divisions [15].
Montgomery suggested to change the operand representation
to the so-called Montgomery domain.1 Let us define the
Montgomery parameter R as, R = rn, where as before n
represents the number of words necessary to represent the
prime modulus p in radix r = 2w. Hence, rn−1 < p < rn.
The Montgomery representation ã of an element a ∈ Zp is
computed as ã = a · R mod p.

Let as assume that the elements a, b ∈ Zp have a Mont-
gomery’s representation given as ã and b̃, respectively. Let d
be given as d = ã · b̃. Then, the Montgomery product of ã and
b̃ is defined as c̃ = ã · b̃ · R−1 mod p, which can be readily
computed as

c̃ =
d + (µ · d mod R) · p

R
≡ d · R−1 mod p, (1)

where the parameter µ given as µ = −p−1 mod R, can
be pre-computed off-line. Also the reduction and division
by R operations, can be efficiently performed using fast

1Usually at the start and at the end of the RSA computation, operand
transfers to and from the Montgomery representation are performed.

right/left n-word shift operations. It can be shown that when
0 ≤ d < p2, the result c̃ of Equation (1) is an integer
in the interval [0, 2p[. Hence, at most a single conditional
subtraction is needed to obtain 0 ≤ c̃ < p. This conditional
subtraction must be performed in a constant-time fashion.

C. RNS MODULAR ARITHMETIC
In the nineties of the last century, several authors proposed
the usage of the Residue Number System (RNS) as an alter-
native for computing modular arithmetic over large integer
operands [16]–[19].2

Taking advantage of the ancient Chinese Remainder The-
orem (CRT), RNS main attractiveness is to represent a large
integer by means of a set of smaller independent numbers.
In this way, one trades the computational cost of a single
arithmetic operation over two large operands by the calcula-
tion of independent smaller modular operations that may be
computed in parallel. The RNS representation is defined as
follows.

Let B be an RNS-basis consisting of a set of ` pairwise
co-prime integer moduli B = {m1,m2, . . . ,m`}, and let
M =

∏`
i=1 mi. Then, an integer a ∈ [0,M − 1] can be

uniquely represented by the `-tuple a = (a1, a2, . . . , a`),
where each ai is the residue of a modulo mi. In the remain-
der of this paper this reduction operation will be written as
ai = |a|mi . From its RNS representation, the corresponding
binary representation of a can be obtained using the following
recovery formula,

a =

∣∣∣∣∣∑̀
i=1

∣∣∣ai ·M−1i

∣∣∣
mi
·Mi

∣∣∣∣∣
M

, where Mi , M/mi. (2)

Let a and b be two large k-bit integers with a, b <

M , represented as RNS tuples a = (a1, a2, . . . , a`) and
b = (b1, b2, . . . , b`). Then, RNS addition ⊕ and RNS
multiplication ⊗ are performed coefficient-wise as,

c = a⊕ b = (c1 = |a1 + b1|m1 , c2 = |a2 + b2|m2 ,

. . . , c` = |a` + b`|m`),

d = a⊗ b = (d1 = |a1 · b1|m1 , d2 = |a2 · b2|m2 ,

. . . , d` = |a` · b`|m`). (3)

If the target platform is equipped with ` processing units,
then the computational cost associated to any of the two RNS
arithmetic operations of Eq. (3) is approximately the same as
performing one single coefficient multiplication.
Remark 1: Let a, b be two k-bit integers. Then, the integer

product d = a ⊗ b of Eq. (3) can be uniquely recovered
from its RNS representation if and only if d < M . Since
in general the integer product d is a 2k-bit number, it follows
that an RNS representation of a, b and d requires an RNS-
basis composed of ` w-bit moduli, with ` ≥ 2d kwe = 2n.
Remark 2: For the sake of efficiency, the integer mod-

uli mi are usually selected as mi = 2w − µi, where µi
coefficients are chosen as small as possible. If µi < 2b

w
2 c,

2See [20] for a recent survey on several RNS reduction strategies.

9930 VOLUME 8, 2020

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

then the coefficients di for i = 1, . . . , ` of Eq. (3) can be
efficiently computed by repeating at most twice the operation,
ti = di mod 2w + µi · bdi/2wc. Thereafter it is guaranteed
that ti ∈ [0, 2w[. Since 2w > mi, one may need to compute
a final reduction, di = |ai · bi|mi = ti mod mi, which can
be achieved at a cost of at most one subtraction operation. In
order to assure a constant-time implementation, this reduction
is carried out by executing exactly two conditional reductions
of the form, ti = a mod 2w+µi ·ba/2wc, followed by exactly
one conditionally subtraction by mi.

1) RNS MODULAR REDUCTION
A modular multiplication is often performed by first com-
puting the integer multiplication d = a ⊗ b, followed by a
reductionmodulo p so that the resulting value lies in the range
[1, p − 1]. In this work, we adopted the reduction approach
proposed in [16], [18], and its adaptation to GPU platforms
presented by Jeljeli in [21] (see also [22]). Crucially, this
approach allows to perform a modular reduction d mod p
without leaving the RNS domain as it is explained next.

Let d be a large integer represented in RNS using a basis
composed by ` one-word moduli. Let us assume that d
must be reduced modulo an n-word prime number p. Then,
a strategy to perform the modular reduction d mod p can
be obtained from a direct application of the RNS recovery
formula of Eq. (2) as

d =

∣∣∣∣∣∑̀
i=1

γi ·Mi

∣∣∣∣∣
M

=

(∑̀
i=1

γi ·Mi

)
mod M ,

where γi ,
∣∣∣di ·M−1i

∣∣∣
mi
. (4)

Notice that the coefficients γi for i = 1, . . . , ` as defined
in Eq. (4), can be seen as a single RNS vector γ with `
coordinates. Notice that d can also be written as

d =
∑̀
i=1

γi ·Mi − α ·M , (5)

where α is some positive integer, and by construction, 0 ≤
d/M < 1. From Eq. (5), the parameter α can be estimated as

α ≈

⌊∑̀
i=1

γi

mi

⌋
.

Since γi < mi, we have that 0 ≤ α < `. Observe that the
value

z =
∑̀
i=1

γi · |Mi|p − |α ·M |p , (6)

is congruent to d mod p, but in general z ≥ d . In order
to obtain a good approximation of α, which at the same
time can be computed efficiently, one uses the fact that
mi ≈ 2w.Hence, the ratio γi/mi can be approximated by only
considering the σ most significant bits of the

quotient γi/2w as

α̂ ,

∑̀
i=1

⌊ γi

2w−σ

⌋
2σ

+1

 , (7)

where σ is an integer in the range [1,w] and 0 < 1 < 1 is an
error correcting parameter.
Remark 3: The integer part of the summation in Eq. (7)

can be efficiently computed by considering the output carry c
produced by the addition of the σ most significant bits of the
coefficients γi with i = 0, 1, . . . , `. Notice that the output
carry c is an integer in the range [0, `[.

Algorithm 3 computes the RNS vector z ≡ d mod p as
defined in Eq. (6). In Steps 4-6, ` processing units con-
currently compute ` copies of the RNS vector γ given in
Eq. (4). Although the computational cost of these steps is
of ` RNS multiplications, their associated latency is very
close to the latency associated to one RNS multiplication.
The second loop of Algorithm 3 (Steps 7-13) completes the
computation of the RNS vector z. Step 9 performs ` and `−1
RNS multiplications and additions, respectively. As before,
all these ` RNS multiplications can be computed in parallel,
but they must be sequentially added using a binary tree adder.
Step 10 computes α at the cost of adding ` σ -bit integers
(cf. Remark 3). In Step 11, the RNS vector z is finally
obtained by performing one RNSmultiplication and one RNS
subtraction.

Summarizing, the latency associated to Algorithm 3 is the
combined latency of three RNSmultiplications plus one RNS
subtraction plus the addition of ` σ -bit numbers.

Algorithm 3 does not calculate d mod p, but instead
produces an RNS multiple of it, which is bounded
by 2w · `· [21], [22]. In practice this implies that the RNS
vector z must be accommodated using at least two extra
safeguard moduli. Consequently, we increased the cardinality
of the RNS basis B from ` to ` + 3 moduli. By taking
this caution measure, one guarantees that accumulating thou-
sands of modular multiplications (required in the computa-
tion of a typical RSA exponentiation), will not exceed the
RNS bound M .

2) RNS MONTGOMERY MODULAR REDUCTION
Alternatively, the modular reduction by a k-bit prime number
p can be performed by adapting the Montgomery reduction
given in Equation (1), to the RNS representation setting. This
approach was first introduced by Posch and Posch [23], and
several refinements were proposed in [24] and in a myriad of
subsequent papers [20].

The adaptation of the k-bit Montgomery reduction to
RNS arithmetic requires to handle two distinct RNS-basis
B = {m1,m2, . . .m`} and B′ = {m′1,m

′

2, . . .m
′

`} such that
gcd(M ,M ′) = gcd(M , p) = 1, where ` = d kwe = n,
and M =

∏`
i=1 mi and M ′ =

∏`
i=1 m

′
i. In addition, the

Montgomery parameters of Equation (1) must be represented
using two RNS bases B and B′. It is customary to choose

VOLUME 8, 2020 9931

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

Algorithm 3 RNS Modular Reduction Optimized for
Multi/Many Core Platforms [21]
Require: The integer d given in `-moduli RNS representa-

tion, the `-moduli RNS-basisB, and parameters r , σ , and
1.

Ensure: RNS vector z, such that its integer representation is
z ≡ d mod p.

Precomputation:
1: RNS vector

∣∣∣M−1j

∣∣∣
mj

for j ∈ {1, . . . , `}

2: Table of RNS vectors |Mi|p for i ∈ {1, . . . , `}
3: Table of RNS vectors |α ·M |p for α ∈ {1, . . . , `− 1}
4: for each processing unit j do

5: γj←−

∣∣∣∣dj · ∣∣∣M−1j

∣∣∣
mj

∣∣∣∣
mj

6: end for
7: for each processing unit j do
8: for each processing unit i do
9: zj←−

∣∣∣∑`
i=1 γi ·

∣∣|Mi|p
∣∣
mj

∣∣∣
mj
F requires ` RNS

mults and `− 1 RNS adds.

10: α←−

∑`
i=1

⌊ γi

2w−σ

⌋
2σ

+1

11: zj←−

∣∣∣zj − ∣∣|α ·M |p∣∣mj ∣∣∣mj
12: end for
13: end for
14: return z = (z1, . . . , z`)

R = M , instead of R = rn. Moreover, the parameter µ of
Equation (1) is represented by the RNS vector −p−1 mod R
represented in base B.

As discussed in [24], [25], the RNS version of the Mont-
gomery reduction can avoid a conditional subtraction by
adopting Walter’s approach of [26]. Indeed, a redundant rep-
resentation of the elements in Montgomery representation
can be achieved by choosing a Montgomery radix such that
4p < R and a RNS-basis B′ such that 2p < M ′. At the end
of the whole computation the result can be normalized at the
cost of a single constant-time subtraction.

The procedure to compute an RNS Montgomery modular
reduction is presented in Algorithm 4. It is noted that the
multiplication dB by µ in Step 5, is carried out in base B.
Due to the design choice R = M , the reduction modulo R
is implicitly applied in this computation. Thus, the product
performed in this step is equivalent to compute µ · d mod R
of Equation (1). The numerator of Equation (1) is computed
in Step 11. This calculation must be performed in base B′
because the expected result is a multiple of R, which is equal
to zero in base B.
A division by R is computed in Step 12. The output

of this operation corresponds to the RNS representation of
d · R−1 mod p in base B′. This computation must be per-
formed in base B′ because R−1 is not defined in base B.
Thus, throughout the algorithm it becomes necessary to

Algorithm 4 RNS Montgomery Modular Reduction [24]
Require: The integer d given in the two bases `-moduli RNS

representations dB and dB′ , the `-moduli RNS-basis B
and B′.

Ensure: The RNS vectors zB and zB′ corresponding to the
integer representation of z ≡ d mod p.

Precomputation:
1: RNS vectors

∣∣∣M−1i

∣∣∣
mi
,

∣∣∣M ′−1i

∣∣∣
m′i
,

∣∣M−1∣∣m′i ,∣∣−p−1 mod M
∣∣
mi

and |p|m′i for i ∈ {1, . . . , `}
2: Table of vectors |Mi|m′j

and
∣∣M ′i ∣∣mj for i, j ∈ {1, . . . , `}

3: Tables of RNS vectors |α · (−M)|m′i and
∣∣α · (−M ′)∣∣mi

for α, i ∈ {1, . . . , `}
Computation:
4: for each processing unit i do
5: γi←−

∣∣∣dBi · ∣∣−p−1 mod M
∣∣
mi

∣∣∣
mi
F 1 RNS product

6: θi←−

∣∣∣∣γi · ∣∣∣M−1i

∣∣∣
mi

∣∣∣∣
mi

F 1 RNS product

7: end for

8: α←−

∑`
j=1

⌊
θj

2w−σ

⌋
2σ

 F Addition of ` σ -bit terms

9: for each processing unit i do

10: δi←−

∣∣∣∣∑`
j=1

∣∣∣|Mi|m′j
· θj

∣∣∣
m′i
+ |α(−M)|m′i

∣∣∣∣
m′i

F `

RNS products and ` RNS additions
11: γi←−

∣∣∣dB′i + (δi · |p|m′i)∣∣∣m′i F 1 RNS product and

1 RNS addition
12: zB′i←−

∣∣∣γi · ∣∣M−1∣∣m′i ∣∣∣m′i F 1 RNS product

13: θi←−

∣∣∣∣zB′i · ∣∣∣M ′−1i

∣∣∣
m′i

∣∣∣∣
m′i

F 1 RNS product

14: end for

15: α←−

∑`
j=1

⌊
θj

2w−σ

⌋
2σ

+ 0.5

 F Addition of ` σ -bit

terms
16: for each processing unit i do

17: zBi←−

∣∣∣∣∑`
j=1

∣∣∣∣∣M ′i ∣∣mj · θj∣∣∣mi + ∣∣α(−M ′)∣∣mi
∣∣∣∣
mi

F `

RNS products and ` RNS additions
18: end for
19: return zB and zB′

perform two base extensions, which consist of transforming
a number given in base B (resp. B′) into a number in base B′
(resp.B.) The first base extension (Steps 6 to 10) is performed
to derive an approximation for δ obtained from the value
γ calculated in Step 5. This permits to compute the value
(d+(µ·d mod R)·p)/R in baseB′. The second base extension
(Steps 14 to 17) is performed at the end of the algorithm. This
extension obtains the RNS representation of the final result in
base B (which was computed in Step 12 in base B′).

9932 VOLUME 8, 2020

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

III. EFFICIENT IMPLEMENTATION OF RSA ON CPU
PLATFORMS
In this section, efficient CPU software implementations of the
RSA exponentiation are described in detail. First, the imple-
mentation of elementary arithmetic operations such as multi-
plication, squaring and Montgomery reduction, is described.
Moreover, a brief explanation of how this modular arithmetic
layer was used for the concurrent computation of the two
exponentiations associated to the RSA signature is given.
Thereafter, a description of the RNS-based arithmetic imple-
mentation is presented. The implementation of this arithmetic
heavily relies on the set of Advanced Vector Extensions 2
AVX2. Furthermore, a comparison between the RNS reduc-
tion procedures described in Algorithm 3 and Algorithm 4
shows that for our CPU implementation setting, the latter is
faster than the former.

All the experimental results presented in this section
were executed on an Intel Core i7-4770 processor support-
ing the Haswell micro-architecture and on an Intel Core
i7-6700 processor that supports the Skylake micro-
architecture, equipped with 16 GB of RAM memory
and using the Ubuntu 16.04.6 LTS operating system.
To guarantee the reproducibility of our measurements,
the Intel Hyper-Threading and Intel Turbo Boost tech-
nologies were disabled. Our source code was com-
piled using the GNU C Compiler (gcc) v6.1.0 with the
-O3 optimization flag and using the options -mbmi2
-fwrapv -fomit-frame-pointer and -mbmi2
-madx -fwrapv -fomit-frame-pointer for the
Haswell and Skylake micro-architectures, respectively.3

A. MONTGOMERY BASED ARITHMETIC ON CPU
PLATFORMS
1) INTEL INTEGER ARITHMETIC INSTRUCTIONS
Aiming to achieve efficient integer multiplication/squaring
and Montgomery’s reduction, we took advantage of the
instruction MULX and the set of instructions Multi-precision
Add-carry instruction extensions ADX [27]. First introduced
in the Bit Manipulation instruction set (BMI2) of the Haswell
micro-architecture, the assembly instruction MULX is an
extension of the 64-bit multiplication instruction MUL. MULX
uses a three-operand code and computes an unsigned multi-
plication without modifying the arithmetic flags. The advan-
tage of the three-operand code is that permits to save MOV
instructions by allowing to choose the output registers receiv-
ing the highest and the lowest part of the two-word output
product. On the other hand, the instruction set ADX first
introduced in the Broadwell micro-architecture, includes the
instructions ADCX and ADOX, which were designed to handle
two independent carry chains. These instructions compute
unsigned 64-bit additions with input carry. The resulting
output carry is stored in the carry flag (CF) and the overflow
flag (OF), respectively. Since both instructions deal with two

3The source code of our software library is available at,
https://github.com/luinxz/RSA.

independent carry chains, they can be executed in parallel. An
important advantage of these instructions is that they allow to
combine MULX, ADC, ADCX and ADOX instructions without
corrupting the carry chain. This feature has a noticeable
impact in the efficiency of the Montgomery based arithmetic
as discussed next.

2) INTEGER MULTIPLICATION
The two most popular approaches for computing integer
multiplication in a software implementation are the school-
book method with its associated quadratic complexity on
the number of word multiplications, and the Karatsuba and
Ofman [28] approach that enjoys a sub-quadratic complexity
on the number of word multiplications at the price of increas-
ing the number of required word additions. One can also opt
for using a combination of these two methods, which was the
strategy adopted in this work.

The efficiency of the schoolbook method mainly depends
on how the partial products are computed and the way that
they are added.We used the operand-scanning strategy, where
the multiplicand operand is multiplied by each word of the
multiplier. This strategy allows us to take full advantage of
the MULX, ADCX and ADOX instructions.

However, this approach is limited by the available number
of general purpose registers. Because of this, the school-
book method tends to be efficient only when the operands
have a small word-length. Indeed, as shown in Table 1, our
implementation of a pure schoolbook integer multiplication
outperformed Karatsuba only when the operands had a word-
length in the range 0 < n ≤ 8.
Therefore, n-word multiplications with n > 8 were per-

formed using a combination of the Karatsuba multiplication
method [28] and the schoolbook approach. Two n-word inte-
gers a and b can be written as a = a0 + a1 · rn/2 and
b = b0 + b1 · rn/2, where as before r = 2w. Using the
Karatsuba approach, one first computes the values cL =
a0 · b0, cM = (a0 + a1)(b0 + b1) and cH = a1 · b1. Then
the integer multiplication c = a · b is obtained as

c = cL + (cM − cL − cH) · rn/2 + CH · rn.

This computation costs two additions and three multiplica-
tions of n/2-word integers, plus one addition and two sub-
tractions of n-word operands.
For 16-word multiplications, we applied one Karatsuba

level that took us from 16- to 8-word multiplications. In the
case of 24-word multiplications, we utilized two Karatsuba
levels that took us from 24- to 12-word multiplications, and
then to 6-word multiplications. The results obtained from this
strategy are presented in Table 1.

COMPARISON AGAINST SCOTT’S KARATSUBA VARIANT
In [29], Scott proposed a Karatsuba variant based on Arbi-
trary degree Karatsuba (ADK) previously suggested in [30].
Scott implemented the ADK approach in the reduced-
radix setting, where a number is represented using a word
size lower than the one belonging to the target processor.

VOLUME 8, 2020 9933

https://github.com/luinxz/RSA

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

TABLE 1. A comparison of integer multiplication using Karatsuba and
schoolbook method. Computational costs are reported in number of word
multiplications (using MULX instructions) and clock cycles measured on
Haswell (HW) and Skylake (SK) micro-architectures.

TABLE 2. Comparison of timings for integer multiplication using Scott
strategy [29] against Karatsuba-schoolbook method. All timings are
reported in clock cycles measured on Haswell (HW) and Skylake (SK)
micro-architectures.

The advantage of this strategy is that the partial products can
be accumulated without worrying about the output carries.

We implemented Scott’s strategy using a word size of
r = 262 bits as proposed in [29]. A comparison of our
own implementation of Scott’s proposal against the com-
bination of Karatsuba and the schoolbook methods is pre-
sented in Table 2. It can be observed that the combination of
Karatsuba plus the schoolbook approaches outperforms the
one reported by Scott for the range of word-lengths relevant
to this work.

3) INTEGER SQUARING OPERATION
For operands with a word-length n ≥ 6, we chose a variant
of the Karatsuba method that takes advantage of the repeated
partial products that show up in the squaring operation. Con-
sidering an n-word integer a written as a = a0 + a1 · rn/2.
First compute the values cL = a20, cM = 2(a0 · a1) and
cH = a21. Then the squaring c = a2 can be computed as
c = cL + 2(a0 · a1) · rn/2 + cH . This can be obtained at
the cost of two n/2-word squarings, one multiplication of
n/2-word operands, and two n-word additions.

The implementation of an n-word squaring for n ∈
{24, 16, 8} was conducted using up to three Karatsuba lev-
els (going from 24- to 12-, then to 6-word and finally to
3-word multiplications/squarings). Eighteen squaring and
nine multiplications of 3-words operands were computed for
n = 24. For n = 16, two Karatsuba levels (going from
16- to 8- and then to 4-word multiplications/squarings),

TABLE 3. A comparison of integer squaring using the schoolbook and the
Karatsuba methods. Computational costs are reported in number of word
multiplications (using MUX instructions) and clock cycles measured on
Haswell (HW) and Skylake (SK) micro-architectures.

require six squarings and three multiplications of 4-word
operands. For n = 8 it suffices one Karatsuba level
(going from 8- to 4-word multiplications/squarings), using
two squarings and one multiplication of 4-word operands.
According to our experiments, the squaring computation of
up to 4-word operands has a better performance when using
a pure schoolbook approach. In the case of operands with
a word-length n ≥ 6, the best strategy was to combine the
Karatsuba and schoolbookmethods. A summary of the results
obtained are reported in Table 3.

4) MONTGOMERY MODULAR REDUCTION
The Montgomery modular reduction of Equation (1),
requires to compute two n-word multiplications, which are
divided or reduced modulo R = rn. A straightforward opti-
mization can be applied observing that for the multiplication
µ ·d mod R, only the least significant half of the result must
be computed. Likewise, in the case of the (µ · d mod R) · p
computation, only the most significant half of the product is
required (due to the subsequent division by R).

For the cases when n ≤ 8, these operationswere performed
using the schoolbookmultiplicationmethod. Thus, an n-word
multiplication divided by R is computed using n(n+1)/2+n
word multiplications; and an n-word multiplication modulo
R is computed using n(n+ 1)/2 word multiplications. On the
other hand, for the cases when n > 8 we employed up to
two levels of the Karatsuba method. At each level was nec-
essary to compute one n/2-word multiplication and two half
n/2-word multiplications as depicted in Figure 1.

Table 4 reports the timings measured for the Mont-
gomery modular reduction, modular multiplication and
squaring operations. The operands have a word length
of n ∈ {8, 16, 24}.

5) MONTGOMERY-BASED RSA SIGNATURE
The RSA signature described in the introduction section, was
performed using the exponentiation procedure presented in
Algorithm 2, which was implemented with an underlying
Montgomery-based arithmetic layer. Furthermore, the two
RSA signature exponentiations were computed concurrently
using two cores and the OpenMP library for synchronization.

9934 VOLUME 8, 2020

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

FIGURE 1. Let a and b be two n-word integers written as
a = a0 + a1 · rn/2 and b = b0 + b1 · rn/2, respectively. Figure (a) shows a
Karatsuba n-word multiplication modulo R, whereas Figure (b) shows a
Karatsuba n-word multiplication divided by R. The dashed rectangles
show the operations that are not computed.

TABLE 4. Timings for modular reduction, modular multiplication and
modular squaring. All timings are reported in clock cycles measured on
Haswell (HW) and Skylake (SK) micro-architectures.

The 8-word modular exponentiations for RSA-1024 were
performed using a window size ω = 4. In the case of
the 16- and 24-word modular exponentiations (required for
computing RSA-2048 and RSA-3072), a window size ω = 5
was chosen.

In Table 5, the latency achieved by our library when
computing RSA signatures for 1024- , 2048-, and 3072-bit
private keys is reported. Table 5 presents a comparison of
our results against previously reported RSA implementations.
Bos et al. et al. in [11] computed a Montgomery multiplica-
tion by splitting the Montgomery algorithm into two parts,
which can be executed in parallel using Single Input Multiple
Data (SIMD) instructions. Moreover, the authors of [11]
presented RSA signature timings corresponding to a serial
implementation. Table 5 also shows the work by Gueron and
Krasnov [12], where the authors reported an RSA implemen-
tation that profited from a redundant integer representation
that avoids the carry propagation by using operands organized

TABLE 5. Performance comparison of the RSA signature implemented on
CPU platforms using Montgomery based arithmetic. All timings are given
in millions of clock cycles.

on 29-bit words. To the best of our knowledge, none of these
two works included countermeasures to protect their RSA
implementations against some basic side-channel attacks.

B. CPU IMPLEMENTATION OF RNS-BASED ARITHMETIC
In this section, our implementation of RNS-based arithmetic
using the set of Advanced Vector Extensions 2 AVX2 is pre-
sented. A performance comparison between the RNS reduc-
tion procedures given in Algorithm 3 and Algorithm 4 is also
reported.

1) VECTOR INSTRUCTIONS
In order to perform an efficient implementation of the RNS
based arithmetic as described in Section §II-C, we took
advantage of the AVX2 instruction set introduced in the Intel
Haswell micro-architecture [31]. AVX2 is an extension from
its ancestor AVX, which allows to compute Single Instruc-
tion Multiple Data (SIMD) operations using 256-bit vector
registers. AVX2 provides operations supporting integer arith-
metic that are able to compute up to four concurrent 64-bit
operations over the values stored in the vector registers. In
terms of performance, one would expect a speedup factor of
four coming from the simultaneous execution of 64-bit oper-
ations. Nevertheless, this acceleration can be attained only
by some instructions. This is due to some overhead factors
like the execution latency and throughput, and the number
of execution units available in the target micro-architecture.
In fact, the size of the AVX2 multiplier is expected to be a
limiting factor. We mainly made use of the following AVX2
instructions,

• mm256_mul_epu32: Computes four products of 32×
32 bits, storing the four 64-bit results on a 256-bit vector
register;

• mm256_add_epi32, mm256_sub_epi32: Com-
putes eight concurrent 32-bit additions/subtractions,
without handling the input/output carry and borrow,
respectively;

• mm256_slli_epi32,mm256_srli_epi32: Com-
putes eight 32-bit logical shifts using the same fixed shift
displacement for everyword stored in the vector register;

• mm256_shuffle_epi32: Shuffles 32-bit values of
the source vector in the destination vector at the loca-
tions selected by a control operand;

VOLUME 8, 2020 9935

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

• mm256_xor_si256, mm256_and_si256: Com-
putes the XOR/AND of two 256-bit vector registers;

• mm256_cmpgt_epi32: Returns a vector with the val-
ues 232− 1 and zero depending if the comparison of the
32-bit integers in the vector register is true or not.

Since the AVX2multiplier works on 32-bit input operands,
a word size w = 32 must be assumed. This implies that the
operations required for RSA signatures with 1024-, 2048- and
3072-bit keys must be computed using integers with a word-
length n ∈ {16, 32, 48}.
RNS addition, subtraction, and multiplication of two inte-

gers a and b are performed component-wise as shown in
Equation (3) of Section §II-C. Considering our target micro-
architectures, one can compute up to eight operations modulo
mi simultaneously. Therefore, all the computations described
below must be performed by each vector storing the moduli
of the the RNS-basis B, i.e. a total of

⌈ n
8

⌉
vectors.

The implementation of the RNS arithmetic main opera-
tions taking advantage of the AVX2 instructions is presented
in the remaining of this section.

2) VECTORIAL RNS ADDITION/SUBTRACTION
Addition and subtraction can be straightforwardly imple-
mented using the vector operations included in the AVX2
instruction set. Initially, the integer addition or sub-
traction are computed with the mm256_add_epi32 or
mm256_sub_epi32 instructions. The result of these oper-
ations is stored in a vectorC . As shown in Figure 2, themodu-
lar reduction by each modulimi belonging to the RNS base B
(cf. Section §II-C) can be computed in constant time as
discussed next.

By means of the mm256_cmpgt_epi32 instruction, one
can catch the carry or borrow produced by the integer addi-
tion or subtraction operations, which is stored in a vector CB.
Thereafter, the instruction mm256_and_si256 is used to

FIGURE 2. RNS addition/subtraction using AVX2 instructions.

compute the logic AND of CB and the vector M of moduli
mi, whose result is stored in a vector D. Then, the vector D
is subtracted or added to the value obtained from the above
addition or subtraction, respectively. The RNS computation
of C = A⊕ B and C = A	 B is depicted in Figure 2.

3) VECTORIAL RNS MULTIPLICATION
Multiplication and squaring in RNS are a bit more involved
operations than the addition and subtraction ones. This is
because, the AVX2 instruction mm256_mul_epu32 only
computes four 32 × 32-bit multiplications. Hence, in order
to compute a component-wise integer multiplication of two
RNS vectors A and B, we use the mm256_mul_epu32
instruction. This instruction calculates the products of odd
indexes and store them into a vector D0. Then, the shuf-
fle instruction mm256_shuffle_epi32 can be used to
reorder the 32-bit values of the A and B vector registers. This
permits to compute the products of the even indexes, which
are stored in the vector D1 as shown in Figure 3.

FIGURE 3. Component-wise integer multiplication of two integers a and b
in RNS representation.

RNS INDIVIDUAL MODULAR REDUCTION
Modular reduction by each moduli mi = 2w − µi in B is
computed as described in Remark 2 of Section §II-C. Let
D0 and D1 be two output vectors of the computation shown
in Figure 3, and letM be a vector composed by the µi small
values described in Remark 2.

First, the mm256_shuffle_epi32 instruction is
executed to reorder the 32-bit values in the D0, D1 and
M vectors. Thereafter, the instruction mm256_mul_epu32
recovers the values µi · bti/2wc with ti = ai · bi, which
were stored in the vectors E0 and E1, respectively. Then,
the execution of the mm256_srli_epi32 instruction on
E0 and E1 using an offset of 32 produces the vectors F0 and
F1, which are added using mm256_add_epi64 to D0 and
D1.This obtains the values di = ti mod 2w+µi·bti/2wc. After
two iterations of the above procedure, the di values stored
in D0 and D1 correspond to ti mod mi. Thus, it becomes
necessary to combine the final vectors D0 and D1 to get the
vector D that stores the values of A ⊗ B. This procedure is
depicted in Figure 4.

4) VECTORIAL RNS MODULAR REDUCTION
Modular reduction was performed using Algorithm 3 as was
presented by Jeljeli in [21], and Algorithm 4 as was described
by Kawamura in [24]. For both of these two reduction algo-
rithms it becomes necessary to find the approximation α̂ as
given in Equation (7), which was computed as described in
Section §II-C, Remark 3.

9936 VOLUME 8, 2020

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

FIGURE 4. RNS multiplication/squaring using AVX2 instructions.

TABLE 6. Comparison of timings for modular reduction, modular
multiplication and modular squaring based on the RNS reduction
Algorithm 3 and Algorithm 4 using the AVX2 instructions. All timings are
reported in clock cycles measured on Haswell (HW) and Skylake (SK)
micro-architectures.

When working with the RNS reduction Algorithm 3,
one computes α̂ for each vector storing 0 = (γ1, . . . ,
γ`). This calculation is performed by invoking the
mm256_srli_epi32 instruction with offsets 5 for
RSA-1024, and 25 for RSA-2048 and RSA-3072. For the
reduction Algorithm 4, offsets of 18 for RSA-1024 and
RSA-2048, and 16 for RSA-3072 were employed.

Thereafter, the mm256_slli_epi32 instruction is
applied to each vector using offsets that guarantee constrain-
ing the subsequent additions in the interval [0, 232 − 1].
For example when the reduction Algorithm 3 is used,
the offsets are 19 for RSA-1024, and 17 for RSA-2048
and RSA-3072. In the case of the reduction Algorithm 4,
the offsets are 14, 10 and 8 for RSA-1024, RSA-2048 and
RSA-3072, respectively. As a final step, all vectors are added
using mm256_add_epi32 instructions, and the values of
the resulting output vector are also added in order to obtain a
32-bit value, which is shifted to the right by an offset of 24.

The matrix-vector multiplications needed in both
algorithms can be performed using ` RNS multiplications
followed by `− 1 RNS additions, as shown in Section §II-C.
The matrix multiplication in Step 9 of Algorithm 3 can be
done straightforwardly. However, the matrix multiplications
in Steps 10 and 17 of Algorithm 4 require to transpose the
matrices |Mi|m′j

and
∣∣M ′i ∣∣mj .

TABLE 7. Timings for RSA signature algorithm using AVX2 instructions. All
timings are reported in millions of clock cycles measured on Haswell
(HW) and Skylake (SK) micro-architectures.

The experimental results obtained for both reduction algo-
rithms are presented in Table 6. One can observe that the RNS
Montgomery reduction of Algorithm 4 is twice as fast as the
RNS reduction Algorithm 3. This is mainly due to the fact
that for the RNS Montgomery reduction the basis used to
represent the numbers are of size ` = n, whereas the base
used in Algorithm 3 has a size of ` = 2n + 3. Moreover, all
the operations in Algorithm 4 require to process vectors with
a size of roughly half of the ones required in Algorithm 3.

5) RNS-BASED RSA SIGNATURE
As in §III-A, we concurrently computed two RSA modu-
lar exponentiations using two cores running the protected
exponentiationmethod described in Algorithm 2. Once again,
the synchronization of these two tasks was achieved trough
the usage of the OpenMP library. Modular exponentiations
for RSA-1024 were performed using a window size ω = 4,
whereas ω = 5 was adopted for modular exponentiations
corresponding to both RSA-2048 and RSA-3072.

Table 7 presents the latency achieved by our library for the
RSA-1024, RSA-2048, and RSA-3072 signature computa-
tions. One can observe that the RSA signature based on RNS
Montgomery arithmetic (Algorithm 4) is two times faster than
the RSA signature based on the RNS reduction Algorithm 3.
It is worth noting that the best results of Table 7 are slower
by a factor of 3.1x and 3.8x than the best results reported
in Table 5 for RSA-2048 and RSA-3072. On the other hand,
the best result for RSA-1024 signature in Table 7 is 2.5 times
faster than the one reported in Table 5.

IV. EFFICIENT IMPLEMENTATION OF RSA ON GPU
PLATFORMS
In this section, the implementation of the RSA exponentiation
on a GPU architecture is described. The material presented
here is partially based on a previous work presented in [32].

A. PARALLEL COMPUTATIONS ON GPU ARCHITECTURES
Graphics Processing Units (GPU) are optimized hardware
blocks originally designed for performing graphics opera-
tions [33]. Nowadays, GPU platforms are widely considered
general purpose processors. In 2006, NVIDIA introduced a
parallel computing framework namedCUDA, whichwas espe-
cially designed for GPU environments. CUDA defines three
important features: a threading model, a set of conventions
for calling nativeGPU’s functions, and a hierarchicalmemory
infrastructure. In a GPU architecture the basic computational
and resource allocation units are threads. Threads can be

VOLUME 8, 2020 9937

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

grouped into blocks, which in turn can be grouped into a
grid. Threads in a block are partitioned into warps. For all
GPU architectures a warp is composed by 32 threads that run
concurrently.

A GPU architecture utilizes the Single Instruction Mul-
tiple Thread (SIMT) programming model paradigm, where
all threads inside a warp can execute the same instruction
at the same time. The general programming model consists
of code sequences called kernels. A kernel execution can
be synchronous or asynchronous. This allows programmers
to manage concurrent execution through the completion of
command sequences called streams.

GPU architectures support several types of memory mod-
els such as, global memory, constant memory, shared mem-
ory, among others. The shared memory is a small cache
memory with low-latency attached to each Streaming Mul-
tiprocessor (SM). Shared memory can be accessed by all the
threads in a block. During kernel invocation, a programmer
can configure the amount of shared memory available per
block.4 For example, in a Kepler architecture a valid config-
uration can allocate 48 KB and 16KB for the software and
the hardware data cache, respectively. Moreover, the PTX
(Parallel Thread eXecution) is a low-level parallel thread
execution virtual machine that provides a stable programming
model and an instruction set for general purpose parallel pro-
gramming [34]. It is often used to gain control over arithmetic
operations trying to avoid thread divergence during a program
execution.5

In this work wemade extensive use of the following assem-
bly instructions,

• addc: Adds two 32/64-bits values taking into account
the carry-in bit, producing a carry-out bit;

• subc: Performs a 32/64-bits subtraction operation with
input borrow and producing a borrow-out bit;

• mul.lo: Multiplies two 32/64-bits values and returns
xi × yi mod 2r , where xi and yi are both non-negative
integers, and r is typically selected to be the GPU word
size;

• mul.hi : Multiplies two 32/64-bits values and returns
xi×yi/2r , where xi and yi are both non-negative integers;

• mad.(hi,lo).cc: Multiplies two 32/64 -bits values,
extracts the higher or lower half of the result, and adds a
third 32/64-bit value with carry-out.

Especially because of its ability to handle an implicit
carry/borrow operation, the aforementioned instructions
helped our implementation to achieve a better performance.
Also, we extensively used the data type uint2, which is a two-
element vector that stores two halves of a 64-bit integer, as the
most and least significant halves. This data structure permits
an efficient access to data stored in registers and the shared
memory.

4Common GPU architectures are Fermi, Kepler, Haswell, Pascal, and
Volta. Each architecture has different sizes for shared memory.

5A thread divergence occurs when several threads do not execute the same
instruction at the same time. This prevents to fully exploit parallelism.

FIGURE 5. Computation of RNS modular multiplication on a GPU
platform.

B. MAIN OPERATIONS IN RNS REPRESENTATION
In the following, we describe how the RSA exponentiation
was carried out in the GPU platform. As a pre-computation
step, in the CPU server the set of pair-wised co-prime num-
bers composing the RNS-basis B was chosen. Then, all the
RSA operands and moduli were converted to their RNS rep-
resentation and these values were sent to the GPU platform.
After that, the exponentiation computation in the GPU plat-
form was considered ready to start.

RNS INTEGER MULTIPLICATION
Integer multiplication can be performed in parallel by launch-
ing ` blocks with ` threads, which compute concurrently up
to ` independent RNS multiplications of the form C = A⊗
B, where A and B are in RNS representation in base
B = m1, · · · ,m` (or in base B = m1, · · · ,m` and
B′ = m′1, · · · ,m

′

` if the RNS reduction Algorithm 4 is
used). This arrangement is depicted in Figure 5(a), where it is
shown that each thread is in charge of processing the modular
product of a pair of RNS coordinates |ai · bi|mi (or |ai · bi|mi
and |ai · bi|m′i). Since each warp executes the same instruc-
tion, this arrangement avoids thread’s divergence. Moreover,
the multiplications carried out concurrently do not need to be
synchronized. Also, the threads can efficiently access each
coordinate of the RNS vectors as these values are allocated on
contiguous segments of memory. Each thread stores the out-
put of its modular multiplication computation on a register,
thus avoiding global memory accesses that would be much
more costlier.

After all threads have completed the integer multiplica-
tion step, a modular reduction by the modulus p must be
applied either using the reduction Algorithm 3 or the RNS
Montgomery reduction algorithm 4. For the sake of brevity,

9938 VOLUME 8, 2020

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

TABLE 8. Performance comparison of RSA private operation
implemented in GPU platforms. Al timings are given in milliseconds.

we only explain in the following our GPU implementation of
the RNS reduction Algorithm 3. The corresponding imple-
mentation of the RNS Montgomery reduction algorithm 4
follows a similar design flow.

C. RNS MODULAR REDUCTION USING ALGORITHM 3
Modular reduction carried out by Algorithm 3 is illustrated
in Figures 5 (b), (c), (d), and (e). The reduction process
requires the pre-computation of several values (Steps 1-3),
which are processed in the hosting CPU and sent to the GPU
before the main computation starts. The RNS vector |M−1i |mi
and the RNS table |Mi|p in Steps 1-2 are both stored in the
shared memory so that it can be available for all the threads.
The third precomputed value is the table containing the RNS
vectors |α ·M |p, for α = 1, . . . , `−1. This table is mapped to
the texture memory because only few threads have to query it.

The multiplication operations required in Step 5 are com-
puted in a redundant fashion as previously described and
illustrated in Fig. 5b. Then in Step 9, the most expensive
task of the reduction algorithm is performed, requiring the
computation of ` and `−1RNSmultiplications and additions,
respectively. This calculation is performed in parallel by
launching ` blocks with ` threads each (illustrated in Fig. 5c).
If there are more than 32 active threads, then an explicit
barrier must be placed in order to synchronize all threads
of each block, and one must wait until all the threads have
completed their execution. Once that all the partial results
have been obtained by each block, each thread stores its
result in the shared memory. Next, all the partial results so
obtained must be added, This can be done by using a binary
addition tree strategy [35]. Step 10 of Algorithm 3 calculates
` copies of α using ` blocks as shown in Figure 5(d). The
` − 1 additions are computed collaboratively as previously
mentioned. Finally, in Step 11 of Algorithm 3, a single thread
of each one of the ` blocks, performs an RNS coordinate
subtraction saving the final result of the modular reduction
into the global memory (see Figure 5e). This avoids that
the threads compete to each other for writing into the same
memory address.

D. GPU RESULTS
The experimental hardware setup used for the experimental
results reported in this section is the following: CUDA toolkit
version 9.1, 20 MultiProcessor with 128 cores each running
at 1.81 GHz, and global memory of 8 GB.

In Table 8, the latency achieved by our GPU library
for the RSA private operation is reported for key lengths
of 1024, 2048 and 3072 bits, respectively. Table 8 also shows
a comparison against related works previously published
for the parallel RSA implementation on GPU platforms.
It can be seen that our implementation has better latency for
RSA-1024, RSA-2048 and RSA-3072 than previously pub-
lished results. Besides, our implementation offers a first-line
of protection against timing attacks.

V. CONCLUSION
In this paper an optimized parallel implementation of RSA
signatures using some of the most efficient and effective
arithmetic algorithms for both CPU and GPU high-end archi-
tectures was presented. As it was shown in Tables 5 and 8,
our RSA CPU and GPU libraries instantiated with the most
popular private key lengths of 1024, 2048 and 3072 bits,
achieve faster timings than previously reported literature.

From an algorithmic point of view, it is also interesting
to compare the performance achieved by the RNS reduction
procedures described in Algorithms 3-4 when implemented
in CPU and GPU architectures. In the case of our RSA CPU
implementation, a close inspection of Table 7 reveals that
due to the higher number of about 4n2 word multiplications
required by Algorithm 3 compared with about 2n2 word
multiplications required by Algorithm 4, the latter reduction
algorithm is faster than the former by a factor close to two.
Strikingly, from our RSA GPU implementation we observed
the opposite situation. Indeed, due to the fact that Algorithm 3
is more amenable for the massive parallelism provided by the
GPU many-core architecture, it yields a better performance
than Algorithm 4. This computational behavior is reported
in Table 8.

In spite of its massive parallelism, we observe that GPU
implementations of RSA are considerably slower than their
CPU counterparts. Nevertheless, notice that our RSA GPU
implementation enjoys a sub-quadratic complexity in the cost
of the RSA exponentiation with respect to the size of its key.

For example, from our GPU timings shown in Table 8,
one can see that the computational timing cost of
RSA-2048 and RSA-3072 is just 2.42 and 4.23 more expen-
sive than RSA-1024, respectively. On the contrary, from our
CPU timings shown in Table 5, one can see that the cost of
RSA-2048 and RSA-3072 is 6.60 and 20.08 more expen-
sive than RSA-1024, respectively. These timings increments
closely follow a quadratic complexity. Hence, we believe
that for cryptographic applications where extremely large
operands are required (such as the ones proposed in sev-
eral homomorphic encryption schemes), our RNS arithmetic
library could be of interest. We leave as a future work to study
this potential application.

REFERENCES
[1] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital

signatures and public-key cryptosystems,’’ Commun. ACM, vol. 26, no. 1,
pp. 96–99, Jan. 1983.

VOLUME 8, 2020 9939

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

[2] P. C. Kocher, ‘‘Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,’’ in Advances in Cryptology—
CRYPTO (Lecture Notes in Computer Science). London, U.K.:
Springer-Verlag, 1996, pp. 104–113. [Online]. Available: http://dl.acm.
org/citation.cfm?id=646761.706156

[3] E. Barker, ‘‘Recommendation for key management part 1: General,’’ NIST,
Gaithersburg, MD, USA, Tech. Rep. NIST Special Publication 800-57
Part 1 Revision 4, Jan. 2016. [Online]. Available: http://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

[4] D. Adrian, L. Valenta, B. Vandersloot, E. Wustrow, S. Zanella-Béguelin,
P. Zimmermann, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. A. Halderman, N. Heninger, D. Springall, and E. Thomé, ‘‘Imperfect
forward secrecy: How Diffie-Hellman fails in practice,’’ in Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2015, pp. 5–17.

[5] M. Delcourt, T. Kleinjung, A. Lenstra, S. Nath, D. Page, and N. Smart,
‘‘Using the cloud to determine key strengths—Triennial update,’’ Cryp-
tol. ePrint Arch., Tech. Rep. 2018/1221, 2018. [Online]. Available:
https://eprint.iacr.org

[6] J.-S. Coron, ‘‘On the exact security of full domain hash,’’ in Proc.
20th Annu. Int. Cryptol. Conf., Santa Barbara, CA, USA, Aug. 2000,
pp. 229–235.

[7] J. Dong, F. Zheng, W. Pan, J. Lin, J. Jing, and Y. Zhao, ‘‘Utilizing
the double–precision floating–point computing power of GPUs for RSA
acceleration,’’ Secur. Commun. Netw., vol. 2017, pp. 1–15, Sep. 2017.

[8] H. Mohammedfadhil and M. I. Younis, ‘‘Parallelizing RSA algorithm on
multicore CPU and GPU,’’ Int. J. Comput. Appl., vol. 87, no. 6, pp. 15–22,
Feb. 2014.

[9] K. Jang, S. Han, S. Han, S. Moon, and K. Park, ‘‘SSLShader: Cheap
SSL acceleration with commodity processors,’’ in Proc. 8th USENIX Conf.
Netw. Syst. Design Implement., in NSDI. Berkeley, CA, USA: USENIX
Association, 2011, pp. 1–14.

[10] Y. Yang, Z. Guan, H. Sun, and Z. Chen, ‘‘Accelerating RSA with fine-
grained parallelism using GPU,’’ in Proc. 11th Int. Conf. Inf. Secur. Pract.
Exper., in ISPEC. Beijing, China: Springer, 2015, pp. 454–468.

[11] J. W. Bos, P. L. Montgomery, D. Shumow, and G. M. Zaverucha, ‘‘Mont-
gomery multiplication using vector instructions,’’ in Proc. 20th Int. Conf.
Sel. Areas Cryptogr., Burnaby, BC, Canada, Aug. 2013, pp. 471–489,
doi: 10.1007/978-3-662-43414-7_24.

[12] S. Gueron and V. Krasnov, ‘‘Speed records for multi-prime RSA using
AVX2 architectures,’’ in Proc. 13th Int. Conf. Inf. Technol., New Gener.
Cham, Switzerland: Springer, 2016, pp. 237–245, doi: 10.1007/978-3-319-
32467-8_22.

[13] M. Joye and M. Tunstall, ‘‘Exponent recoding and regular exponentiation
algorithms,’’ in Proc. 2nd Int. Conf. Cryptol. Africa, in AFRICACRYPT.
Gammarth, Tunisia: Springer, 2009, pp. 334–349.

[14] T. Oliveira, J. López, and F. Rodríguez-Henríquez, ‘‘Software implementa-
tion of Koblitz curves over quadratic fields,’’ in Cryptographic Hardware
and Embedded Systems—CHES, B. Gierlichs and A. Y. Poschmann, Eds.
Berlin, Germany: Springer, 2016, pp. 259–279.

[15] P. L. Montgomery, ‘‘Modular multiplication without trial division,’’Math.
Comp., vol. 44, no. 170, p. 519, May 1985.

[16] D. J. Bernstein, ‘‘Multidigit modular multiplication with the Explicit Chi-
nese Remainder Theorem,’’ Ph.D. dissertation, Univ. California, Berkeley,
Berkeley, CA, USA, 1995, ch. 4.

[17] J. M. Couveignes, ‘‘Computing a square root for the number field sieve,’’
in The Development of the Number Field Sieve (Lecture Notes in Mathe-
matics), vol. 1554, H.W. Lenstra and A. K. Lenstra, Eds. Berlin, Germany:
Springer-Verlag, 1993, pp. 90–97.

[18] P. L. Montgomery and R. D. Silverman, ‘‘An FFT extension to the
P—1 factoring algorithm,’’ Math. Comput., vol. 54, no. 190, p. 839,
Apr. 1990.

[19] P. L. Montgomery, ‘‘An FFT extension of the elliptic curve method of
factorization,’’ Ph.D. dissertation, Univ. California, Los Angeles, CA,
USA, 1992.

[20] J.-C. Bajard, J. Eynard, and N. Merkiche, ‘‘Montgomery reduction within
the context of residue number system arithmetic,’’ J. Cryptograph. Eng.,
vol. 8, no. 3, pp. 189–200, Sep. 2018.

[21] H. Jeljeli, ‘‘Accelerating iterative SpMV for discrete logarithm problem
using GPUs,’’ in Proc. 5th Int. Workshop Arithmetic Finite Fields (WAIFI),
in Lecture Notes in Computer Science, vol. 9061, Ç. K. Koç, S. Mesnager,
and E. Savaş, Eds. Gebze, Turkey, 2014.

[22] H. Jeljeli, ‘‘Accélérateurs logiciels et matériels pour l’algèbre linéaire
creuse sur les corps finis,’’ LORIA—ALGO—Dept. Algorithms, Comput.,
Image Geometry, Inria Nancy—Grand Est, Villers-Lès-Nancy, France,
2015. [Online]. Available: https://hal.inria.fr/tel-01178931

[23] K. Posch and R. Posch, ‘‘Modulo reduction in residue number sys-
tems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 6, no. 5, pp. 449–454,
May 1995.

[24] S. Kawamura, Y. Komano, H. Shimizu, and T. Yonemura, ‘‘RNS mont-
gomery reduction algorithms using quadratic residuosity,’’ J. Cryptograph.
Eng., vol. 9, no. 4, pp. 313–331, Nov. 2019, doi: 10.1007/s13389-018-
0195-8.

[25] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, ‘‘Cox-rower archi-
tecture for fast parallel montgomery multiplication,’’ in Advances in
Cryptology—EUROCRYPT, B. Preneel, Ed. Berlin, Germany: Springer,
2000, pp. 523–538.

[26] C. Walter, ‘‘Montgomery exponentiation needs no final subtractions,’’
Electron. Lett., vol. 35, no. 21, p. 1831, Oct. 1999.

[27] I-Corporation. (Nov. 2018). Intel 64 and IA-32 Architectures Optimization
Reference Manual. [Online]. Available: https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf

[28] A. Karatsuba and Y. Ofman, ‘‘Multiplication of multidigit numbers on
automata,’’ Sov. Phys. Doklady, vol. 7, no. 7, pp. 595–596, 1963.

[29] M. Scott, ‘‘Missing a trick: Karatsuba variations,’’ Int. Assoc. Cryptologic
Res., vol. 2015, p. 1247, Jan. 2016. [Online]. Available: http://eprint.
iacr.org/2015/1247

[30] A. Weimerskirch and C. Paar, ‘‘Generalizations of the Karatsuba
algorithm for efficient implementations,’’ Cryptol. ePrint Arch.,
Tech. Rep. 2006/224, 2006. [Online]. Available: http://eprint.iacr.org/
2006/224

[31] I-Corporation. (Nov. 2018). Intel Advanced Vector Extensions Pro-
gramming Reference. [Online]. Available: https://software.intel.com/sites/
default/files/4f/5b/36945

[32] N. Cruz-Cortés, E. Ochoa-Jiménez, L. Rivera-Zamarripa, and
F. Rodríguez-Henríquez, ‘‘A GPU parallel implementation of
the RSA private operation,’’ in High Performance Computing—
CARLA (Communications in Computer and Information Science),
Mexico City, vol. 697, C. J. B. Hernández, I. Gitler, and J. Klapp, Eds.
2017, pp. 188–203.

[33] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell, ‘‘A survey of general–purpose computation
on graphics hardware,’’ Comput. Graph. Forum, vol. 26, no. 1, pp. 80–113,
Mar. 2007.

[34] nVidia. Parallel Thread Execution ISA V5.0, Application Guide.
Accessed: Sep. 2016. [Online]. Available: http://docs.nvidia.com/cuda/
pdf/ptx_isa_5.0.pdf

[35] M. Harris, Optimizing Parallel Reduction in CUDA, document,
nVidia, Santa Clara, CA, USA, 2008. [Online]. Available:
https://arcb.csc.ncsu.edu/~mueller/mpigpu/readings/cuda_reduction.pdf

EDUARDO OCHOA-JIMÉNEZ received the
B.Sc. degree in computer engineering from
Metropolitan Autonomous University (UAM),
Mexico, in 2010, and the M.Sc. and Ph.D.
degrees in computer science from CINVESTAV,
Mexico, in 2013 and 2019, respectively. His major
research interests are in cryptography, finite field
arithmetic, and software efficient implementation.

LUIS RIVERA-ZAMARRIPA received the B.Sc.
degree in computer engineering from the Insti-
tuto Tecnológico de Ciudad Madero (ITCM),
México, in 2006, and the M.Sc. and Ph.D. degrees
in computer science from the Centro de Investi-
gación en Computación (CIC), Instituto Politéc-
nico Nacional (IPN), México, in 2012 and 2019,
respectively. His major research interests are high-
performance computing and finite field arithmetic.

9940 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-662-43414-7_24
http://dx.doi.org/10.1007/978-3-319-32467-8_22
http://dx.doi.org/10.1007/978-3-319-32467-8_22
http://dx.doi.org/10.1007/s13389-018-0195-8
http://dx.doi.org/10.1007/s13389-018-0195-8

E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

NARELI CRUZ-CORTÉS received the Ph.D.
degree from CINVESTAV, Mexico, in 2004. She
is currently a Researcher Professor with the Cen-
tro de Investigación en Computación, Instituto
Politécnico Nacional, Mexico City, Mexico. Her
main research interests are cybersecurity, machine
learning, and their applications.

FRANCISCO RODRÍGUEZ-HENRÍQUEZ is cur-
rently a Professor with the Department of
Computer Science, CINVESTAV-IPN, Mexico
City, where he joined, in 2002. He is a coauthor
of Cryptographic Algorithms on Reconfigurable
Hardware. His major research interests are in
cryptography and finite field arithmetic.

VOLUME 8, 2020 9941

	INTRODUCTION
	ARITHMETIC BACKGROUND
	CONSTANT-TIME MODULAR EXPONENTIATION
	MONTGOMERY MODULAR ARITHMETIC
	RNS MODULAR ARITHMETIC
	RNS MODULAR REDUCTION
	RNS MONTGOMERY MODULAR REDUCTION

	EFFICIENT IMPLEMENTATION OF RSA ON CPU PLATFORMS
	MONTGOMERY BASED ARITHMETIC ON CPU PLATFORMS
	INTEL INTEGER ARITHMETIC INSTRUCTIONS
	INTEGER MULTIPLICATION
	INTEGER SQUARING OPERATION
	MONTGOMERY MODULAR REDUCTION
	MONTGOMERY-BASED RSA SIGNATURE

	CPU IMPLEMENTATION OF RNS-BASED ARITHMETIC
	VECTOR INSTRUCTIONS
	VECTORIAL RNS ADDITION/SUBTRACTION
	VECTORIAL RNS MULTIPLICATION
	VECTORIAL RNS MODULAR REDUCTION
	RNS-BASED RSA SIGNATURE

	EFFICIENT IMPLEMENTATION OF RSA ON GPU PLATFORMS
	PARALLEL COMPUTATIONS ON GPU ARCHITECTURES
	MAIN OPERATIONS IN RNS REPRESENTATION
	RNS MODULAR REDUCTION USING ALGORITHM 3
	GPU RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	EDUARDO OCHOA-JIMÉNEZ
	LUIS RIVERA-ZAMARRIPA
	NARELI CRUZ-CORTÉS
	FRANCISCO RODRÍGUEZ-HENRÍQUEZ

