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ABSTRACT This paper studies compensation of networked control across an unreliable communication
channel subject to random packet dropouts. By posing it as a two decision-variable optimization problem,
the control and compensation for static output feedback LQR are unified by the proposed design. New
governing equations are derived for the controller and the compensator satisfying optimality conditions
concurrently. Also presented is a convergent algorithm that solves these equations for the optimal gains.
Finally, to validate the design and verify its effectiveness, a numerical example is given on which a computer
simulation is conducted to compare its performance against that of three other existing schemes. The
simulation results demonstrate its saliency among the four methods.

INDEX TERMS Generalized hold-input, gradient flows, hold-input, Kronecker algebra, linear quadratic reg-
ulators, matrix vectorization, networked control systems, output feedback, packet loss, static compensators,
zero-input.

I. INTRODUCTION
A steady growth of control systems and their applications
being realized through communication channels has been
witnessed in the age of IOT. In the past few decades, net-
worked control system (NCS) has increasingly gained a
lot of attention and study effort. Among them, the Linear
Quadratic Regulator (LQR) and LQ-related filtering across
communication networks [1], [3] are active research subjects.
The performance decline or even destabilization of NCS
resulting from networking phenomena such as delays [1],
[4], [5], data corruption [6], [7], packet loss [2], [4] and
cyber-attacks [8], [10] might possibly lead to serious con-
sequences and hence have been extensively investigated in
both the industry sector and the academic community. For
example, based on the Tobit measurement model for censored
measurement and adopting the Poisson distribution model
for packet delay, Geng et al. [1] investigated the distributed
federated Tobit Kalman filter fusion problem for NCS subject
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to measurement censoring and packet delays and proposed a
two-step filtering fusion approach. The local estimator carries
out a modified Tobit Kalman filtering scheme in the first step
and the fusion center runs a distributed federated modified
Tobit Kalman filtering algorithm in the second step that fol-
lows the federated Kalman fusion rule. Under the redundant
channel transmission protocol, Geng et al. [2] investigated a
Tobit Kalman filtering problem. To account for the complexi-
ties introduced by measurement noises transmission failures,
and the redundant channels, the Tobit regression model was
modified and based on which an optimal Tobit Kalman filter
was proposed. Allik et al. [3] presented a Tobit Kalman filter
to provide estimates of the state and state error covariance
even the measurements are highly censored. Based on the
Markovian packet dropout model and maximum principle,
Li et al. [4] considered full state feedback for NCS subject to
packet loss and input delay, and presented an optimal control
design using a forward and a backward stochastic difference
equations. Under the framework of Integral Quadratic Con-
straint (IQC), Yuan and Yu [5] considered both measurement
delay and actuation delay in NCS and proposed a delay

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 8935

https://orcid.org/0000-0002-0664-5681
https://orcid.org/0000-0002-9635-4297


J.-T. Yu: New Compensator Design for Optimal Static Output Feedback Control

scheduled impulsive controller whose synthesis conditions
were established via a number of linear matrix inequali-
ties through the specification of a piecewise linear storage
function. Gao et al. [6] proposed a communication-reduced,
cyber-resilient, and information-preserved method to recover
information from quantized measurement data when some
portion of the measurement data is corrupted. For sensor
networks applications, Xie et al. [7] employed a principal
component analysis technique to identify the data corruption
and proposed a matrix completion scheme to recover cor-
rupted and successive lost data with high recovery rate. Anubi
and Konstantinou [8] considered the resiliency problem of
the state estimation of a cyber-physical system under cyber-
attack. By combining a data-driven model with traditional
compressive sensing regression, they showed that the solution
of the optimization problem could recover the system’s actual
states. For risk assessment, Milošević et al. [9] proposed a
framework to estimate the impact of a range of cyber-attack
strategies in stochastic linear NCS and presented two impact
metrics that can be used for stochastic systems. Liu et al. [10]
investigated control design of NCS under sporadic cyber-
attacks. A hybrid-triggering communication scheme was pre-
sented to save the limited communication resources and a
controller was designed to ensure the closed-loop stability.

This paper studies the compensation problem of discrete
optimal control across a channel subject to sporadic sig-
nal dropout. Specifically, the NCS under study is closed
by an unreliable communication network and compensation
for the lost signal is intended. See Figure 1. The reader is
referred to De Persis and Tesi [11] for a detailed compari-
son of dropout models. Sinopoli et al. [12] studied Kalman
filtering for discrete-time linear systems with lossy intermit-
tent observations. Two sets of evolution equations were pre-
sented for time-update and measurement-update respectively.
Schenato et al. [13] extended the work to include optimal
controls. Similar problems were studied by Imer et al. [14].

Two well-known compensating schemes: zero-input and
hold-input are quite popular and have been and still are widely
used. The former strategy refers to zero signal being utilized
while the latter means the latest received signal being applied
directly without any adjustment while performing compensa-
tion.

Based on the above classification, [13], [14] fall into the
zero-input category. Bae et al [15] investigated the compen-
sation problem of packet loss for a rehabilitation system that
used a modified LQG controller with a disturbance observer
employing the zero-input compensation. Shi et al. [16] stud-
ied networked control problems faced with packet loss, and
utilized latest signal directly, belonging to the hold-input
type. Yu et al. [17] adopted a switched system approach
to tackle the stabilization problem of networked controls
using directly latest control signals, i.e. the hold-input type.
Moayedi et al. [18], [19] investigated networked LQG con-
trol across unreliable channels, and proposed a general-
ized hold-input strategy in which the zero-input and the
hold-input were fused. The latest control therein is utilized

for compensation but scaled by a parameter whose value falls
in the range of [0, 1]. Zhang and Yu [20] approached the
problem of exponential stabilization of networked systems
subject to guaranteed cost and bounded packet losses. For
compensation purpose the latest signals were used with-
out any modification, (again the hold-input type) using
dynamic output feedback controllers rather than static
ones.

There exist other performance measures. For example,
the comparison between the two popular compensators –
zero-input and hold-input – made by Guo et al. [21] is from
the H∞ control’s perspective. See Yang and Han [22], which
is also a H∞ control approach.
From implementation standpoint, static controller and

compensator are far less complicated and much less expen-
sive to implement than their time-varying counterparts. The
issue is very critical and practical for real-time applications.
As such, this paper only focuses on the class of static con-
trollers and compensators. While the structural simplicity
together with the comparatively less computation and exe-
cution burden of the zero-input and hold-input compensation
schemes seem very appealing, it has been demonstrated by
Schenato [23] that interestingly, none of the above two most
popular compensating schemes can be claimed superior to the
other. Guo et al. [21] and Gao et al. [24] came to the same
conclusion. The reader is referred to [21], and [23], [24] for
rigorous and in-depth analytical comparisons Still, a mystery
regarding the superiority of these two widely used compen-
sation strategies is awaiting to be unraveled.

Instead of using output feedback control directly, the recent
account of Yu and Fu [25] considered a similar compensation
strategy of this work but used state feedback under the LQG
setting. Namely, it relies on an observer, which is dynamic,
to provide an estimated full state for control purpose. For
linear quadratic but non-Gaussian (LQnG) optimal control,
the reader is referred to Battilotti et al. [26] wherein the
unreliable network is represented by a Gilbert–Elliot channel.
In particular, the packet dropout is modeled by a two-state
Markov chain with known transition probability matrix. Their
solution is obtained by substituting the Kalman predictor
of the LQG control law with an optimal predictor. Another
interesting strategy proposed by Maass et al. [27] is to con-
struct an output estimator for lost one; as such, the method
belongs to the dynamic class of compensators. The fading
channels in Su and Chesi [28] were modeled as multiplicative
white noise processes. A necessary and sufficient condition
for the existence of their controllers was obtained by solving
a convex optimization problem in the form of a semi-definite
program. By a three-step procedure, they designed static
output feedback controller directly to control systems over
fading channels and the closed loop is stable in the mean
square sense. Stabilization is purely controller based and
no compensator for the lost signal was employed in their
approach.

It is well known, however, that output feedback stabi-
lization/optimal control is much more difficult than the
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state feedback counterpart [29], which also motivates this
study. Current work therefore can be viewed in certain
aspect as attempting to extend the classical output feed-
back LQR theory to include NCS. Under the output feed-
back LQR setting, a new design will be presented to solve
the compensation problem involving an unreliable com-
munication network. Recall an observer involves another
system and it introduces extra dynamics, hence increas-
ing overall system’s complexity, computation burden, and
implementation cost which, comparatively speaking, is dis-
advantageous, especially for large-scale systems. Issues of
communication delay and reliability may also arise when
connection of the observer with the rest subsystems is taken
into account for real networked control systems. As an advan-
tage, direct output feedback controller does not have these
drawbacks.

The contribution of this paper is twofold. First, the work
presents a two decision-variable approach to tackle the com-
pensation problem that has not been treated in the litera-
ture for the optimal output feedback control and provides a
rigorous solution that does not utilize an observer. Second,
unlike many existing results that design the controller and
compensator separately, this paper defines a unified perfor-
mance measure for the NCS integrating them into a sin-
gle framework and unraveling the aforementioned mystery,
again under the direct output feedback control setting. In a
later section, a new set of design equations will be derived
and a convergent algorithm to solve it will be provided
as well.

The rest of the paper is organized as follows. The system
considered in this paper is given in Section II, where themath-
ematical model, basic assumptions, and objectives are pre-
sented. Also discussed in this section are the two commonly
adopted compensation strategies, namely, the zero-input and
the hold-input. In Section III, an integrated approach to tackle
the compensation problem is proposed. An optimized design
will be presented in Section IV, including the derivation of a
new set of gain equations for the controller and the compen-
sator satisfying optimality conditions concurrently. Section V
is devoted to the development of a convergent algorithm to
obtain the optimal gains. Section VI specializes to the gener-
alized hold-input compensation policy. A numerical example
is provided in Section VII to validate the new approach and
compare performances of four different schemes. A conclu-
sion is made in Section VIII.

Throughout the paper, x stands for the state of the dynam-
ical system, u is the control input, y refers to system’s output,
L stands for output feedback gain, N refers to the com-
pensator gain, γk stands for an independent and identically
distributed binary Bernoulli random variable, and E[·] stands
for expected/mean value. Kronecker product is denoted by
⊗, Tr refers to trace of a square matrix vec stands for matrix
vectorization, eigenvalue is denoted as λ, and matrix norm
is represented by || · ||. Subscripts k and j represent the time
instants for a dynamical system. Superscript ‘‘+’’ stands for
the Moore-Penrose inverse.

FIGURE 1. Schematic of the networked control system.

II. THE SYSTEM MODEL AND CONTROL OBJECTIVES
Given in Figure 1 is the schematic of system configuration
for the NCS under study. Specifically, the dynamics of the
linear, discrete, time-invariant system studied in this paper is
mathematically modeled as follows

xk+1 = Axk + Buk , x ∈ Rn, u ∈ Rm (1)

yk = Cxk , y ∈ Rr (2)

uck = Lyk (3)

uk = γkuck (4)

where xk is the state, uk is the control, yk is the output and
L is a stabilizing output feedback gain to be designed. The
superscript ‘‘c’’ associated with uk depicts that it is of the
controller. It would become clear shortly from the contexts
as to why distinction between two kinds of control signal is
important and hence necessary.

The above control law does not have any compensation
mechanism and is often referred to as the zero-input pol-
icy [23] in the literature. Another popular and widely used
scheme, often termed hold-input compensation policy [23]
assumes the following form

uk = γkuck + (1− γk )uk−1. (5)

One may also notice that the above two well-known and
popular compensation schemes lack for the rationale regard-
ing how and why they may or may not work as they shed
no insight on the degree of success or failure as far as the
compensation is concerned. The existence of such a big gap
is not too surprising as their gains are predetermined with no
connection to the minimization of the LQ performance index.

The expected value of the binary Bernoulli randomvariable
depicting the packet dropout [12], [13], [23] phenomenon can
be expressed as

E (γk) = 0× γ + 1× (1− γ ) = 1− γ (6)

where γ stands for dropout rate/probability. Since a random
variable is involved, the results presented in this work should
be interpreted in the expectation/average sense.

III. A UNIFIED DESIGN FRAMEWORK
Unlike many existing methods that design the controller and
the compensator separately, the new control law employs the
following structure unifying both designs

uk=γkuck+(1−γk )Nuk−1=γkLCxk+(1−γk )Nuk−1 (7)

where N stands for the compensator gain to be determined.
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The introduction of matrix gain N for compensation pur-
pose will lead to certain degree of computation burden, but
fortunately not heavy. Its execution time is assumed to be
within a sampling period. Note that Nuk−1 is a substitute for
the lost control signal of dimension m. Entry-wise speaking,
computation of Nuk−1 includes two types of arithmetic oper-
ations and the respective number of which are (i) multiplica-
tion operation: m, and (ii) addition operation: m-1.
The proposed compensator is static rather than being

dynamic, and matrix N is constant implying the off-line com-
putation of this gain is conducted only once and its numeric
value will then be stored in the actuator’s buffer and utilized
upon any occurrence of packet dropout.

Justification of employing such optimal compensator lies
in the benefits it brings which usually outweigh the com-
putation burden it poses. For the LQR problem, the cost is
the only performance index to determine how good a design
is. Conceivably, there exist a great many examples whose
cost values, when compared to the optimal one, are exces-
sively high, provided suboptimal static compensators, such
as the zero-input and hold-input, are used. Furthermore, there
should also exist cases where the suboptimal compensators
even cease to function and fail to yield finite cost value, which
are not acceptable, especially for critical networked control
applications.

To begin, define a new augmented state [23]

zk =
[

xk
uk−1

]
. (8)

The dynamics of the augmented system can be written as

zk+1 =
[
A+ γkBLC (1− γk )BN
γkLC (1− γk )N

]
zk=H (γk )zk , (9)

z0 =
[
x0
u−1

]
=

[
x0
0

]
. (10)

Dynamic programming technique [12], [13], [23] will be
employed. First, define the cost-to-go where subscript k and
superscript f stand for the current and terminal time instant
respectively

J fk = E

 f∑
j=k

(
xTj Qjxj + u

T
j Rjuj

) . (11)

The weighting matrices are chosen as Qj = Q and Rj = R,
except Rf = 0. Combination of (7)-(9), and (11) leads to

J fk = J
f
k+1 + x

T
k [Q+ (1− γ )CTLTRLC ]xk

+ γ uTk−1N
TRNuk−1 (12)

J fk = J
f
k+1 + z

T
k

[
Q+ (1− γ )CTLTRLC 0

0 γNTRN

]
zk .

(13)

To proceed, suppose there exists a symmetric positive
semi-definite matrix Yk such that the cost-to-go can be
expressed in a quadratic form [13], [23], [29] as

J fk = zTk Ykzk . (14)

Define, for compact notations the closed loop matrix

Ac = A+ BLC . (15)

Substitution of (14) into (9) yields

J fk+1 = zTk H
T (γk )Yk+1H (γk )zk (16)

J fk+1 = zTk [P(γk = 0) · HT (0)Yk+1H (0)]zk

+ zTk [P(γk = 1) · HT (1)Yk+1H (1)]zk (17)

and the following expression

Yk =
[
Q+ (1− γ )(LC)TR(LC) 0

0 γNTRN

]
+ γ

[
AT 0

(BN )T NT

]
Yk+1

[
A BN
0 N

]
+ (1− γ )

[
ATc (LC)T

0 0

]
Yk+1

[
Ac 0
LC 0

]
. (18)

Equation (18) should be solved backward-in-time with the
following terminal/final condition

Yf =
[
Q 0
0 0

]
. (19)

IV. THE OPTIMAL CONTROLLER AND COMPENSATOR
Current research is limited to the static class of compensation
schemes only. Furthermore, it is typically assumed that the
initial autocorrelation of the state is uniformly distributed on
the surface of a unit sphere [29] satisfying the condition

E[x0 xT0 ] = I . (20)

The subscript and superscript (denoting the starting and ter-
minal time instants respectively) of cost-to-go are dropped
for the infinite horizon case and the expected total cost can
be rewritten as

J = J∞0 = E

 ∞∑
j=0

(
xTj Qxj + u

T
j Ruj

) . (21)

Conceivably, there exists a critical packet dropout rate
beyond which J becomes infinite. As a general rule [23], Yk
becomes larger (in the sense of its norm) when the packet
dropout rate increases, and as a result, the cost will increase
as well. Under mild conditions it is assumed that the expected
total cost is finite and Yk exists [12], [13], [23] Throughout
the paper, it is assumed that the system under consideration
is stabilizable under the given packet dropout rate that falls
below the critical rate. In other words, finding the critical
dropout rate above which stabilization cannot be achieved is
out of the scope of current study.
The steady state of Yk equation can be written as

Y =
[
Q+ (1− γ )(LC)TR(LC) 0

0 γNTRN

]
+ γ

[
AT 0

(BN )T NT

]
Y
[
A BN
0 N

]
+ (1− γ )

[
ATc (LC)T

0 0

]
Y
[
Ac 0
LC 0

]
. (22)
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Suppose matrix Y is block-partitioned as

Y =
[
Y 11 Y 12
Y T12 Y 22

]
. (23)

Combination of (22) and (23) yields the following identities

Y11 = Q+ γATY11A + (1− γ )[ATc Y11Ac + (LC )TY T12Ac
+ATc Y12(LC )+ (LC )T (R+ Y22)(LC ) ], (24)

Y12 = γAT (Y11B+ Y12)N , (25)

Y22 = γNT (R+ BTY11B+ BTY12 + Y T12B+ Y22)N (26)

where γ stands for the packet dropout rate (probability).
Note that an equivalent expression to (21), according to (10)
and (14), can be written [29] as

J = E
(
zT0 Yz0

)
= Tr

[
E
(
xT0 Y11x0

)]
= E

[
Tr
(
xT0 Y11x0

)]
= E

[
Tr
(
Y11x0xT0

)]
= Tr

[
E
(
Y11x0xT0

)]
= Tr

[
Y11E

(
x0xT0

)]
= Tr (Y11) (27)

To meet the optimality conditions, the following 1st order
stationary equations regarding the gains must hold

∂J
∂L
=
∂Tr(Y11)
∂L

= 0 (28)

∂J
∂N
=
∂Tr(Y11)
∂N

= 0. (29)

Following (24)-(29), one can obtain the optimal output feed-
back gain L and compensator gain N as follows:

L =− (R+ BTY11B+ BTY12 + Y T12B+ Y22)
−1

× (BTY11 + Y T12)AC
+

=−

(
R+

[
B
I

]T
Y
[
B
I

])−1 [
B
I

]T
Y
[
I
0

]
AC+.

(30)

N =− (R+ BTY11B+ BTY12 + Y T12B+ Y22)
−1

× (BTY11 + Y T12)AAc(LC)
+

=−

(
R+

[
B
I

]T
Y
[
B
I

])−1 [
B
I

]T
Y
[
I
0

]
AAc(LC)+.

(31)

For compact notations, define

R̃ = R+
[
B
I

]T
Y
[
B
I

]
, 0 = −R̃−1

[
B
I

]T
Y
[
I
0

]
A

(32)

then the gain equations become

L =−R̃−1
[
B
I

]T
Y
[
I
0

]
AC+ = 0C+, (33)

N =−R̃−1
[
B
I

]T
Y
[
I
0

]
AAc(LC)+ = 0Ac(LC)+. (34)

Existence of the pseudo-inverse of LC is guaranteed from the
following argument. First, perform singular value decompo-
sition on 0

0=USV T
=U

[
S1 0

] [
V1 V2

]T
= US1V T

1 ,

where matrix U is unitary; matrix S (containing singular
values of 0) and matrix V (unitary) are partitioned accord-
ingly in which S1 contains nonzero singular values. The
pseudo-inverse of LC can be obtained as

(LC)+=
(
0C+C

)+
=

(
US1V T

1 C
+C

)+
=

(
V T
1 C
+C

)+
S−11 UT .

Solution algorithm for these equations is given next.

V. A CONVERGENT ALGORITHM TO FIND THE GAINS
A convergent algorithm to solve the above design equations
for the gains is developed in this section. Matrix vectorization
(denoted by a matrix with an arrow on top and interchange-
ably by vec), Kronecker product (denoted by ⊗), matrix
permutation (denoted by P), and gradient flow method are
put together and utilized as technical tools for the algorithm
development.

Firstly, gradient flows for the gain errors are derived. Sec-
ondly, definition of an error cost function is given. Thirdly,
selection of gain update directions then follows. Finally,
an iterative implementation procedure is provided.

Permutation matrices involving L and N are denoted as PL
and PN as follows

−→

L T
= PL

−→
L , (35)

−→

NT
= PN

−→
N . (36)

Suppose a stabilizing but non-optimal output feedback gain
L and an arbitrarily guessed non-optimal compensator gain
N are provided. Given the optimal gain equations (30)-(31),
the errors and their associated vectorized counterparts can be
defined, respectively as

1L = R̃L +
[
B
I

]T
Y
[
I
0

]
AC+, (37)

1N = R̃N +
[
B
I

]T
Y
[
I
0

]
AAc(LC)+, (38)

E1 =

[
E1L
E1N

]
. (39)

Consider an error cost and its gradient flow

J1 =
1
2
E1T E1 =

1
2

[
E1L
E1N

]T [
E1L
E1N

]
(40)

J̇1 =
[
E1L
E1N

]T [
Ė1L

Ė1N

]
(41)

The gradient flow expressions are as follows

1̇L =

[
B
I

]T
Ẏ
([

B
I

]
L +

[
I
0

]
AC+

)
+ R̃L̇ , (42)
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Ė1L =

([
B
I

]
L+

[
I
0

]
AC+

)T
⊗

[
B
I

]T
ĖY+Ir⊗R̃ ĖL , (43)

1̇N =

[
B
I

]T
Ẏ
([

B
I

]
N +

[
I
0

]
AAc(LC)+

)
+

[
B
I

]T
Y
[
I
0

]
A
[
B−Ac(LC)+

]
L̇C(LC)++R̃Ṅ ,

(44)

Ė1N =

([
B
I

]
N +

[
I
0

]
AAc(LC)+

)T
⊗

[
B
I

]T
ĖY

+
(
C(LC)+

)T
⊗

([
B
I

]T
Y
[
I
0

]
A
(
B−Ac(LC)+

))
ĖL

+ Im ⊗ R̃ ĖN . (45)

Following (22), one may obtain the gradient flow of Y as

Ẏ =
[
(1− γ )

(
(L̇C)TR(LC)+ (LC)TR(L̇C)

)
0

0 0

]
+

[
0 0
0 γ

(
ṄTRN + NTRṄ

) ]
+ γ

{[
AT 0

(BṄ )T ṄT

]
Y
[
A BN
0 N

]
+

[
AT 0

(BN )T NT

]
Ẏ
[
A BN
0 N

]
+

[
AT 0

(BN )T NT

]
Y
[
A BṄ
0 Ṅ

]}
+ (1− γ )

{[
ȦTc (L̇C)T

0 0

]
Y
[
Ac 0
LC 0

]
+

[
ATc (LC)T

0 0

]
Ẏ
[
Ac 0
LC 0

]
+

[
ATc (LC)T

0 0

]
Y
[
Ȧc 0
L̇C 0

]}
. (46)

Given below is its counterpart after vectorization

ĖY =
[
FL FN

] [ ĖL
ĖN

]
= FL ĖL + FN ĖN (47)

where FL and FN are defined, respectively as

FL

=

(
In+m ⊗ In+m − γ

[
A BN
0 N

]T
⊗

[
A BN
0 N

]T

− (1− γ )
[
Ac 0
LC 0

]T
⊗

[
Ac 0
LC 0

]T)−1

× (1− γ )

{[
CT

0m×r

]
⊗

([
Ac 0
LC 0

]T
Y
[
B
Im

]
+

[
(RLC)T

0m×m

])

+

([
Ac 0
LC 0

]T
Y
[
B
Im

]
+

[
(RLC)T

0m×m

])
⊗

[
CT

0m×r

]
PL

}
,

(48)

and

FN =

(
In+m ⊗ In+m − γ

[
A BN
0 N

]T
⊗

[
A BN
0 N

]T

− (1− γ )
[
Ac 0
LC 0

]T
⊗

[
Ac 0
LC 0

]T)−1

× γ

{[
0n×m
Im

]
⊗

([
A BN
0 N

]T
Y
[
B
Im

]
+

[
0n×m
NTR

])

+

([
A BN
0 N

]T
Y
[
B
Im

]
+

[
0n×m
NTR

])
⊗

[
0n×m
Im

]
PN

}
.

(49)

Combination of (41), (43) and (45)-(47) leads to[
Ė1L

Ė1N

]
= W

[
ĖL
ĖN

]
=

[
W11 W12
W21 W22

][
ĖL
ĖN

]
(50)

where matrix W is partitioned with block components as

W11 =

([
B
I

]
L+

[
I
0

]
AC+

)T
⊗

[
B
I

]T
FL+Ir ⊗ R̃, (51)

W12 =

([
B
I

]
L+

[
I
0

]
AC+

)T
⊗

[
B
I

]T
FN , (52)

W21 =

([
B
I

]
N+

[
I
0

]
AAc(LC)+

)T
⊗

[
B
I

]T
FL

+
[
C(LC)+

]T
⊗

[
B
I

]T
Y
[
I
0

]
A
[
B−Ac(LC)+

]
,

(53)

W22 =

([
B
I

]
N +

[
I
0

]
AAc(LC)+

)T
⊗

[
B
I

]T
FN

+ Im ⊗ R̃. (54)

Now the gradient flow of the error cost can be rewritten as

J̇1 =
[
E1L
E1N

]T [
Ė1L

Ė1N

]
=

(
W T

[
E1L
E1N

])T [
ĖL
ĖN

]
. (55)

where the gains’ gradient flows are at our disposal. Recall the
objective here is to get a negative gradient flow for the error
cost. As such, one may simply choose[

ĖL
ĖN

]
= −W T E1 = −W T

[
E1L
E1N

]
. (56)

The gradient flow of the error cost now becomes

J̇1 = − E1TWW T E1 < 0. (57)

The above expression depicts the error will eventually
approach zero.
Remarks: Alternatively, one may treat equation (50) as a

linear time-varying system and resort to the method by Chen
and Kao [30] that solves a forward Riccati equation for the
gains. Consider again the error dynamics

Ė1 = W

[
ĖL
ĖN

]
, E1 =

[
E1L
E1N

]
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According to these authors [30], one may take the gain’s
gradient flow as[
ĖL
ĖN

]
=R−12 W TUM E1, R2=RT2 > 0, M=MT >0 (58)

U = I −
2∥∥∥ E1∥∥∥2 E1 E1T (59)

Ṁ =R1 −MUWR
−1
2 W TUM , R1=RT1 > 0. (60)

where R1 and R2 two matrices at our disposal. Given below
are some interesting properties of U

U−1 = U , U2
= I , ‖U‖ = 1. (61)

It is shown in their work that above gradient flowwill drive
the gain error to zero exponentially. Since this method is more
complex (as the gain’s gradient flow involves the solution of a
time-varying Riccati equation), it will not be pursued further
and the reader is referred to [30] for more details.

As for implementation, finite-differencemethod, for exam-
ple the simplest one – Adams Method – can be adopted
to solve the differential equations of the gains numerically.
To that purpose the differential equation (56) shall be replaced
by a difference equation which stands for the gains’ update
direction. Equation (56) in that regard can be rewritten as[

EL
EN

]
i+1
=

[
EL
EN

]
i
−ρW T

i

[
E1L
E1N

]
i
, 0 < ρ � 1 (62)

where the subscript ‘‘i’’ refers to index of integration stepwith
ρ standing for the step size.
Some comments are in order. As can be seen from the

above solution procedure, an initial arbitrarily chosen com-
pensator gain N0 and a stabilizing output feedback gain L0
must be provided to start the algorithm. Finding such a stabi-
lizing output feedback gain is never an easy task. This issue,
however, is beyond the scope of this paper.Maintaining Schur
stability of the closed loop matrix Aci at each iteration is
crucial for the algorithm to work successfully. This explains
why the step size ρ is introduced above as it prevents the
gains’ update from overshooting. Normally a sufficiently
small number suffices. Again, how to find a non-overshooting
step size is unfortunately out of the scope of present paper and
will not be pursued further.

VI. THE GENERALIZED HOLD-INPUT COMPENSATOR
The generalized hold-input (GHI) compensation scheme pro-
posed by Moayedi et al. [18], [19] takes the following form
in which the compensator gain τ is a scalar

uk = γkuck + (1− γk )τuk−1 = γkuck + (1− γk )τuk−1,

0 ≤ τ ≤ 1. (63)

In fact it turns out to be a specialized case when the structure
of the matrix gain N is constrained to be

N = τ I , 0 ≤ τ ≤ 1. (64)

One can also observe that the zero-input compensator and
hold-input compensator are two specialized cases of GHI:

uk=γkuck+(1−γk )τuk−1=

{
γkuck , τ=0,
γkuck+(1−γk )uk−1, τ=1.

(65)

This equation help explain why Moayedi et al. [18], [19]
imposed the bounds on the scalar gain.

The associated equations, except (24) and (30), will also
be specialized accordingly to

Y =
[
Q+ (1− γ )(LC)TR(LC) 0

0 γ τ 2R

]
+ γ

[
AT 0
τBT τ I

]
Y
[
A τB
0 τ I

]
+ (1− γ )

[
ATc (LC)T

0 0

]
Y
[
Ac 0
LC 0

]
. (66)

Y12 = γ τ

([
B
I

]T
Y
[
I
0

]
A

)T
(67)

Y22 = γ τ 2
(
R+

[
B
I

]T
Y
[
B
I

])
= γ τ 2R̃ (68)

Following the same procedure, one may get the optimal com-
pensator gain as

τ =−
Tr
(
ATc A

T (Y11B+ Y12)LC
)

Tr
(
CTLT (R+ BTY11B+ BTY12 + Y T12B+ Y22)LC

)

=−

Tr

(
CTLT

[
B
I

]T
Y
[
I
0

]
AAc

)
Tr
(
CTLT R̃LC

) . (69)

An apparent advantage of the generalized hold-input
scheme is its simplicity. However, as conceivable, perfor-
mance sacrifice becomes inevitable in comparison with its
full matrix counterpart resulting from the trade-off between
structural complexity and performance. This point will
become clear through the illustration of a numerical example
given in a later section.

A. CONVERGENT ALGORITHM FOR GHI
The gradient flow of Y for the generalized hold-input scheme
by Moayedi et al. [18], [19] becomes

Ẏ =
[
(1− γ )

(
(L̇C)TR(LC)+ (LC)TR(L̇C)

)
0

0 2τ̇ τγR

]
+ γ

{[
0 0
τ̇BT τ̇ I

]
Y
[
A τB
0 τ I

]
+

[
AT 0
τBT τ I

]
Ẏ
[
A τB
0 τ I

]
+

[
AT 0
τBT τ I

]
Y
[
0 τ̇B
0 τ̇ I

]}
+ (1− γ )

{[
ȦTc (L̇C)T

0 0

]
Y
[
Ac 0
LC 0

]
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+

[
ATc (LC)T

0 0

]
Ẏ
[
Ac 0
LC 0

]
+

[
ATc (LC)T

0 0

]
Y
[
Ȧc 0
L̇C 0

]}
. (70)

Given below is its counterpart after vectorization

ĖY =
[
FL Fτ

] [ ĖL
τ̇

]
= FL ĖL + τ̇Fτ (71)

where FL and Fτ are defined as follows:

FL

=

(
In+m ⊗ In+m − γ

[
A τB
0 τ I

]T
⊗

[
A τB
0 τ I

]T

− (1−γ )
[
Ac 0
LC 0

]T
⊗

[
Ac 0
LC 0

]T)−1

× (1−γ )

{[
CT

0m×r

]
⊗

([
Ac 0
LC 0

]T
Y
[
B
Im

]
+

[
(RLC)T

0m×m

])

+

([
Ac 0
LC 0

]T
Y
[
B
Im

]
+

[
(RLC)T

0m×m

])
⊗

[
CT

0m×r

]
PL

}
,

(72)

Fτ

=

(
In+m ⊗ In+m − γ

[
A τB
0 τ I

]T
⊗

[
A τB
0 τ I

]T

− (1− γ )
[
Ac 0
LC 0

]T
⊗

[
Ac 0
LC 0

]T)−1

× γ vec

{[
0n×m B
0m×m Im

]T
Y
[
A τB
0 τ Im

]
+

[
0n×n 0n×m
0m×n 2 τR

]

+

[
A τB

0m×n τ Im

]T
Y
[
0n×m B
0m×m Im

]}
(73)

The feedback gain’s error expression and its vectorized coun-
terpart change to

1̇L =

[
B
I

]T
Ẏ
([

B
I

]
L+

[
I
0

]
AC+

)
+R̃L̇ , (74)

Ė1L =

([
B
I

]
L+

[
I
0

]
AC+

)T
⊗

[
B
I

]T
ĖY + Ir⊗R̃ ĖL , (75)

Ė1L =

{([
B
I

]
L+

[
I
0

]
AC+

)T
⊗

[
B
I

]T
FL + Ir⊗R̃L

}
ĖL

+ τ̇

([
B
I

]
L+

[
I
0

]
AC+

)T
⊗

[
B
I

]T
Fτ (76)

The compensator gain error is defined as

1τ =Tr

(
CTLT

[
B
Im

]T
Y
[
In

0m×n

]
AAc

)
+τTr

(
CTLT R̃LC

)
.

(77)

Its gradient flow is as follows

1̇τ = τ̇Tr
(
CTLT R̃LC

)
+Tr

{
L̇T
(
2 τ R̃LCCT

+

[
B
Im

]T
Y
[

In
0m×n

]
AAcCT

+BTAT
[
In

0m×n

]T
Y
[
B
Im

])
LCCT

}

+Tr

{
Ẏ
(
τ

[
B
Im

]
LC+

[
In

0m×n

]
AAc

)
CTLT

[
B
Im

]T}
.

(78)

The following identity proves to be useful in terms of vector-
ization involving the product of two matrices

Tr(M1M2) =
(
−→

MT
1

)T
−→
M2 =

−→
M2

T
−→

MT
1 . (79)

Replacement of the vectorized gradient flow of Y by equa-
tion (71), i.e. the vectorized gradient flows of L and τ then
follows afterwards.

1̇τ = τ̇Tr
(
CTLT R̃LC

)
+ vecT

{(
2 τ R̃+

[
AB

0m×m

]T
Y
[
B
Im

])
LCCT

+

[
B
Im

]T
Y
[

A
0m×m

]
AcCT

}
ĖL

+ vecT
([

AAc + τBLC
τLC

] [
BLC
LC

]T)(
FL ĖL+τ̇Fτ

)
.

(80)

Combination of (41), (43) and (45)-(47) leads to[
Ė1L
1̇τ

]
= W

[
ĖL
τ̇

]
=

[
W11 W12
W21 W22

][
ĖL
τ̇

]
(81)

where matrix W is partitioned with block components

W11 =

([
B
Im

]
L+

[
In

0m×n

]
AC+

)T
⊗

[
B
Im

]T
FL + Ir⊗R̃

(82)

W12 =

([
B
I

]
L+

[
I
0

]
AC+

)T
⊗

[
B
I

]T
Fτ (83)

W21 = vecT
{(

2 τ R̃+
[

AB
0m×m

]T
Y
[
B
Im

])
LCCT

+

[
B
Im

]T
Y
[

A
0m×n

]
AcCT

}

+

{
vecT

([
AAc + τBLC

τLC

] [
BLC
LC

]T )}
FL .

(84)

W22 = FTτ vec

([
AAc + τBLC

τLC

] [
BLC
LC

]T )
+Tr

(
CTLT R̃LC

)
(85)
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Now the gradient flow of the error cost can be rewritten as

J̇1 =
[
E1L
1τ

]T [
Ė1L
1̇τ

]
=

(
W T

[
E1L
1τ

])T [
ĖL
τ̇

]
. (86)

One may simply choose[
ĖL
τ̇

]
= −W T E1 = −W T

[
E1L
1τ

]
. (87)

The gradient flow of the error cost now becomes

J̇1 = − E1TWW T E1 < 0, (88)

which implies the error will eventually approach zero.

B. THE BOUNDS IMPOSED ON THE SCALAR GAIN
It is worth pointing out that imposing bounds on the scalar
compensator gain in the GHI is totally unnecessary. Con-
ceivably, there exist such cases whose optimal compensator
gain happens to be greater than unity or even negative. The
downside of imposing such bounds on the gain is that its
admissible range is largely reduced, hence will result in
unnecessary sacrifice of optimality as well as performance
degradation For this reason, the bound constraint imposed by
Moayedi et al. [18], [19] should be eliminated.

Another important implication of GHI is that the
hold-input compensator will perform better than the
zero-compensator does if the optimal scalar gains happens to

be near unity. Conversely, the opposite will hold if the optimal
scalar gains turns out to be near zero.

VII. VALIDATION
A numerical example is provided in this section to validate
the new approach and compare its performance against that
of three other schemes. The packet loss rate is assumed to
be 20%. The weighting matrices for the state and control
respectively in the LQ cost function, for simplicity, are set
to be Q = I and R = I . The termination criterion of the
algorithm is set to be the error falling below 10−2.
For performance comparison, the two commonly adopted

compensation strategies and the GHI by Moayedi et al.
[18], [19] are tested against the new one. Subscripts ‘‘opt’’
‘‘M ’’ ‘‘h.i.’’, and ‘‘z.i.’’ are used to distinguish them referring
to the optimal one, the one by Moayedi et al. [18], [19],
the hold-input, and the zero-input approach respectively. Tra-
jectories of both state cost and control cost are also shown
to provide a glimpse into the transient responses of all
schemes. The initial state is normalized to have unit magni-
tude, i.e.||x0|| = 1.

Example A,BT ,C, xT0 , λ(A),L
T
opt ,L

T
h.i.,Nopt ,Nh.i., Jopt , as

shown at the bottom of this page.
It can be seen from the results the performance of the new

method is the best among the four schemes as it has the
minimum cost, which is expected.

A =



−0.61 0.01 0.91 −0.21 −0.65 0.46 −0.84
−0.34 0.82 0.11 0.14 0.14 0.98 −0.04
−0.03 0.46 −0.35 0.19 −0.45 −0.40 −0.27
0.96 0.99 −0.17 0.44 −0.74 −1.05 1.00
−0.71 −0.21 1.04 0.06 0.94 0.38 0.96
−0.39 0.42 0.10 0.02 −0.65 −0.25 −0.35
0.17 0.88 0.34 −0.68 −0.19 −0.25 0.19


,

BT =
[

0.67 −0.44 0.26 −0.58 −0.68 −0.31 −0.98
−0.73 0.46 0.88 −0.41 0.57 −0.35 −0.53

]
,

C =

 0.82 −0.33 0.55 −0.25 −0.63 0.72 0.03
0.75 −1.01 0.56 −0.55 −0.52 −0.22 −0.98
−0.36 −1.10 −1.16 0.36 0.75 0.39 0.01

 ,
xT0 =

[
−0.34 −0.46 0.27 0.58 −0.13 0.45 0.21

]
,

λ(A) = { 0.1810, −0.7074± j 0.7874, 0.0089± j 1.1843,

1.1980± j 0.1852 },

LTopt =

−0.1280 0.2628
−0.2009 −0.0401
−0.4901 −0.2439

 , LTM =

 0.0352 0.2129
−0.1745 −0.0197
−0.3892 −0.2688

 ,
LTh.i. =

 0.0803 0.1888
−0.1613 −0.0033
−0.3807 −0.2708

 , LTz.i. =

−0.0792 0.2524
−0.1865 −0.0480
−0.3158 −0.2237

 ,
Nopt =

[
0.0124 0.6843
0.4582 0.3672

]
, NM = 0.7482× I2,

Nh.i. = I2, Nz.i. = 0,

Jopt = 238.81, JM = 303.57, Jz.i. = 366.45, Jh.i. = 526.54
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FIGURE 2. Bernoulli random variable.

FIGURE 3. Cost values of four methods.

FIGURE 4. State cost values of four methods.

Remarks: Apparently an optimized scalar gain as of
Moayedi et al. [18], [19] is hardly competitive when com-
pared to a matrix gain. This explains why it comes in second
even though it outperforms the other two.

As for the transient response of this specific example, see
Figure 2 – Figure 5 from a numerical simulation under packet

FIGURE 5. Control cost values of four methods.

dropout rate 20%. It is worth pointing out a Bernoulli process
involving a random variable comes into the scenario; as such,
any realization of this random variable is different from every
other one due to its nature. In other words, Figure 2 – Figure 5
just represent the transient response from one realization
among infinitely many. The optimality obtained herein there-
fore should be interpreted in the mean/average sense.

To further illustrate how the packet dropout rate γ quan-
titatively affects the cost function J , three more numerical
experiments are conducted for the same system whose results
are given below where only the computed cost values are
listed due to limited space.

It is worth pointing out that when the dropout rate went
up to 0.295, only the proposed optimal compensator func-
tioned successfully (although yielding a large cost value); the
other three schemes ceased to work and failed to yield finite
cost values The importance of optimal compensation can be
better appreciated through the latter case, as near the critical
situationwhere the underlying communication network of the
NCS is highly unreliable, the system may be destabilized if
the optimal compensator is not used.

VIII. CONCLUSION
The compensation problem is studied in the context of NCS
for discrete linear time-invariant optimal output feedback
control across an unreliable link. An integrated design frame-
work for the static class of controller and compensator is
proposed and a new set of design equations is derived.
A convergent algorithm is presented to solve the new design
equations and a numerical example is given to validate the
proposed approach and for performance comparisons.

8944 VOLUME 8, 2020



J.-T. Yu: New Compensator Design for Optimal Static Output Feedback Control

It is shown that the new method performs the best com-
pared to the commonly adopted zero-input, hold-input, and
the generalized hold-input compensation strategies as the
latter three turn out to be just special cases of the proposed
one. In fact, the new compensator is the optimal one of its
kind.
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