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ABSTRACT Flood is one of the most disruptive natural hazards, responsible for loss of lives and damage
to properties. A number of cities are subject to monsoons influences and hence face the disaster almost
every year. Early notification of flood incident could benefit the authorities and public to devise both
short and long terms preventive measures, to prepare evacuation and rescue mission, and to relieve the
flood victims. Geographical locations of affected areas and respective severities, for instances, are among
the key determinants in most flood administration. Thus far, an effective means of anticipating flood in
advance remains lacking. Existing tools were typically based on manually input and prepared data. The
processes were tedious and thus prohibitive for real-time and early forecasts. Furthermore, these tools did
not fully exploit more comprehensive information available in current big data platforms. Therefore, this
paper proposes a novel flood forecasting system based on fusing meteorological, hydrological, geospatial,
and crowdsource big data in an adaptive machine learning framework. Data intelligence was driven by state-
of-the-art learning strategies. Subjective and objective evaluations indicated that the developed system was
able to forecast flood incidents, happening in specific areas and time frames. It was also later revealed by
benchmarking experiments that the system configured with an MLP ANN gave the most effective prediction,

with correct percentage, Kappa, MAE and RMSE of 97.93, 0.89, 0.01 and 0.10, respectively.

INDEX TERMS Flood forecasting system, big data, machine learning, crowdsource, deep learning.

I. INTRODUCTION

Natural flood is one of the most recurrent disasters [1].
Unlike stagnant water discharge, occasionally experienced
in poorly planned cities, major flood incidents always cause
considerable damages to properties and, more often than not,
loss of lives. Several Asian countries, particularly Thailand,
are subject to both southwest and northeast monsoons and
accordingly facing seasonal deluge almost every year and
in most parts of the countries [2]. Among notable causes,
sudden and enduring heavy rain is the most pertinent one
in Thailand [3], [4]. Furthermore, overflow from main rivers
along shore sides to surrounding basins can greatly spread
the damages [5]. Although being located further away from
a river, an area with inappropriate land uses are unable to
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efficiently discharge accumulated precipitation, and hence
are inevitably prone to even more frequent floods.
Regardless of causes, however, a flood is generally sudden
and thus almost formidable for the general public and relevant
organization to be adequately prepared for the incident. This
is mainly due to the lack of an effective means of anticipating
the disaster well in advance [6]. Despite the recent extensive
development of computerized flood forecasting systems, they
remained based primarily on present precipitation, monitored
by rain stations or rain gauges. These facilities are normally
owned by a meteorology department or similar organiza-
tions [7], [8]. Besides, they are scantly located in a few
areas due to costly installation and maintenance. Hence, it is
difficult to determine precipitation or predict flood accurately,
especially in areas with no such facility [9]. To remedy this
issue, precipitation in these areas were typically estimated
either by inter- or extrapolation from those with rain stations
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present [10]-[12]. Due to a limited number of these stations
and those readings in one area may not be a good repre-
sentative to others. Therefore, estimated precipitation was
insufficiently accurate to make a realistic forecast [13].

Conventional meteorological readings, e.g., precipitation,
temperature, and humidity, etc., took really long time to
measure, process, record, and transfer to relevant organi-
zations [14], [15]. Analyses based on past precipitation
were known to be associated with several shortcomings. For
instance, they contribute to inaccurate [16], [17] and often
outdated flood prediction. Limited sample size [18], inade-
quate computing capability, and inefficient prediction meth-
ods [16], [17] were all undermining the real potential of this
scheme. Nonetheless, with the recent advances in distributed
computing [19] and especially modern machine learn-
ing (ML), resembling human intelligence [16], [20]-[22],
computerized flood forecasting, based on thematic factors
has widely been investigated [23]—-[25]. In addition, as the
number of both open and proprietary data providers escalates,
Big Data has now become a central source of information in
such pursuits.

Thus far, according to recent surveys, most flood forecast-
ing systems relied primarily on either monitored precipita-
tion data or those obtained from a single source. Beside the
mentioned limitations, existing systems remained lacking in
other various aspects. For example, in a case where moni-
toring facilities or communication network of ones became
malfunctioned, there would be no precipitation data available
for imperative analyses. To the best of our knowledge, there
was also no tool (software) that can accommodate area-
specific forecasting well in advance. Furthermore, existing
tools were highly dependent on demanding data preparation
and compilation from various sources, including Big Data.
As a consequent, automated and spontaneous notification
of flood incidents to the public and authorities, or realistic
anticipation of ones has remained a grand challenge.

In addition, there have been recent developments in flood
forecasting systems based on ML. These systems embedded
both attributes and crowdsourcing data into their ML frame-
works. However, most existing systems operate by analyzing
these data offline on premise before presenting their predic-
tion results on various platforms [16], [20]-[22]. A typical
practice was proposed in [20], where an ML was trained with
real-time rainfalls, streamflow, and other data. It was unclear,
nonetheless, how a prediction result was verified against an
actual event, which was obtained from crowdsourcing.

Therefore, this paper proposes a novel flood forecast-
ing system based on fusing meteorological, hydrological,
geospatial, as well as crowdsourcing data, and integrating
them into an ML framework. These data were compiled
from various big data platforms, by using online application
programming interfaces (API). The forecasting mechanism
was driven by a machine learning strategy. To determine the
most suitable one for the task, several state-of-the-art MLs,
i.e., decision tree, random forest, naive Bayes, artificial neural
networks, support vector machine, and fuzzy logic, were
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compared. It is worth emphasizing that the novelty of this
paper was not only to use different data in an ML, but also
to enhance and verify its predictions based on crowdsourc-
ing ones. It will be later shown in the experiments that the
developed system was able to elevate known limitations and
to enhance the effectiveness and efficiency of computerized
flood forecasting.

This paper is organized as follow. The next section (I) sur-
veys data, theories and practices relating to flood forecasting
systems. Subsequently, section (III) describes the proposed
scheme and the corresponding experiments. Then, the results
of visual assessments and numerical evaluations on studied
areas are reported and discussed (IV). Concluding remarks
are given and prospective developments are suggested in the
last section (V).

II. LITERATURE REVIEW

Reviews of related works consists of five main areas, which
are, A) meteorological and hydrological data, B) geospatial
data, C) application programming interface, D) crowdsource
data, E) machine learning techniques for flood forecasting,
and F) existing frameworks. The detailed discussion on rele-
vant studies are provided in the following subsections.

A. METEOROLOGICAL AND HYDROLOGICAL DATA
Following prior investigations, it was concurred that meteoro-
logical data played a vital role in flood prediction [26], [27].
Particularly, amongst the most effective factors reported in
recent works were, rainfall data [21], [26]—-[29], rainfall dura-
tion [26]-[29], and stream networks [26]-[29]. In addition,
other flood determinants engaged in its prediction included
accumulated precipitation forecasting [29]-[31], flood haz-
ard 100 years return period [32]-[33], and probability of
precipitation [30]-[34].

Incorporating these determinants in forecasting was proven
to increase its accuracy. Thus far, shortcomings of using
meteorological and hydrological data were essentially two
folds. Firstly, most data available are not real-time [14]-[18].
Secondly, these data were not of sufficiently high reso-
lution [11], [28]. The most notable example of the latter
is rainfalls being recorded at specific monitoring stations,
normally located sparingly. For instance, there is normally
only one station per city. Therefore, any area without one
must rely on interpolation from those with actual readings.
The resultant information is hence of low spatial resolution,
inadequate as a representative instance for flood forecasting.
This leads to remarkable errors. However, with the recent
advances in remote sensing technology, radar-based rainfall
monitoring [10], [28] has elevated such limitations. It can
record data at more frequent rate, e.g., at every 6 minutes
to 1 hours, and at higher spatial resolution than terrestrial
stations.

This study, thus chose remotely sensed meteorological
and hydrological data, provided by Thailand Meteorological
Department (TMD) [35] and Global Flood [30]. These data
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were of high spatial and temporal resolution, suitable for the
proposed objective.

B. GEOSPATIAL DATA
Literature survey on using geospatial data in flood analysis
revealed that the majority of existing works involved both
risk assessment (RA) and flood prediction. Depending on
studied areas, these works employed various flood deter-
mining factors, the most common of which included height
above sea level or elevation [5], [21], [37], slope [5], [21],
[38], [39], land use and land cover [21], [40], [41], repeating
flood [21], [27], and flow direction [5], [6], [21], [27]. Albeit
these factors having less impact on flood than meteorological
and hydrological ones, e.g., rainfall and stream network, etc.
many studies have argued that without geospatial data, flood
prediction would neither be so effective nor realistic. Some
areas, despite heavy rainfalls, are not prone to flooding. This
is because they may be subject to low to non-existent expo-
sure to flood risk due to spatial advantages, e.g., being highly
elevate, or having efficient draining passage, etc.
Accordingly, flood prediction in this study employed
not only meteorological and hydrological data but also the
geospatial ones. It was anticipated that with optimal combi-
nations, the developed system would have better prediction
accuracy, and hence being generalized in various areas.

C. APPLICATION PROGRAMMING INTERFACE (API)

API is a means of communication between websites, or
specifically that between a service provider and clients.
It allows transparent data interchange or cross-platform pro-
cess execution. Provided a client being granted an access,
updating or retrieving information can be completed pro-
grammatically in real-time.

Thanks to their versatility, a number of APIs have been
deployed by various data service providers. In particular,
Google Map API [42] is one of the prominent services world-
wide. It offers access to geographical data in the forms of
spatial maps for different proposes, including location finding
(e.g., government buildings, tourist attraction points, or coop-
erate offices, etc.) [43], [44], environmental data displays
(e.g., air pollution, gas concentration and water contami-
nations, etc.) [45], and pinpointing natural disasters (e.g.,
earthquake, wildfire, and flood, etc.) [46]. Currently, there
are many providers offering API accesses to flood thematic
data. These providers can be categorized into that based on
proprietary and open-source platforms.

Unfortunately, the majority of these providers are often
paid for, hence impeding entry to this technology, especially
for those with limited financials. In order to develop a scheme
that ensures greater public adoption, this study opted for
those freely available, i.e., TMD [35] and Global Flood,
whose system is called the Global Flood Awareness Sys-
tem (GLOFAS) [36]. The major advantages of these plat-
forms were two folds. Firstly, they offered real-time readings.
But most importantly, preliminary studies also confirmed
that their historical data were accurate, corresponding to
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conditions and actual events. These characteristics would
benefit accurate and instantaneous flood forecasting. More-
over, Google Map API supports interfaces consistent to these
platforms and thus were used for visualizing flood forecasting
results. Integration of Google MAP, TMD, and GLOFAS by
API was thus a vital component in the proposed system.

D. CROWDSOURCE DATA

Crowdsource data have been adopted in many flood manage-
ment and prevention schemes. To this end, relevant informa-
tion is gathered from volunteers or participating groups. They
are often used in coalition with primary data, conventionally
collected by authorized entities. The main reason for such
integration was to enhance both reliability of the informa-
tion, and timing and economic efficiency of the compila-
tion [47]-[52].

Currently, the most widely adopted approach is fetching
data from social networks. Both plain text and multimedia
data accounting the event are posted online by flood victims
and maybe their relatives. They are simultaneously fetched,
compiled and made accessible to authorized persons. Thus
far, there are some limitations [53]. Utilization of crowd-
source data has not yet been systemized. They are not used to
assess, for instance, accuracies of flood prediction. Even then,
there would be no means of verifying that these data were
indeed of an affected area. Multimedia screening process is
attentive and requires tremendous human resource, given vast
amount of data involved. Without computerized automation,
this process is often prohibitive during major flood event [48].

To our knowledge, crowdsourcing data were normally used
in coordinating flood management and rescue operations, but
not yet integrated with other thematic data in a forecast-
ing system. To elevate these limitations, this study proposes
exploiting crowdsource data in two ways. Firstly, uploaded
photographs and flood levels were analyzed by Deep Learn-
ing (DL) neural network, to determine whether they were
indeed of an actual event in a given area. Secondly, they
served as input data, together with other relevant attributes,
for the real-time forecasting system. Enhanced with these
volunteer data, the system was anticipated to make a decision
more accurately.

E. MACHINE LEARNING (ML) STRATEGIES

ML has increasingly been applied in flood forecasting
systems. Therein, various ML strategies were explored.
They included Decision Tree (DT) [16], Random For-
rest (RF) [16], [54], Naive Bayes, Artificial Neural Net-
work (ANN) [16], [21], [22], Support Vector Machine
(SVM) and Regression (SVR) [16], [54], [55] and Fuzzy
Logic [16] [56], [21], etc. However, many of these studies
focused upon conceptual frameworks, investigating feasibil-
ity of ML in flood forecasting. They did neither thoroughly
validate their resultant forecasts against actual events, nor did
they provide guidelines on relevant parameters settings. One
exception was an extensive review by Mosavi et al. [16], who
reported that the most efficient and promising ML strategies
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for this purpose were ANN, SVM, and SVR. Their over-
all accuracies were relatively high, ranging between 70%
to 90%. It was construed that system accuracy was largely
dependent on both learning strategies and attributes being
considered.

Thus far, the majority of these ML based software
demanded manual input data preparation. It hinders the sys-
tems from being automatically operational. Consequently,
most existing systems were unable to instantaneous response
to, for example, sudden flood. In addition, following such
events, additional data would always be required for subse-
quent analyses. It was found in our survey that there existed a
system attempting to remedy these issues. An online flood
forecasting system based on Self-Organizing Map (SOM)
was recently developed [20] on a .NET Framework. It was
written in C# Language, interacting with an SQL Server and
Google Map API. The system made its forecast based on
rainfalls, streamflow, and other relevant attributes stored in
the database, and displayed affected locations in real-time.
A drawback of this system was that it relied on measurements
from rain stations. A limited number and coverage of the
active sites could undermine its performance. Furthermore,
the forecast was made based on present data, restricting it
from determining flood events much further ahead. The study
did not however verify its forecasted results against the floods
that actually happened. One was thus unable to assess the
true performance of SOM in such framework. Nonetheless,
a notable quality distinguishing this work from other similar
attempts, was that the entire process was automatic. All data
involved were directly acquired from monitoring sources
and stored in a well-structured database. As such, it did
not require any human intervention, either in data prepara-
tion or processing. Thanks to web-based design, the system
was able to run on virtually all devices, regardless of their
operating systems (OS).

Motivated by [20], this study proposed a novel frame-
work that made key improvements over that system. It used
public crowdsource data, both as an input attributes to the
system and for the verification purpose. Not only mete-
orological and hydrological data, but it also incorporated
other relevant geospatial ones in training an ML system.
Accumulated precipitation and probabilities of rainfall at
particular levels could be estimated in advance. Predic-
tion of relevant attributes and forecasted flood were val-
idated against the actual situations. Detailed experiments
comparing different strategies were carried out to evaluate
their performance, and hence with available data, to deter-
mine a most suitable technique for area specific contexts.
Verifications of the resultant flood forecasts were made
against those obtained from both onsite expeditions and
crowdsource data, downloaded via thaiflood.org. Numeri-
cal and in sifu assessments indicated that the developed
system can make the forecast more effectively, and hence
much pertinent to public hazard management realm in larger
scales.

5888

F. FLOOD FORECASTING FRAMEWORK

Existing frameworks [57], [58] were implemented as applica-
tion software on different platforms. In a first instance [57],
a mobile application on ASP.NET framework written in C#
language was developed. This software forecasted a flood
event by using the HEC-HMS algorithm, based on factors
stored in MySQL database. However, it was limited to only an
Android operating system. Another more in-depth analysis of
flood situations was developed on a web platform [58]. This
system statistically analyzed floods based on the historical
data of water levels, and seven points of water inlets and
outlets. The resultant forecast was presented as point-wise
flood levels, rendered on a two-dimensional map. Its short-
coming was that the analysis did not consider any geospatial
data. In addition, forecasts could only be made at specific
outlets, but not at those arbitrarily queried by users. Although
it was developed as a web application, it did not support
responsive web technology, and as such was unable to equally
well satisfy user experience on all other devices apart from
personal computers (PC).

In terms of mathematical models, it was found that cur-
rent frameworks made their flood forecast based on three
models, i.e., meteorological, hydrological, and ML ones.
The first two models were used with many algorithms, e.g.,
HEC-HMS [57], HEC-RAS [59], Mikel1 [60], Mike21 [60],
Mike-Flood [60], and ECMWEF [61], etc., while those using
ML model were implemented with various methods (as dis-
cussed in the section I. E). Thus far, these systems were
only experimental and, to our knowledge, not yet publicly
distributed.

To elevate these limitations, this paper thus analyzed and
designed a flood forecasting system that improved over the
current ones. The aspects considered herein were supports
of responsive web technology, automation of key processes,
and availability and usability of the system. To this end,
the proposed system was developed by using both meteoro-
logical and hydrological models in forecasting accumulated
precipitation from data obtained from TMD big data and
GLOFAS, and ML models in forecasting flood situations in
given areas. The analyses were made based on meteorologi-
cal, hydrological, geospatial and crowdsourcing data.

IIl. PROPOSED SCHEME AND EXPERIMENTS

A. STUDY AREA

To elucidate the merits of the proposed scheme, the exper-
iments were carried out on two provinces, located in the
South of Thailand. They were Surat Thani and Nakhon
Si Thammarat. Their geographical illustrations are depicted
in Figure 1.

The reason for considering these provinces in this study
was the fact that, unlike other parts of the country, both areas
are under influences of both southeast and northwest mon-
soons. As a consequence, they both are prone to heavy floods,
almost every year. Nonetheless, evaluations and assessments
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FIGURE 1. Study Area consisting of two cities in the South of Thailand.
They were Surat Thani and Nakhon Si Thammarat Provinces.

later made in this paper would show that no restriction on
data nor fundamental processes was imposed regarding these
specific provinces. Therefore, the proposed scheme could be
generalized and applied equally well to other areas.

B. DATA PREPARATION

In this study, data used in flood forecasting could be cat-
egorized into four main groups. They were 1) geospatial,
2) meteorological and hydrological, obtained from GLOFAS,
3) hourly rainfalls prediction from TMD Big Data platform,
and 4) crowdsource (or volunteer) data. They were stored
in geo-database and then processed by one of modern ML
strategies. Data interchanges were done via four interface
technologies, i.e., Web Feature Service (WFS), Web Map
Service (WMS), TMD API, and Google MAP API. The resul-
tant models were then employed in subsequent forecasting
systems.

Since all data involved in this study were acquired from
various sources, they were hence of different spatial and
temporal resolutions. To normalize them into a common coor-
dinate frame, a pre-processing step was required. In terms
of spatial resolution, interpolation was made based on their
geographic coordinates. It should be noted that this normal-
ization was not intended nor did it able to increase their
intrinsic information, but only to align corresponding posi-
tions for consistent sampling in ML. In this study, bilinear
interpolation (BI) was used. On the other hand, interpolating
these data temporally was not so trivial, especially when they
were irregularly stored at diverse scales. The proposed system
updated its forecasts on a daily basis. Therefore, data sampled
at 24-hour intervals, e.g., rainfall, and precipitation, etc.,
would not require resampling. However, for historical records
that do not as frequently change, e.g., 100-year return period,
land use and land cover, etc., the most recent data available
would be used. This is equivalent to applying nearest neigh-
bor (NN) interpolation scheme. Detailed pre-processing on
each dataset are listed in Table 1.

C. DATA INTEGRATION
Figure 2. depicts the conceptual diagram describing the pro-
posed scheme. The key elements were data acquisition and
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TABLE 1. Interpolations applied to data involved in this study.

Factors ORG. NEW Temporal Spatial
Res. Res. Point Interp.
Elevation Sm 30 m Year 2017 BI
Slope Sm 30 m Year 2017 BI
Flow Direction Sm 30 m Year 2017 BI

Landuseand Land cover 30m  30m Year 2017 None

Repeating Flood 30m.  30m. 8 Years None
Accumulated Precipita- 10 30 m Daily BI
tion km

Prob. of Precipitation (50 10 30 m Daily BI
mm) km

Prob. of Precipitation 10 30 m Daily BI
(150 mm) km

Prob. of Precipitation (300 10km  30m Daily BI
mm)

Flood Hazard 100-year 10km  30m Year 2019 BI
return period

5 Year Return Period Ex- 10km  30m Year 2019 BI
ceedance

Rainfall forecasting 2 km 30m Daily BI
Rainfall Duration Actual  Actual Daily None
Rainfall Intensity Level Actual  Actual Daily None
Drainage Ability Problem Actual  Actual Daily None

interchange between the system and respective sources and
their intelligence via MLs.

Thematic data acquisitions were divided into four groups,
i.e., meteorological and hydrological data, hourly precipita-
tion data, area specific geospatial data, and crowdsource data.
Process in each group can be elaborated as follow.

Firstly, meteorological and hydrological data were
acquired from the Global Flood server, called GLOFAS [36].
Meteorological data consisted of accumulated precipitation,
and the probability of precipitation at different levels, pre-
dicted daily. The prediction is based on ECMWF (European
Center for Medium-Range Weather Forecasts) model. Hydro-
logical data consisted of flood hazard 100-year return period,
and 5-year return period exceedance. These were acquired
from GLOFAS via Web Map Service (WMS), with a program
written in PHP language. Once downloaded, the data were
stored in raster formats for subsequent analyses.

The second source of data was rainfall forecasting,
which was acquired from big data repository, managed by
TMD [35]. The acquisition via API was made by a web appli-
cation developed with PHP and Leaflet JavaScript. With this
platform, rainfalls and their accumulation could be predicted
48 hours in advance. Likewise, the current and predicted data
were stored in our MySQL database for subsequent analyses.

In this study, MySQL was preferred to other spatial
databases, thanks to its compatibility with involved crowd
sources’ interfaces, e.g., that of thaiflood.org, and integrabil-
ity with a wide range of web-based administrative and flood
management functionalities. In spite of not being specifically
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SVM, and FL

Data Analyses

Data Tier

Data Management

FIGURE 2. Conceptual diagram of the proposed scheme.

designed for big and geospatial data, its most recent update
does support both platforms via Hadoop, Apache Sqoop and
NoSQL, etc. Moreover, geographical processing was primar-
ily not geometric operations but data driven MLs. Therefore,
a dedicated geospatial database was not explicitly needed.
Having said that, geographical attributes were indeed associ-
ated with thematic data via a well-defined relational structure.
Accordingly, geographical data manipulation and processing
was effectively handled by GeoJSON (RFC 7946), catered
to web developers. Both MySQL and GeoJSON were open-
source and fully supported by most web frameworks.
Thirdly, area-specific geospatial data consisted of height
above sea level, slope, land use and land cover, 10-year
repeating flood, and flow direction. These data were compiled
from Thai authorities, i.e., the Land Development Depart-
ment, and Informatics and Space Technology Development
Agency (GISTDA). They were acquired by using Web Fea-
ture Service and stored in our database for further analyses.
The fourth group was crowdsourced data gathered from
the public. They were further divided into two parts. Data
in the first part were used in training the forecasting system.
They were essentially real-time data accounting actual inci-
dents. These real-time data consisted of area specific rainfall
intensity levels, continuing rainfall durations, and drainage
ability. Although many social media platforms provide these
data, they were not cost effective, as fee would normally
be charged for on-demand access to associated coordinates.
This study thus developed, in-house software to gather these
crowdsource data. To this end, an online reporting system was
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developed so that the participants may inform of their current
situation. Once the system was launched, additional reports
may be fed back to adjust ML model, making the forecast
more realistic. The second part was verification data, charac-
terizing floods happening in given areas. In addition to data
reported by voluntary users, it also consisted of flood levels,
fetched from thaiflood.org. In fact, the latter system was also
developed in our previous work, with an intention to gather
flood related information from the public for state’s uses, e.g.,
devising flood management, planning and executing rescue
mission, and reliving flood victims, etc.

For examples, geospatial data (i.e., elevation, slope, flow-
direction, land use and land cover, and repeating flood)
are shown in Figure 3, while those of meteorological and
hydrological data (i.e., forecast of accumulated precipitation)
are shown in Figure 4. Figure 5. illustrates six examples
of probability of precipitation at 3 different levels. Finally,
Figure 6(a) and (b) depicts the maps of flood hazard 100-year
return period and 5-year return period exceedance. All data
employed in this study are summarized in Table 2. The
factors, their abbreviations, and ratings are referred by ML
methods in the section III D.

The amount of data acquired from GLOFOS and TMD
platforms by the proposed system were in both raster and
vector types, and also of greater than 10TB in size. It is worth
noted here that, although the amount actually arriving at,
storing in, and passing through the system at a specific time
was not categorically immense, they were of significantly
high variety (structured and unstructured), and high velocity.
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FIGURE 3. Spatial Factor maps consisting of elevation, slope, flow direction, land-use, and repeating flood.
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FIGURE 4. Accumulated precipitation forecast map of two selected areas.

These data, such as rainfalls and precipitations, were con-
tinuously varying during the system operations. As a conse-
quence, conventional data handling was inadequate. Without
big data operations, the forecasting could not be instantly
responding to such heterogenous changes, especially when
the proposed flood forecast system is scaled up to sup-
port wider areas of interest than those demonstrated herein.
Furthermore, the system, in fact, utilized TMD big rain-
falls data, processed by the Thai Meteorological Department,
by using numerical weather forecast (NWP) and those by

VOLUME 8, 2020

GLOFAS, by using ECMWF hydrological model. These data
were also of not only high volume, variety, and velocity,
but also inconclusive. These characteristics thus called for
big and not conventional data handling. It would be later
shown in the subsequent experiments that the rainfalls big
data forecasted by ECMWF model yielded the most accurate
results [61].

The analysis and design of the proposed system focused
on its main functional requirements. They included gather-
ing not only key geospatial factors from institutional data
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FIGURE 5. Precipitation maps for flood forecasting when the probabilities are high (a, ¢, and e), and low (b and d).

sources but also those crowdsourced from individuals. The
main functional components of the system are illustrated as
a use case diagram in Figure 7. Users are divided into two
groups. Firstly, the one labelled as “User,” are the general
public, community leaders, or government officers who are
anticipating the event and need access to forecasts so as to
prepare appropriate measure in accordance. The users are
able to browse map data as well as relevant information geo-
graphically, such as observed and predicted precipitations.
The prediction includes accumulated amount (in mm.) and
probability (in percent) of precipitation, etc. Moreover, based
on relevant factors within an area, they may query prediction
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of flood event, along with its likelihood and possible severity.
The outcomes can then be verified against the flooding data,
crowdsourced and reported via the Flood Mitigation System
(thaiflood.org). Secondly, the other group labeled as “Admin/
Officer” are authorized agents who are operating the services.
In addition to generic functionalities, their administrative
tasks include membership management as well as updating
relevant data and forecasted results.

D. FLOOD FORECASTING BY MACHINE LEARNING
To determine a suitable ML strategy for flood prediction,
this section compared the forecasting performances from
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TABLE 2. Summary of the thematic data, their attributes, and units, employed in this study.

Factors Classes Rating Sources
Elevation (DEM) <28 m 1 Geospatial Factors
28.00000001-82 m 2
82.00000001-158 m 3
158.0000001-258 m 4
258.0000001-370 m 5
370.0000001-494 m 6
494.0000001-640 m 7
640.0000001-821 m 8
821.0000001-1,073 m 9
>1,073 m 10
Slope (Slope) <1.716620802 (Degrees) Geospatial Factors

1.716620802 - 5.836510722 (Degrees)
5.836510723 - 11.32969728 (Degrees)
11.32969729 - 17.16620801 (Degrees)
17.16620802 - 22.65939457 (Degrees)
22.65939458 - 28.49590529 (Degrees)
28.49590530 - 35.01906433 (Degrees)
35.01906434 - 45.31878913 (Degrees)
45.31878914 - 62.14167298 (Degrees)
>62.14167298 (Degrees)
Flow Direction (FlowDir) 1 = East
2 = Southeast
4 = South
8 = Southwest
16 = West
32 = Northwest
64 = North
128 = Northeast
Land use and Land cover (LULC) O = Others
W = Water
A = Agriculture
M = Miscellaneous
U = Urban
F = Forest
Repeating Flood (RepeatFlood) 1 year
2 year
3 year
4 year
5 year
6 year
7 year
8 year
Accumulated Precipitation (RainAcc) 10 - 15 mm
15 -20 mm
20 - 25 mm
25 -50 mm
50 - 100 mm
100 - 150 mm
150 - 200 mm
> 200 mm
Probability of Precipitation (50 mm) 0-10%
(Rain_P50) 10-20 %
20-30%
30-40 %
40-50 %
50 - 60 %
60 - 70 %
70 - 80 %
80-90 %
90 - 100 %
Probability of Precipitation (150 mm) 0-10%
(Rain_P150) 10-20 %
20-30%
30-40 %
40-50 %
50 - 60 %
60 - 70 %
70 - 80 %
80-90 %

Geospatial Factors

Geospatial Factors

Geospatial Factors

GLOFAS

GLOFAS
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TABLE 2. (Continued.) Summary of the thematic data, their attributes, and units, employed in this study.

Factors

Classes

Rating Sources

90 - 100 %

0-10%

10-20%
20-30%
30-40%
40 - 50 %
50-60 %
60-70 %
70 - 80 %
80-90 %
90 - 100 %

Probability of Precipitation (300 mm)
(Rain_P300)

GLOFAS

Shallow (<1m)
Moderate (1-3m)
Deep (3-10m)
Very Deep (>10m)

Flood Hazard 100-year return period
(Flood100Year)

GLOFAS

0-10%

10-20 %
20-30%
30-40%
40-50 %
50-60 %
60 - 70%

70 — 80%
80-90 %
90 - 100 %

5 Year Return Period Exceedance
(PESYear)

GLOFAS

—
(=)

10 - 15 mm
15-20 mm
20 - 25 mm
25 -50 mm
50 - 100 mm
100 - 150 mm
150 - 200 mm
> 200 mm

Rainfall forecasting (RainLevel)

TMD Big Data

Rainfall Duration (RainDura) None
Low (1 — 3 Hours)
Moderate (3 — 5 Hours)
High (>5 Hours)

Crowdsource

Rainfall Intensity Level (RainInt) None
Low
Moderate
High

Crowdsource

Drainage Ability Problem (PDrainage) None
Low
Moderate
High

Crowdsource

AW =R WND =R WLWND~I WA WN—

different MLs. Those considered in this study were DT (J48),
RF, Naive Bayes, ANN (both MLP and RBF architectures),
SVM and Fuzzy Logic. On evaluating each ML, K-fold cross-
validation was employed. The input data were divided into
four groups, i.e., thematic spatial layers, meteorological and
hydrological data obtained from GLOFAS, hourly predicted
precipitation obtained from TMD big data, and crowdsourced
(or volunteered) data. Altogether, they constituted to 15 vari-
ables (as shown in Table 1). For a given area, prediction
outcomes were divided into 4 classes. They were 1) no flood
is anticipated, 2) flood level were below 20 cm, 3) flood
level were between 20 to 49 cm, and 4) flood level were
50 cm or above. The system provided flood forecasting on
daily basis. Its lead time was hence 24 hours. The predicted
results were subsequently validated against those retrieved
from trusted agencies, onsite expeditions, and crowdsourced
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reports via the web application (developed by the authors and
thaiflood.org). In this paper, the studied area covers Surat
Thani and Nakhon Sri Thammarat provinces.

Unlike a physical based approach, data driven ML does not
focus on insights into functional models, but intrinsic rela-
tionships between flood relevant factors and corresponding
outcomes, learned from the past events. The design of ML
models adopted in this framework and their characteristics are
described as follow: Firstly, MLP is a configuration of ANN
with multiple layers and is suitable for complicate learning
tasks. An MLP network employs back propagation scheme,
which consists of 2 reciprocal procedures, i.e., forward and
backward passes. The forward-pass traverses data presented
at the input layers through the ones hidden in the network,
while the backward pass iteratively adjusts their connecting
weights such that the errors between actual and expected
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FIGURE 6. Maps of Flood hazard 100 years period (a) and 5-year return period exceedance (b).
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FIGURE 7. Use case diagram describing the functions of the proposed system.

responses are minimized. In our implementation, MLP was
defined as per equations (1) and (2).

n
Xj = Zi:l Xiwij + bjo D
1

- 2
1+ e @

For a given dataset, n is the total number of input nodes,
x; is a sampled data point present at the i node, wjj is the
weight assigned to a link connecting the i and the j" nodes,
bj and wj are, respectively, bias and weight linking to the jm
node, and y; is the response at the i node.

Vi
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In the proposed framework, MLP consisted of three main
parts, i.e., input data, the network, and classified results,
as shown in Figure 8. The input data consisted of 16 attributes,
listed in Table 2. The network parameters were empirically
determined by preliminary trials. They were assigned to the
ANN as follow: learning rate (0.1), momentum (0.1), number
of hidden layers (7), and training epochs (500). The predicted
classes which corresponded to four levels of flooding were
defined as none-existing, low, moderate, and heavy.

SVM was first introduced in a binary classifier problem
and later extended to multi-class ones [62]. It neither poses
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TABLE 3. Resultant fuzzy rules applied during inference.

Rule Fuzzy Rules
No. Antecedent (IF) Consequence (THEN)
R1 RainDura is Moderate Non-Flood
R2 RepeatFlood is Low AND Slope is High Non-Flood
R3 PDrainage is Moderate AND PE5Year is Moderate ~ Non-Flood
R4 PDrainage is Low AND RainLevel is Low AND Non-Flood
PESYear is Moderate
RS PDrainage is Low AND LULC is Moderate Non-Flood
R6 RainDura is Moderate AND Rain_P150 is High Low Level Flood
AND PDrainage is Low
R7 Rain_P300 is Low AND Rain_Level is Moderate Low Level Flood
AND RepeatFlood is Moderate
RS RainDura is High AND Repeat Flood is Moderate Moderate Flood
AND PDrainage is Moderate
R9 RainDura is High AND RainLevel is High Heavy Flood
R10 RainDura is High AND Slope is Low AND Heavy Flood
RainLevel is High
Input Data MLP Network Classified attributes were accumulated precipitation (RainAcc), proba-
oveton Results bility of precipitation at 150 mm and 300 mm (Rain_P150
EED(HF?“‘," - \%\kt\;;;,— No Flood and Rain_P300), drainage ability problem (P_Drainage),
éi’li&?m S S S-year return period exceedance (PES Year), elevation
b iPacaiaion b k:z:g:ﬁ J?Tt]e gi Low (DEM), slope (Slope), rainfall duration (.RainDura), and
e G = Hiddenlayers 7\ repeating flood (RepeatFlood). These attributes were cate-
s S R gorized and given rating numbers, as specified in Table 2.
Famat o M. e The resultant rules for flood forecasting are illustrated in
ainfall Duration

Rainfall Intensity Level
Drainage Ability Problem

FIGURE 8. The MLP employed in this study and its parameter settings.

any assumption on samples distribution nor the geometry of
their separation. This is because, in its general form, SVM
creates decision boundaries on a hyper-plane based on a series
of kernels. Let the training data consists of n vectors {(xj, yi),
i=1,2,..N}. Aclass value or target y; € (-1, 1) is associated
to each vector, where N is the number of training samples.
This study defined a non-linear classifier, whose expression
is given as follow.

J(x) = sgn [Z;N:l aiyiK (xi - xj) + b} , 3)

where sgn is the sign function, K is the kernel function and the
magnitude of a; is determined by regularizing parameter C, -
is inner product between two vectors, b is a bias value, and K
is defined by a radial basis function, i.e.,

K (3r-) = exp (= i - ). @

where y is a kernel parameter, characterizing data dispersion
and hence the extent of kernel supports. In the subsequent
experiments, b, C and y, were set to 0.0, 1.0 and 0.1, respec-
tively.

DT (J48) classifier was also considered in this study. Based
on a tree structure, this method classifies an instance at
each node based on its attributes. Among different variants,
a J48 uses Gini index to determine an appropriate attribute
and criterion for a given node. In this study, the considered
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Figure 9. This DT reads as follow: On the left main branch,
for instance, if the accumulated precipitation was no more
than 25 mm (rated 3), the probability of precipitation at
300 mm would be next considered. If it was no greater than
10% (rated 1), no flooding would be anticipated. Otherwise,
the drainage ability of the area would be then assessed. If it
did not have any drainage difficulty (rated 1) and it had
less than 10% (rated 1) of 5-year return period exceedance,
the area did not either expect any flood. However, a low-
level of flood (20-50 cm.) was forecasted, if any of these
conditions were not satisfied. Forecasts on low, moderate,
and heavy floods could similarly be made following the
main branches on the right, in which case elevation, slope,
and probability of precipitation at 150 mm, were taken into
account.

Fuzzy Logic is a computerized reasoning method that emu-
lates complex human thoughts. Its strength is due to extension
of Boolean logics to a fuzzy set of partial truths, whose values
are continuously defined between 0 to 1. Fuzzy Logic consists
of three main operations, as depicted in Figure 10. The first
operation is Fuzzification which maps an input sample to a
membership value by using a membership function. In this
study, that of a triangular type was chosen. The second step
is called inference, where fuzzified data are interpreted and
analyzed based on a set fuzzy rules, specified in Table 3.
Finally, Defuzzification assigns analyzed output variables
with the exact decision. It was evident from the Fuzzy rules
that the key determinant on flood forecasting were rain dura-
tion, rainfall forecasting, repeating flood, drainage ability
problem, probability of precipitation (300 mm), probability
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FIGURE 9. Resultant flood forecasting decision tree derived from the DT (J48) algorithm.
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FIGURE 10. Diagram of the Fuzzy Logic employed in flood forecasting.

of precipitation (150 mm), land use and land cover and 5-year
return period exceedance.

To address over-fitting issues 10-fold cross validation was
used to assess all abovementioned ML algorithms, in the
experiments.

E. ACCURACY ASSESSMENTS OF FLOOD FORECASTING

This paper employed standard accuracy metrics which were
Corrected Classified Instances (CCI), Kappa, Mean Absolute

VOLUME 8, 2020

Inference

Defuzzification

Error (MAE), Root Mean Square Error (RMSE), True Posi-
tive (TP), False Positive (FP), Precision, Recall, F-Measure,
and Area under ROC. Particularly, MAE and RMSE were
defined as follow:

1 n ,
MAE = - Zizl Ix; — x;] ®)
1 n ;2
RMSE =/~ Zizl (Xi — X;) (6)
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TABLE 4. Evaluation metrics used in this studies and their expressions.

Evaluation Method Expression Description
TP Rate TP rate = TP/(TP+EN) TP is True Positive
FP Rate FP Rate = FP/(FP+TN) TN is True Negative

Corrected Classified
Instances: CCI

CCI = (TP+TN)/(TP+TN+FP+FN)

FP is False Positive
FN is False Negative

(Accuracy)

Precision Precision = TP/(TP+FP)

Recall Recall = TP/(TP+FN)

F-measure F-measure = (2xPrecisionxRecall)/(Precision+Recall)
Kappa K =[K0-Ke]/[1-Ke]

Ke= [(TN+FN) x (TN+FP)+(FP+TP) x (FN+TP)]/n’
KO = (TN+TP)/n

FIGURE 11. Examples of a screenshot of the developed web application
fitted on various devices based on responsive Graphic User Interface
(GUI) de-sign, based on Bootstrap framework.

where n was the number of data samples, Xx; and x; were the
actual and predicted values, respectively. All other relevant
accuracy assessment metrics, namely, TP and FP rates, CCI,
precisions, recall, F-measure, and Kappa and their expres-
sions are listed in Table 4.

IV. RESULTS AND DISCUSSION
To ensure maximum versatility and most extensive coverage
of crowdsourcing, this study adopted responsive web design
paradigm in developing the website. The web application
once deployed was able to support various devices, rang-
ing from personal and portable computers to mobile phones
and tablet computers, with varying screen sizes and resolu-
tions. Examples of their screenshots are shown in Figure 11.
By using the Bootstrap framework, the rendered CSS and
JavaScript automatically aligned and adjusted the layout of
components and controls to maintain uniform appearance
and hence satisfying user experience (UX). Furthermore,
the development cost was minimized as focuses were placed
on core functionalities and customizable contents, instead of
variations of frontend interfaces and layouts across platforms.
The results of the first module were rainfall data fetched
via TMD API. They were stored in our geospatial database
for further processing and partially displayed for a specific
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area on a user screen. Data consisted of two components,
i.e., those estimated by the system and acquired from TMD.
In Figure 12, they were represented by cloud and droplet pins,
respectively. Each pin was color coded with yellow, orange,
and red pins indicating rainfalls of the levels lower than
40 mm, 41 — 80 mm, and greater than 81 mm, respectively.
Users are also able choose either or both components, and at
a specific duration, simply by enabling the desired layers.

Meteorological and hydrological data that were acquired
from GLOFAS are illustrated in Figure 13. In this figure,
accumulated precipitation in each area was color coded.
Specifically, blue, light green and dark red, represents
low (10 —-25 mm), moderate (25 — 100 mm), and high
(> 100 mm), respectively. Areas with neutral one indicated
those with no precipitation. Likewise, the data would also be
used in forecasting.

Another crucial information was the probability of pre-
cipitation. In this study, the respective probability in each
area was color coded in three levels, i.e., 50 mm, 150 mm,
and 300 mm. Examples of these levels are illustrated in
Figures 14 to 16. In each figure, pixel intensities indicate
the likelihood of precipitation (i.e., O to 1) at that location
being of the respective levels. In Figure 14, for instance, light
and dark green indicate low and high probability of 50 mm
precipitation in a given location. Similarly, Figures 15 and 16
display the probability of precipitation of 150 mm and 300 in
blue and red, respectively.

One of the main contributions of this paper was employing
crowdsource data, not only in training but also in verification.
The system obtained data from thaiflood.org, to which public
users could send notifications of flood situations. It is worth
noted that, without dedicate equipment, accurate quantifi-
cation of relevant data is prohibitive in practice, especially
when provided by the public. Instead of requesting an explicit
number, the proposed system relied on GUI, by which a par-
ticipant could provide the experienced factors. Particularly,
they could choose, for instance, one out of four different
rainfall levels, i.e., none, low, moderate, or heavy, as they
had actually experienced. Their choices were later converted
to rating numbers, as described in Table 2. Figure 17 illus-
trates an example of actual flood map. The crowdsource
data were represented by pin icons. Each pin is coded in
three different colors with respect to reported flood levels.
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FIGURE 12. Rainfalls estimated by the system (cloud pins) and acquired from TMD (droplet pins) at a given date. Different levels of rainfalls are

represented by yellow, orange, and red colors, respectively.
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FIGURE 13. Accumulated precipitation acquired from GLOFAS. Different levels of accumulation are represented by blue, light green, and dark red colors,

respectively.

Yellow, orange, and red pins represented flood levels of less
than 20 cm, 20 — 50 cm, and greater than 50 cm, respectively.
Without crowdsourcing data, there would be no better means
of acquiring rainfall duration and its intensity, as well as
drainage problem, which were all crucial in, for examples,
the DT (J48) and Fuzzy rules.
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Flood forecasting was rendered based on learning of the-
matic data by an ML method. The resultant forecast was
displayed on a web browser. With this platform, users may
access this information from various devices. An example
of forecasted flood is shown in Figure 18. The strength of
its impacts was determined based its level, and accordingly
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FIGURE 15. Probability map of precipitation level of 150 mm is color
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FIGURE 16. Probability map of precipitation level of 150 mm is color
coded in red.

coded in different colors. Green pin indicate that the area was
not at all affected by flood. On the contrary, yellow, orange,
and red pin represents flooded areas, whose levels were less
than 20 cm, 20 — 49 cm, and greater than 50 cm, respectively.
Figure 19 shows an example when no flood incident was
anticipated.

In addition to visual assessment and UX demonstration,
numerical evaluations were also carried out. The forecasted
floods were verified with reports made by informed autho-
rized persons (in order to ensure validity). The metrics evalu-
ated were correctly classified instances ratio, Kappa statistics,
MAE, RMSE, TP, FP, precision, recall, F-measure, and ROC
area. Comparisons of these metrics were made among various
ML strategies, i.e., DT (J48), RF, Naive Bayes, MLP ANN,
RBF ANN, SVM, and fuzzy logic. Each ML was alternately
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FIGURE 17. Crowdsource data, reported by thaiflood.org users, indicate
different levels of actual flood incidents.
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FIGURE 18. Example of forecasted flood, at a selected area and during
specific dates.
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FIGURE 19. Example of when at a selected area, no flood was
anticipated, during specific dates.

trained and test in turn, while the other processing compo-
nents, as well as training and verification data were kept
unchanged.

The performance of these MLs are listed in Tables 5 and 6.
Itis evident that MLP ANN, SVM, and RF were placed in top
three ranks, in terms of classification accuracies (i.e., 97.83%,
96.67%, and 96.67%) and Kappa coefficients (i.e., 0.89, 0.84,
and 0.84). Statistically, Kappa values of greater than 0.8 indi-
cate highly accurate forecast, while those between 0.4 — 0.8
were moderate performers. According to Table 5, DT, Naive
Bayes, and fuzzy logic fell in the latter category. These trends
were similarly exhibited in MAE and RMSE, the closer to 0,
the more accurate the forecast.

Taken into account the results of, not only flooded
regions but also those unaffected by flood, the balance
between relevant and irrelevant predicted samples had to
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TABLE 5. Assessment of flood forecasting accuracy based on different machine learning strategies.

ML Correctly Forecasted Kappa MAE RMSE
Decision Tree (J48) 95.33% 0.77 0.02 0.14
Random Forest 96.67% 0.84 0.02 0.10
Naive Bayes 88.00% 0.59 0.61 0.24
Artificial Neural Network (MLP) 97.83% 0.89 0.01 0.10
Artificial Neural Network (RBF) 95.50% 0.80 0.02 0.14
Support Vector Machine 96.67% 0.84 0.01 0.12
Fuzzy Logic 95.67% 0.79 0.02 0.13
TABLE 6. Assessment of flood forecasting performance based on different machine learning strategies.

ML TP Rate FP Rate Precision Recall F-Measure ROC Area PRC Area
Decision Tree (J48) 0.950 0.010 0.950 0.950 0.950 0.906 0.960
Random Forest 0.967 0.117 0.966 0.967 0.966 0.997 0.990
Naive Bayes 0.880 0.035 0.938 0.880 0.898 0.977 0.972
Artificial Neural 0.978 0.027 0.980 0.978 0.978 0.996 0.988
Network (MLP)

Artificial Neural 0.955 0.054 0.962 0.955 0.957 0.968 0.950
Network (RBF)

Support Vector 0.967 0.079 0.968 0.967 0.967 0.944 0.951
Machine

Fuzzy Logic 0.957 0.105 0.956 0.957 0.955 0.961 0.959

be considered. More specifically, TP and FP rates, preci-
sion, recall, F-measure, ROC and PRC areas, were evaluated.
The findings shown in Table 6 were consistent to the above
accuracy assessments. The best three MLs, in terms of these
balanced metrics, were MLP ANN, SVM and RF. Based
on these observations, it is therefore safe to conclude that
these are the most appropriate MLs for the proposed flood
forecasting system. Since MLP ANN, SVM, and RF strate-
gies gave the highest averaged performance overall, further
detailed analyses were then performed. As a guideline on
employing an ML strategy in practice, it should give not only
high expectations but also consistent ones. Figure 20. shows
Box-Whisker plots of four key metrics, i.e., MAE, RMSE,
accuracy and Kappa. The metrics were evaluated on predicted
flood levels, which were divided into four categories, i.e., no
flood, low (< 20 cm), moderate (20 — 49 cm) and heavy
(> 50 mm) flood. The correct instance means the forecasted
level corresponded to the actual event, and vice versa.

It is evident from these graphs that, despite highly accurate
forecasting results, the system with SVM exhibited relatively
much wider variability across this dataset. On the contrary,
with identical settings, the other MLs were more consistent
and hence reliable in all four metrics, and thus are recom-
mended in an actual implementation. In fact, depending on
system requirements, technical preferences, and computing
architecture involved, either MLP ANN or RF are equally
applicable.
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Additionally, suppose that an MLP ANN is preferred,
due to its consistent favorable performance. Convergence
analysis was performed on its RMSE measure. This value
versus the number of iterations is plotted in Figure 21.
It was evident from this graph that RMSE significantly
improved up to approximately 250" round. After that,
it started to converge until approximately 500™ round, when
no improvement was noticed. This result serves as a prelimi-
nary guideline on training the MLP ANN model. Likewise,
convergence analyses on other parameter settings can fol-
low the same suite, given a new set of areas, that may dif-
fer in terms of meteorological, hydrological, and geospatial
characteristics than the two provinces, considered in this
study.

In addition to ML evaluations, those on the developed
flood forecasting framework were also performed. To this
end, a questionnaire querying satisfactions on using the soft-
ware was handed out to two user groups, i.e., general users
(participants/ flood victims) and authorized officers (includ-
ing rescue teams, heads of communities, and government
personnel). There were 100 subjects, in total, answering this
survey. They consisted of 85 general users and 15 officers,
respectively. The questionnaire items addressed three aspects
of the software, i.e., functionality, efficiency and security, and
decision making, flood preparedness and response supports,
in five Likert scales. The answered formed were evaluated
separately for each group. The resultant scores were listed
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FIGURE 21. RMSE produced by MLP ANN.

in Table 7 and 8, for authorized officers and general users,
respectively.

In general, it was revealed that the overall evaluations were
very good. The average scores were 4.93 £ 0.12 and 4.76 +
0.44, as acknowledged by authorized officer and general user
groups, respectively. Their views on each of these aspects
also reflected their general opinion. It was, however, worth
pointing out that, the officers gave the highest score to the
system efficiency and security, while the general users did
to decision making and flood preparedness and response
support. This evident implies primary concerns, expectations,
and hence satisfactions, inherently exhibited in each group.
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TABLE 7. Framework evaluations results, answered by authorized
officers.

Software Aspects X SD Meaning
Functionality 491 0.13 Very Good
Efficiency and Security 4.96 0.08 Very Good
Decision making and flood 4.93 0.14 Very Good
preparedness and  response,
support

Average 4.93 0.12 Very Good

TABLE 8. Framework evaluations results, answered by participant and
flood victims.

Software Aspects X SD Meaning
Functionality 4.74 0.46 Very Good
Efficiency and Security 4.76 0.45 Very Good
Decision making and flood 4.79 0.40 Very Good
preparedness and response,
support

Average 4.76 0.44 Very Good

It also served as a guideline on the key aspects, on which one
needs to focus, when developing flood forecasting system.

It is worth noted that, in addition to official geospatial,
meteorological and hydrological data, this study took into
account crowdsource ones for enhancing its classification.
The accounts of the actual event were gathered from the
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If a user reports a flood
event, they are asked to
provide an image.

thaifloodsim.org:

The built-in pretrained
Deep Learning will verify it
is of a flood event.

Please upload images related lo
the flooding situation.

OK

crowdsource data

Waiting...

FIGURE 22. Crowdsource data pre-screening module based on deep
learning.

public in real-time. The crowdsource rainfalls, for instance,
served as a confirmation of that forecasted by TMD system.
Moreover, drainage issues given by crowdsource at specific
time could enhance that estimated only by geospatial calcula-
tions. Having staid that, the less trustworthy of crowdsource
data, the much adverse effect on the system performance was
caused. To elevate this issue, the developed system authorized
heads of their community to verify the data provided by their
members. Moreover, to facilitate this screening, a user was
asked to provide a photograph of flooding, taken exactly
when the event was notified. An off-the-shelf deep image
learning module (illustrated in Figure 22) was subsequently
used to verify this photo and hence associated report.

The deep image learning module was implemented by
using Clarify API [63]. The API was based on ZFNet archi-
tecture, which was improvement over the AlexNet. It was
trained by 200 images of equally flood and non-flood events.
This process was employed to ensure the reliability of
crowdsourcing.

V. CONCLUSION

This paper proposed a novel distributed flood forecasting
system, based on integrating meteorological, hydrological,
geospatial, and crowdsource data. Big data made available by
prominent agencies were acquired by means of various cross-
platform APIs. Forecasting was performed based on these
data learned by modern ML strategies. They were decision
tree, RF, Naive Bayes, MLP and RBF ANN, SVM, and fuzzy
logics. Evaluation results on studied areas indicated that
the system could forecasted flood events highly accurately.
Three best performing MLs were MLP ANN, SVM, and RF,
respectively. It was elucidated empirically that the developed
system could be used to alert the public and authorities alike
of not only a current flood but also future ones. This system
also enhanced user experience via responsive graphical inter-
faces, interoperable on different computing devices includ-
ing mobiles. This advantage effectively encouraged greater
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contribution of crowdsource data from the public, enriching
data aggregation and hence increasing system accuracy and
reliability. As such, the developed system is adaptive, in a
sense that as the system became more “experienced” (i.e.,
through learnings), the forecasting gets more realistic.

In prospects, the system can be readily employed in exist-
ing floods management schemes, e.g., those led by govern-
ment agencies or non-profit organizations. Moreover, thanks
to distributed architecture, the system can reach wider public,
and therefore serves as an effective means of communicating
with them (and especially the flood victims), regarding cur-
rent status and development of the disaster. Future improve-
ments of the system include initial flood representation and
its extent being adapted to the current location of the device,
so that they can be instantly made aware of by its user.
Moreover, flooded location pined by an icon may be aug-
mented with color-coded regions, so that the conditions
(e.g., levels and extents) of affected areas may be better
comprehended.

Some data considered in this study, such as GLOFAS, were
not of intrinsically high spatial resolution, However, they
were accurate. The accumulated precipitations and their prob-
ability at different levels, for instance, corresponded to the
actual event. Their API system was also reliable. These char-
acteristics were favored by the proposed system. Their res-
olution shortcomings were remedied by incorporating other
more detailed layers as well as crowdsource factors into the
ML framework. Possible improvements for this issue include
involving the Internet of Things (IoT) in measuring actual
meteorological data with preferred coverage.
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