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ABSTRACT A forward collision warning (FCW) system is important for avoiding rear-end collisions.When
the front vehicle slows down or the risk of rear-end collision increases, the FCW system sends a warning.
However, if the warning is provided too late, the following vehicle may not have enough time to stop or slow
down smoothly. Here, we propose a new FCW system that detects the driving intention of the front vehicle
to provide earlier warning than previously used systems. The proposed FCW system consists of three steps.
First, the driving intention of the front vehicle is determined by the driving intention recognition module.
Second, the driving intention and other driving parameters of the front vehicle are transmitted to the following
vehicle using vehicle-to-vehicle (V2V) communication. Finally, this information and the driving parameters
of the following vehicle are used to determine the potential collision risk by the FCW module located in
the second vehicle. To evaluate the proposed system, we conducted a simulation test based on PreScan
(commercial software provided by TASS international) and actual road tests in various driving scenarios.
The simulation test results demonstrated that the correct warning rate of the proposed system was 97.67%,
which was 6.34% higher than that of the system with a fixed time-to-collision (TTC) threshold. The real
vehicle test results showed that the proposed systemwas able to provide earlier warnings than the TTC-based
system. The timely warning rate, i.e., the ratio of the number of warnings at the beginning of braking to the
total number of warnings was 93.33%. The proposed system proved effective for providing early warning to
the following vehicle under different driving conditions of the front vehicle.

INDEX TERMS Collision warning, driving intention, hidden Markov model, V2V communication.

I. INTRODUCTION
Road traffic accidents pose serious threats to people’s lives,
property safety, and road traffic efficiency. In addition, two-
vehicle and multi-vehicle collisions are the most severe type
of accidents [1]. Studies of road traffic accidents showed
that more than 80% of these incidences resulted from the
drivers’ untimely responses and more than 65% resulted in
rear-end collisions [2]. According to research conducted by
Mercedes-Benz, most accidents can be avoided if drivers are
aware of the dangers of these accidents and are able to take
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evasive measures within a second prior to the accident [3].
The prevention of automobile collisions and the improvement
of the driving safety of vehicles are key topics in the field of
automobile safety and assisted driving.

To address the rear-end collision problem, forward col-
lision warning (FCW) systems have been developed using
active sensors such as vision-based [4], acoustic-based [5],
radar-based [6], and laser-based [7] sensors. Some of these
FCW systems were based on collision warning models with
fixed parameters. Kilicarslan and Zheng [8] used the time-
to-collision (TTC) model with a fixed threshold and a single
camera to evaluate the potential collision danger. Nagatani [9]
proposed a time-headway (THW) model, which not only
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considered the speed of the following vehicle, but also the
distance between the two cars. Wang et al. [10] presented
a kinematic-based model to calculate the minimum distance
needed to stop safely when both vehicles were moving.
Chen et al. [11] proposed an FCW model based on road fric-
tion. This model described the impact of vehicle deceleration
on the collision warningmodel during braking. Theminimum
safe distance model proposed in Ref. [12] considered the
relative motion between adjacent automobiles. These FCW
models do not adapt to driver behavior under varying traffic
conditions.

In order to improve the robustness of FCW systems, some
studies employed adaptive models, which considered the
driver’s characteristics. Bella and Russo [13] proposed a
new FCW algorithm based on the risk perception of the
driver. The distance calculated by the proposed model was
considered the collision warning threshold. Tawfeek and
El-Basyouny [14] proposed an FCW model based on the
analysis of the natural following behavior of the driver. The
relative speed, host vehicle speed, and acceleration were
used to determine the warning threshold. Brown et al. [15]
proposed an FCW system based on a human performance
model; a simple deterministic model was proposed to ana-
lyze the driver performance under various collision situ-
ations. Muehlfeld et al. [16] presented a statistical driver
behavior model based on the analysis of the driving history.
Pugeault and Bowden [17] proposed a statistical learning
approach based on driver braking behavior. Wang et al. [18]
developed an adaptive longitudinal driving assistance system
that adapted to the driver’s habits. Su et al. [19] proposed an
FCW system based on aGaussianmixturemodel to recognize
the driver’s driving behavior. Iranmanesh et al. [20] designed
an adaptive FCW framework based on detecting driver dis-
traction. Xiong et al. [21] proposed an FCW algorithm based
on online risk level classification. The parameters reflecting
the level of risk were identified using fuzzy logic rules.
Arbabzadeh et al. [22] established a kinematics-based FCW
system using a hybrid physical/data-driven approach, which
took into account the driver’s reaction time. Reinmueller and
Steinhauser [23] suggested that the driver’s reactions to fail-
ures and associated safety implications should be considered
in adaptive FCW systems. Wu et al. [24] proposed a collision
warning model. The authors considered the driving behavior
of the front vehicle and road geometry information and used
the model for predicting the vehicle position and vehicle
distance. Jo et al. [25] presented a unified vehicle tracking
and behavior algorithm, which simultaneously estimated the
dynamic state of the surrounding vehicles and driver inten-
tions. Yuan et al. [26] proposed a front vehicle lane-change
prediction method for an adaptive cruise control system.
In their method, a hidden Markov model was used to predict
the lane-changing maneuver of the front vehicle. These FCW
systems focused primarily on the driving behavior of the
following vehicle and less on the driving behavior of the front
vehicle, which may be equally important.

With the rapid development of wireless communication
technology, the behavior of the driver in the front vehicle
can be transmitted to the following vehicle to improve the
performance of the FCW system [27]. Xiang et al. [28]
presented a dedicated short-range communication (DSRC)-
based FCW system. A neural network-based collision warn-
ing model was proposed to improve the system performance.
Patra et al. [29] presented an FCW system for smartphones.
This FCW system used license plate recognition and vehicle-
to-vehicle (V2V) communication to warn the drivers of both
vehicles. Lei and Wu [30] designed an FCW system based on
ZigBee technology at slow speeds. They established a safe
distance collision warning model to detect future collision
risk of the target vehicles. Chen and Hsiung [31] proposed a
visibility-based collision warning system; human factors and
weather conditions were considered in this collision warning
model. The aforementioned FCW systems only took into
account the behavior of the driver of the front vehicle but did
not consider driving intention, which can be used to predict
the near-future action of vehicles and speed up the response
of FCW systems.

In this article, we propose an FCW system that detects
the driving intention of the front vehicle and transmits the
information to the following vehicle using V2V communica-
tion techniques. The proposed driving intention recognition
method results in better efficiency of the FCW system and
gives the following vehicle additional time for smooth brak-
ing. The rest of the paper is organized as follows: Section 2
provides the methods. Section 3 and Section 4 provide the
test results and discussion, respectively. Section 5 is the
conclusion.

II. METHODS
The proposed FCW system includes twomodules: the driving
intention recognition module and the FCW module that uses
V2V communication. First, the driving intention recognition
module determines the driving intention of the front vehicle
using a double-layer hidden Markov model (HMM). Second,
this information and other related driving parameters of the
front vehicle are transmitted to the following vehicle using
V2V communication. The FCW module then determines
whether an FCW should be given based on the relative
distance that is detected by the system and the transmitted
information from the front vehicle.

A. THE DRIVING INTENTION RECOGNITION MODULE
Driving intention refers to the driver’s determination to act in
a particular manner. There are four kinds of driving intentions
related to FCW, including driving at a constant speed, accel-
eration, normal braking, and emergency braking. The driving
intention can be inferred by the driver’s behavior and vehicle
movement. The driving behavior reflects the driver’s actions;
the key actions are braking and acceleration (Figure 1). Brak-
ing results in a decrease in the speed and acceleration results
in an increase in speed. Both behaviors can be classified into
five classes (Figure 1).
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FIGURE 1. The structure of the proposed double-layer HMM.

The HMMhas a double random process: aMarkov chain is
used to describe unobservable state transitions, and a random
process is used to describe the relationship between states
and observations. The driving behavior and driving inten-
tion are represented by driving operation data and driving
behavior data with a strong temporal relationship, which is
consistent with the HMM characteristics. Compared with
other neural network methods that can process time series,
such as the Long Short-Term Memory (LSTM) network,
the HMM model requires fewer sample data and has higher
training speed. In addition, the HMM is a Bayesian network.
Compared with the Kalman filter (KF), the HMM can infer
the state of the hidden layer from the observed value, whereas
the state of the Kalman filter is a continuous value, whose
state is unobservable due to the presence of noise.

The traditional HMM is usually a single layer and can
be used to recognize driving intention. However, the single-
layer HMM only uses the time relationship of the sensor
data to recognize the driving intention but ignores the influ-
ence of the time relationship of the driving behavior on
the driving intention. Therefore, a single-layer HMM is not
ideal for driving intention recognition [32], [33]. In this arti-
cle, we propose a double-layer HMM for driving intention
recognition.

Figure 1 shows the proposed double-layer HMM for
driving intention recognition. In the first layer, the driving
behavior is detected using sensor data. In the second layer,
the driving intention is determined using the driving behavior
obtained from the first layer. As Figure 1 shows, the braking

behavior can be classified into five classes: pressing down the
brake pedal, pressing down the brake pedal quickly, keeping
the brake pedal at a certain position, releasing the brake
pedal, and no action. The acceleration behavior also can be
classified into five classes: pressing down the accelerator
pedal, pressing down the accelerator pedal quickly, keep-
ing the accelerator pedal at a certain position, releasing the
accelerator pedal, and no action. After the braking behavior
and acceleration behavior are classified by the first layer of
the HMM, the classification results and speed classification
results are passed on to the second layer for driving intention
classification.

Figure 2 shows a flowchart of the training process of the
double-layer HMM for driving intention recognition. The
first step consists of training the driving behavior layer and
the second step is to train the driving intention layer.

1) THE TRAINING PROCESS OF THE DRIVING
BEHAVIOR LAYER
In this study, we assume that the braking and acceleration
behaviors are independent of each other. Therefore, we train
and process them independently. In this sub-section, we will
introduce these behaviors.

With regard to braking behavior recognition, we classify
the data samples into the five classes and establish the five
braking behavior HMMs. The observation sequence of the
braking behavior HMMs is described as:

O1(t) = {a (t) ,b(t)} (1)
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FIGURE 2. The training process of the proposed double-layer HMM.

where t indicates the time; a(t) and b(t) denote the brake
pedal force and the brake pedal speed, respectively.

The HMM is a double random process that is expressed as
the initial state probability distribution π and state transition
matrix A; the general random process is described by the
observed state probability matrix B. For a given observation
sequence O1(t), the corresponding state is determined by the
model λ = (A,B,B, π). The braking behavior HMM is
expressed as:

λ1 = (A1,B1,B2, π1) (2)

where B1 and B2 represent the observed values of the proba-
bility matrix of the brake pedal force and brake pedal speed,
respectively.

The Baum-Welch algorithm [34] is used to train the five
braking behavior HMMs. The Baum-Welch algorithm is an
iterative algorithm. The four tuples of the braking behav-
ior are initialized to obtain the model λ(0)1 = (A(0)1 , B(0)1 ,
B(0)2 , π (0)

1 ). Then, the iterative revaluation formula is defined
as follows:

a(n+1)ij =

∑T−1
t=1 ξt (i, j)∑T−1
t=1 γt (i)

(3)

bj(k)(n+1) =

∑T
t=1,O1(t)=V(k) γt (j)∑T−1

t=1 γt (j)
(4)

π
(n=1)
i = γt (i) (5)

The Baum-Welch variables are obtained as follows:

γt (i) =
αt (i)βt (i)∑N
j=1 αt (j)βt (j)

(6)

ξt (i, j) =
αt (i)aijbj(O1(t+1)β t+1(j)∑N

i=1
∑N

j=1 αt (i)aijbj(O1(t+1) (j))
(7)

where a(n+1)ij , bj(k)(n+1), and π
(n+1)
i represent the evaluation

of the state matrix, confusion matrix, and probability matrix,
respectively.V(k) is the value of all possible observed values
in the set V . γt (i) represents the probability of the braking
behavior qi at time t , ξt (i, j) represents the probability of the
braking behavior qi at time t and qj at time t + 1.
Since the observation sequence of the braking behavior

HMMs is a two-dimensional vector, the forward and back-
ward variables of the Baum-Welch algorithm are modified as
follows:

αt+1 (j) = [
∑N

i=1
αt (i)aij]

∏2

l=1
bj(O1(t+1)(l)) (8)

βt (i) = [
∑N

j=1
βt+1(j)αij]

∏2

l=1
bi(O1(t)(l)) (9)

where the forward variable αt (i) is the probability of the
partial observation sequenceO1(1)O1(2)· · ·O1(t) in the state qi
before time t and the backward variableβt (i) is the probability
of the partial observation sequenceO1(t+1)O1(t+2)· · ·O1(T ) in
the state qi after time t . Here, aij is the probability of the tran-
sition from state qi to state qj and bi(O1(t)(l)) is the probability
of the observation value O1(t)(l). The revaluation formulas of
the initial probability vector and the state transition probabil-
ity matrix of the Baum-Welch algorithm remain unchanged,
whereas the calculation formulas of the probability matrix of
the two observation values are changed to:

b̄(l)j (k) = count(k(l)|j)/count(j)) (10)

where count(k(1)|j) is the expected value of the number of
observations k occurring in the observation sequences set l
in the state qj and l(l = 1, 2) is the number of observation
sequences.

The parameters of each braking behavior HMM under
a single driving condition were optimized by the modi-
fied Baum-Welch algorithm step-by-step until the maximum
probability was reached. After optimization, the forward-
backward algorithm [35] was used to calculate the likelihood
of the newly acquired braking behavior relative to the braking
behavior HMM. Finally, the HMMwith maximum likelihood
was chosen as the most likely braking behavior.

With regard to acceleration behavior recognition, similar
to the method for braking behavior, we also established five
acceleration behavior HMMs. The process and method of
acceleration behavior recognition were the same as for brak-
ing behavior recognition.

For speed classification, we simply divided the speed in the
range of 0-100 km/h into 10 different classes. For example,
if the speed was in the range of 60-70 km/h, the speed
grade was 7.
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Finally, the recognized driving behaviors such as braking,
acceleration, and vehicle speed, were categorized into obser-
vation sequences. Those observation sequences were trans-
mitted to the second layer for driving intention recognition.

2) THE TRAINING PROCESS OF THE DRIVING
INTENTION LAYER
The input for the driving intention layer is the driving
behavior obtained from the first layer and the output is the
driving intention. First, we prepared the labeled data for
driving behaviors and driving intentions. The driving behav-
iors included braking, acceleration, and speed, which we
obtained from the first layer. The driving intentions were
already known because we asked drivers to drive with a given
intention in our experiment. Second, the labeled data were
used to train the second HMM layer to determine the driving
intention. The observation sequences of the driving intention
HMMs were expressed as:

O2(t) = {x (t) ,y (t) , z(t)} (11)

where x (t), y(t) and z(t) represent the labeled results of
the braking behavior, acceleration behavior, and speed clas-
sification, respectively. The driving intention HMMs are
described as:

λ2 = (A2,B
′

1,B
′

2,B
′

3, π2) (12)

where π2 is the initial probability vector, A2 is the state
transfer probability matrix vector. B

′

1, B
′

2, and B
′

3 represent
the probability matrix of the braking observation sequence,
acceleration observation sequence, and speed observation
sequence, respectively. The Baum-Welch algorithm was
modified using Equations (8) to (10). The parameters of the
driving intention HMMs were obtained from the modified
Baum-Welch algorithm.

B. THE FCW USING V2V COMMUNICATION
In this section, we introduce the proposed kinematic-based
FCWmodel that uses the obtained driving intention and other
driving parameters of the front vehicle. In the FCW model,
the front vehicle was detected by a double-channel Gabor
filter and an AdaBoost classifier algorithm [36]. The relative
distance between the two vehicles was estimated using a
monocular camera model [37]. The driving parameters of the
front vehicle and the following vehicle were determined using
multiple sensors.

In order to transmit the obtained driving intention from the
front vehicle to the following vehicle, an appropriate commu-
nication method is required. The performance of ZigBee and
WIFI are poor in vehicles moving at high speed. The commu-
nication distance of Bluetooth and near-field communication
(NFC) is too small for vehicle safety applications because
a minimum communication distance of 300 m is required.
Long-term evolution (LTE) technology requires a base sta-
tion, which also is not suitable for V2V communication [38].

In this study, DSRC was chosen as the on-board com-
munication method for a V2V communication network.

The proposed system uses the American IEEE 802.11p
DSRC protocol with communication distances of up to 1 km;
the method is also suitable for the high-speed mobile vehicle
environment. The DSRC module uses an MK5 device pro-
duced by Cohda Wireless Comapany The SAF5100 wireless
processor produced by the NXP semiconductor Comapany
and the TEF5100 rf chip were used to complete the hardware
design of the communication module based on the IEEE
802.11p protocol, including the main control module and the
rf module, to achieve real-time data transmission.

The driving intention data and the driving state data of
the front vehicle were combined into a data frame and sent
to the following vehicle as a basic safety message (BSM),
using the user datagram protocol (UDP) interface of the
MK5 sender in the front vehicle. TheMK5 receiver in the fol-
lowing vehicle decoded the received data to obtain the BSM
packet and finally completed the data transmission through
the UDP port.

Rear-end collisions are caused when the following vehicle
is faster than the front vehicle. Therefore, the FCW system
should consider both vehicles. We used a kinematic-based
FCWmodel in the following vehicle that considered not only
the following vehicle but also the driving intention of the
front vehicle that was transmitted via V2V communication.
We assumed that the front and following vehicles were in
the same lane and only considered the potential collision
between the two vehicles in the same lane. The proposed
FCWmodel considered four situations: the front vehicle trav-
eled at a constant speed, acceleration, normal deceleration,
and emergency deceleration.

FIGURE 3. The critical distance at a constant speed or acceleration.

The front vehicle was moving at a constant speed or was
accelerating. If the following vehicle was moving faster than
the front vehicle, it would eventually reach a point that was
called the ‘‘critical distance’’, as shown in Figure 3. In this
situation, the most dangerous time occurs when the following
vehicle slows down but still travels faster than the vehicle in
front.

The critical distance was calculated as follows:

Ds = vrel

(
tbc+

tbr
2
+thum

)
+
v2h−v

2
f

2ah
− vf

vrel
ah
+ D0 (13)
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where vf is the speed of the front vehicle; vh is the speed of the
following vehicle; vrel is the relative speed of the two vehicles;
ah is the deceleration of the following vehicle; tbc is the time
between pressing the brake pedal of the following vehicle
and the braking effect, which is defined as 0.15 s; tbr is the
deceleration time of the following vehicle, which is defined
as 0.45 s; thum is the driver response time of the following
vehicle, which is defined as 1.2 s according to a previous
study [22]; D0 is a predetermined safe distance between the
two vehicles, which is defined as 2 m.

FIGURE 4. The critical distance during deceleration.

When the front vehicle slows down, the driver of the fol-
lowing vehicle reacts and adjusts the speed to match that of
the front vehicle. The critical distance between the two vehi-
cles for this case is shown in Figure 4. The critical distance is
calculated as:

Ds =
v2h
2ah
−

v2f
2af
+ vh (tbc + thum)+ vrel

tbr
2
+ D0 (14)

where af is the deceleration of the front vehicle.
If the front vehicle suddenly brakes, the critical distance is:

Ds=
v2h

2ahmax
−

v2f
2afmax

+ vh (tbc+thum)+vrel
tbr
2
+D0 (15)

where ahmax is the maximum deceleration of the following
vehicle and afmax is the maximum deceleration of the front
vehicle. According to a previous study [11], we assumed that
the road friction was negligible and the parameters of ahmax
and afmax were defined as 6 m/s2.
The critical distance model was established under ideal

conditions. In reality, the vehicle information transmission
delay ttran results in differences in the distance between the
front vehicle and the following vehicle. We assumed that
the information transmission time between the two vehicles
was very short and vrel was constant during this time. Thus,
the critical distance was approximately expressed as:

Dw = Ds + vrelttran (16)

In summary, if the actual distancewas less than the distance
obtained from the proposed FCW algorithm, the collision
warning was triggered and sent to the driver of the following
vehicle.

C. EXPERIMENTAL AND EVALUATION METHODS
In this study, a driving intention recognition test and collision
warning test were conducted. The objective of the driving
intention recognition test was to determine the accuracy of
the proposed double-layer HMM; a simulation experiment
was conducted for this purpose. The objective of the colli-
sion warning test was to evaluate the FCW system and both
simulations and real vehicle experiments were performed.

FIGURE 5. The driving simulation system.

1) THE DRIVING INTENTION RECOGNITION SIMULATION
We used a driving simulation system consisting of Logitech
G29 hardware and PreScan software to simulate a two-way
four-lane highway scene. Figure 5 shows the driving sim-
ulation system. Ten experienced drivers were recruited as
experimental subjects, including five males and five females.
The test was conducted under four driving scenarios. These
scenarios included the front vehicle driving at a constant
speed, acceleration, normal braking, and emergency braking.
Each driver used Logitech G29 to simulate driving intentions
35 times in each scenario; therefore, 1400 samples were
obtained (10 (drivers) ∗ 35 (repeat times) ∗ 4 (scenarios)).
The training set consisted of 800 samples and the remaining
samples were used as the test set [39].

2) THE COLLISION WARNING SIMULATION TEST
In order to evaluate the performance of the proposed FCW
system, we conducted simulations and real vehicle tests; we
compared the performance of the proposed FCW system
and a previously developed FCW system with a fixed TTC
threshold algorithm [40].

The fixed TTC threshold algorithm has a two-level warning
threshold: the dangerous warning threshold (5s) and the very
dangerous warning threshold (3s). The TTC is calculated as
follows:

TTC =
Drel

Vrel
(17)
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FIGURE 6. Experimental passenger vehicles and devices.

where Drel represents the relative distance between the front
vehicle and the following vehicle.

The simulation test was carried out using the PreScan sim-
ulation environment. The test road was a two-way two-lane
road with 5 km length, each lane was 3.5 m wide, and the
road surface was dry asphalt. In the simulation environment,
the two-dimensional simple vehicle dynamics model was
used for the front and following vehicles. The camera sensor
and V2V wireless communication equipment of the PreScan
software were used as simulation sensors. Five experienced
drivers were recruited as experimental subjects to drive the
front vehicle using the Logitech G29 hardware (Figure 5).
We asked each driver to drive the vehicle based on a prede-
termined driving intention and the test was repeated 10 times.
Therefore, we knew the driving intentions in each test.

The vehicle test was divided into six groups. The for-
ward and the following vehicles in each group were mov-
ing at low, medium, and high speeds. The low speed of
the driving vehicle was 10-30 km/h, the medium speed was
30-50 km/h, and the high speed was 50-70 km/h. Each driver
repeated the experiment ten times in each speed range. Each
group consisted of the front vehicle traveling at a constant
speed, accelerating, normal braking, and emergency braking.
We determined whether a rear-end collision occurred during
the warning displays and during braking.

Two evaluation indices were developed, i.e., the correct
warning rate and the false warning rate. The correct warning
rate is the ratio of correct warnings to the total number of
warnings in the simulation test. The correct warning rate was
calculated as follows:

FW =
NF

NS
×100% (18)

where NF represents the number of vehicle collisions that
were prevented after the collision warning and NS represents
the total number of warnings. The false warning rate is the
ratio of the number of false warnings to the total number

of warnings. The false warning rate was calculated as follows:

MW =
NM

NS
×100% (19)

where NM represents the number of vehicle collisions occur-
ring after the collision warning.

3) THE COLLISION WARNING ROAD TEST
Figure 6 shows the experimental vehicles and devices used
for the road test. Two vehicles were used in the experiment:
the front vehicle and the following vehicle. The two vehicles
communicated with each other via a V2V link. Each vehicle
carried an Ark3500 processing terminal, a WT61C MCU
unit, a VK162 GPS sensor, an MK5 V2V communication
device, and a power supply system. In addition, the front
vehicle systemwas equippedwith brake and accelerator pedal
sensors. The following vehicle had an MV-EM 120C GigE
vision sensor and an image display unit.

The MV-EM 120C GigE vision sensor installed on the
front windshield of the following vehicle was connected to
the processing system. It was used for detection and esti-
mation of the distance to the front vehicle. The speed and
acceleration information of the vehicles was obtained using
two VK162 GPS sensors and the WT61C MCU sensors,
respectively. The brake and accelerator pedal sensors were
used to collect data from the driver of the front vehicle. The
MK5 V2V communication devices were used to transmit the
obtained driving intention and other driving data of the front
vehicle to the following vehicle.

Since we could not cause a collision, the experimental
method focused on testing the performance of the collision
warning model using a statistical analysis of the warning
timing. We recruited five experienced drivers as experimen-
tal subjects to drive the experimental vehicles. Four drivers
respectively operated the front vehicle and one driver oper-
ated the following vehicle. The test road was a suburban road
with two lanes in each driving direction. The total length of
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TABLE 1. Driving intention recognition results of the proposed double-layer HMM.

TABLE 2. Driving intention recognition results of the proposed double-layer HMM and the single-layer HMM.

the test road was about 7.5 km and the test was conducted
on a part of this road. The traffic flow on the road was low.
In the experiment, we investigated six speed levels of the
front and following vehicles (Table 5). The ranges of the low,
medium, and high speeds were 10-30 km/s, 30-50 km/s, and
50-70 km/s, respectively. Each driver repeated two tests at
each speed level. Therefore, 60 tests were conducted in this
experiment.

To ensure safety, an experienced driver drove the following
car and conducted braking based on his judgment. In addi-
tion, the FCW system provided warning information. When
the warning was given within 1 s of the driver initiating
braking, the warning was considered as occurring ‘‘during
braking’’, which provided nearly the same results as the
experienced driver. When the warning was given more than
1 s before or after the driver was braking, the warning was
considered as occurring ‘‘before braking’’ or ‘‘after braking’’,
respectively [41].

In order to verify the real-time performance of the pro-
posed FCW warning model, we record the warning display
times that occurred before, during, or after the time of the
braking action with different warning algorithms under var-
ious moving conditions. The warning indicates whether it
occurred before, during, or after the time of the braking
action.

Three evaluation indices were used, namely, the premature
warning rate, the timely warning rate, and the late warning
rate. The premature warning rate is the ratio of the number of
warnings before braking to the total number of warnings. The
premature warning rate was calculated as follows:

RP =
NP

NT
×100% (20)

where NP represents the number of warnings before braking
and NT represents the total number of warnings.
The timely warning rate is the ratio of the number of

warnings at the beginning of braking to the total number of
warnings. The timely warning rate was calculated as follows:

RA =
NA

NT
×100% (21)

whereNA represents the number of warnings at the beginning
of braking.

The late warning rate is the ratio of the number of warn-
ings after braking to the total number of warnings. The late
warning rate was calculated as follows:

RL =
NL

NT
×100% (22)

where NL represents the number of warnings after braking.

III. RESULTS
A. RESULTS OF THE DRIVING INTENTION
RECOGNITION SIMULATION
Table 1 gives the results of the driving intention recogni-
tion test using the proposed double-layer HMM. In the test,
600 samples were used to determine the recognition rate
of 4 different intention conditions and 150 samples were
used for each condition. As shown in Table 1, the correct
recognition rates of the proposed double-layer HMM were
higher than 95% for each driving condition. Table 2 compares
the performance of the driving intention recognition for the
proposed double-layer HMMand the single-layer HMM. The
correct recognition rates of the proposed double-layer HMM
are obviously higher than those of the single-layer HMM.
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TABLE 3. Warning results of the proposed algorithm and TTC algorithm.

TABLE 4. Correct warning rate of the proposed algorithm and TTC algorithm.

TABLE 5. Warning time results of the proposed algorithm and TTC algorithm.

B. RESULTS OF THE COLLISION WARNING
SIMULATION TEST
Table 3 shows the warning results of the simulation test for
the proposed methods and the TTC fixed threshold method.
For each speed level, 50 collision warning simulations were
conducted and a total of 600 simulation tests were conducted
for each speed level. The number of collisions of the proposed
FCW system (fourth column) is lower than that of the TTC
system (sixth column) and the number of no collisions of
the proposed system (third column) is higher than that of
the TTC system (fifth column). Table 4 lists the correct and
false warning rates of the proposed FCW system and the TTC
system; the results demonstrate that the proposed method has
a higher correct warning rate than the TTC system.

C. RESULTS OF THE COLLISION WARNING
TIME IN THE ROAD TEST
Table 5 shows the collision warning time results of the road
test of both systems. For each speed condition, 10 collision
warning tests were conducted and a total of 120 tests were
conducted for each speed condition. The proposed algorithm

provided 56 collision warnings during braking, which means
the collision warning time is close to the reaction time of the
experienced driver, whereas the TTC with the fixed threshold
algorithm had only 21 collision warnings during braking.
The premature, timely, and late warning rates of the two
algorithms are listed in Table 6.

IV. DISCUSSION
The results indicated (Table 1 and 2) that the proposed
double-layer HMMwas able to accurately recognize the driv-
ing intention. As shown in Table 2, the average recognition
accuracy of the proposed double-layer HMM was 97.17%,
which was 5.34% higher than that of the single-layer HMM.

As shown in Table 3, with the increase in vehicle speed,
the number of rear-end collisions increased for the TTC
algorithm. However, the proposed FCW system significantly
reduced the number of rear-end collisions in the low to
medium speed range.

The correct warning rate of the proposed algorithm was
97.67% compared to 91.33% of the TTC algorithm (Table 4);
this represented an increase of 6.34%. The false warning
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TABLE 6. Warning rates of the proposed algorithm and TTC algorithm.

rate of the proposed algorithm was 3.33%, which was 5.34%
lower than that of the TTC algorithm. The proposed algorithm
provided a timely warning to the driver of the following
vehicle to avoid a rear-end collision based on the driving
behavior of the front vehicle.

As shown in Table 5, when the two vehicles traveled at
low speed, the collision warnings of the proposed algorithm
were provided nearly at the same time as when the driver
was braking (during braking). When the car was moving at
a high rate of speed, there were a few late warnings because
the vehicle was moving too fast and the driver was acting
slightly early. When both vehicles traveled at high speeds,
almost all the danger warnings of the TTC fixed threshold
algorithm occurred after braking. If the driver had taken
measures according to this method, it would be easy to lose
trust in the system.

As shown in Table 6, the premature warning rate of the
TTC fixed threshold algorithm was 5%, the timely warning
rate was 35%, and the late warning rate was 60%. In contrast,
the timely warning rate of the proposed FCW algorithm was
93.33%. Therefore, the proposed FCW algorithm provided
earlier warnings to the driver of the following vehicle at
different speeds. The driver had sufficient time to react to the
potential collision risk caused by the front vehicle’s sudden
deceleration. The effective collision warnings also increase
the safety and user acceptability of the FCW system.

In our study, we only proposed an early warning strategy
for the collision risk between two vehicles in the same lane.
In a future study, we plan to improve the early warning
strategy for collision risks and consider sudden lane changes,
lateral crossing of obstacles, and other emergencies.

V. CONCLUSION
In this article, we proposed a novel FCW system, which uses
V2V communication to transmit the driving intention of the
front vehicle to the driver of the following vehicle. A double-
layer HMM was proposed to identify the driving intention of
the front vehicle. This information was then transmitted to
the following vehicle to ensure rapid response of the FCW
system and gain more time to brake smoothly. The results of
the driving intention experiments showed that the proposed
double-layer HMM exhibited high accuracy for detecting the
driving intention of the front vehicle. The results of the FCW
experiments demonstrated that the proposed system provided
earlier warning than the FCW system with the TTC fixed
threshold. This proposed system not only provided earlier
warnings to prevent rear-end collisions but also contributed
to more effective braking.
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