
Received November 8, 2019, accepted December 9, 2019, date of publication January 3, 2020, date of current version January 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963726

DeLoc: A Locality and Memory-Congestion-Aware
Task Mapping Method for Modern
NUMA Systems
MULYA AGUNG 1, MUHAMMAD ALFIAN AMRIZAL 2, RYUSUKE EGAWA 3,
AND HIROYUKI TAKIZAWA 3
1Graduate School of Information Sciences, Tohoku University, Sendai 980-8578, Japan
2Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
3Cyberscience Center, Tohoku University, Sendai 980-8578, Japan

Corresponding author: Mulya Agung (agung@dc.tohoku.ac.jp)

This work was partially supported by Japan’s Ministry of Education, Culture, Sports, Science and Technology Next Generation
High-Performance Computing Infrastructures and Applications R&D Program ‘‘R&D of A Quantum-Annealing-Assisted Next Generation
HPC Infrastructure and its Applications’’ and Grant-in-Aid for Scientific Research(B) #16H02822 and #17H01706.

ABSTRACT The mapping of tasks to processor cores, called task mapping, is crucial to achieving
scalable performance on multicore processors. On modern NUMA (non-uniform memory access) systems,
the memory congestion problem could degrade the performance more severely than the data locality problem
because heavy congestion on shared caches andmemory controllers could cause long latencies. Conventional
work on task mapping mostly focuses on improving the locality of memory accesses. However, our previous
work showed that on modern NUMA systems, maximizing the locality can degrade the performance due
to memory congestion. In this work, we propose a task mapping method that addresses the locality and the
memory congestion problems to improve the performance of parallel applications. In the proposed method,
first, the spatial and temporal communication behaviors of the applications are analyzed from the time-
series dataset of communications among the parallel tasks. Then, a data clustering technique is employed
to detect groups of tasks that potentially cause the memory congestion. Finally, this information is used to
compute the task mapping to improve the locality and reduce the memory congestion. We also provide a set
of metrics to describe the communication behaviors and to evaluate if the target application can benefit from
our method. The proposed method is evaluated with the NPB and PARSEC applications on a real NUMA
system and a multicore simulator. A detailed analysis of the sources of performance gain is also provided.
Experimental results show that our method can achieve up to a 61% performance improvement compared
with the state-of-the-art locality-based method.

INDEX TERMS High-performance computing, locality, memory congestion, NUMA, process mapping,
task mapping, thread mapping.

I. INTRODUCTION
Task mapping is an important step in achieving scalable
performance on modern multicore processors. These proces-
sors have on-chip memory controllers that form the base for
NUMA (non-uniformmemory access) multiprocessors. Each
processor consists of a group of processor cores that is phys-
ically associated with one or more memory controllers and
memory devices. This group of processor cores is referred to
as a NUMA node [1]–[3]. Although the NUMA nodes are

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Mei .

generally connected by high-speed interconnect links such
as QuickPath Interconnect (QPI) [4] and HyperTransport [1],
accessing a remote NUMAnode still requires a longer latency
than that required to access the data of the local NUMA node.

A parallel application consists of multiple tasks, each of
which is executed on a processor core as a thread or a pro-
cess. A unit of executing each task is a thread in shared-
memory parallel processing, usually expressed with OpenMP
directives, while it is a process in distributed-memory par-
allel processing, usually programmed with a message pass-
ing interface (MPI). In NUMA systems, the communication
between tasks is called local-access communication if it is

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 6937

https://orcid.org/0000-0001-9521-2177
https://orcid.org/0000-0003-1124-5137
https://orcid.org/0000-0001-8966-867X
https://orcid.org/0000-0003-2858-3140
https://orcid.org/0000-0003-0026-5423


M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

performed by tasks that are executed by processor cores of
the same NUMA node. On the other hand, it is called remote-
access communication if it is performed by tasks that are
executed by the processor cores from different NUMA nodes.
Thus, remote-access communication needs a longer latency
than does local-access communication.

On a NUMA system, mapping tasks of an application to
processor cores, called task mapping [5], has a significant
impact on the application’s performance because themapping
affects the cost of the communications among tasks. During
the execution of the application, a task does not necessar-
ily need to communicate with all the others, and the cost
of the communication depends on the physical location of
the processor cores executing the communicating tasks. As
the communication performance varies greatly on NUMA
systems, use of the communication behavior to optimize the
task mapping is important in increasing performance. These
task mapping methods are called communication-aware task
mapping [6]–[8].

In modern NUMA systems, the task mapping becomes
more challenging because a large number of processor cores
in a system can induce a large number of accesses to themem-
ory devices, causing congestion on shared last-level caches
and memory controllers. We refer to this congestion as mem-
ory congestion. As the number of processor cores increases,
the number of communications that can simultaneously occur
will also increase. When multiple communications among
different tasks are in progress, they are referred to as con-
current communications. In the case of many concurrent
communications, maximizing the locality will increase the
memory congestion because the memory-access traffics will
be concentrated more on particular NUMA nodes. In that
case, it is important to manage the congestion by mapping the
tasks of the concurrent communications to different NUMA
nodes.

Most of the conventional approaches [9]–[13] to efficient
task mapping have focused only on improving the locality
of communication by mapping tasks, which frequently com-
municate with each other, to processor cores that are closer
to each other in the memory hierarchy. Improving the local-
ity of communications is important because it will reduce
the remote-access penalty and congestion on interconnects.
However, recent work [2], [14] and our previous work [15]
have shown that on modern NUMA systems, maximizing
locality does not always minimize the execution time. On
the contrary, locality-based mapping might reduce the per-
formance of applications due to the memory congestion.

Some related studies [16], [17] focus on improving the
balance of the communication load among the NUMA nodes
by analyzing the spatial communication behavior of the tasks.
However, to effectively reduce the memory congestion, it is
necessary to consider the temporal communication behavior
of the tasks because thememory congestion occurs onlywhen
multiple tasks running on different processor cores access a
particular NUMA node at the same time. Thus, to address the
locality and memory congestion problems, it is necessary to

consider both spatial and temporal communication behaviors
of the application.

In this work, we present a task mapping method, called
decongested locality (DeLoc), that considers both the spatial
and temporal communication behaviors of a parallel appli-
cation to improve the locality and to reduce the memory
congestion on modern NUMA systems. The method consists
of a task mapping algorithm and several techniques to gather
the NUMA node topology of the target NUMA system and
to analyze the spatial and temporal communication behaviors
of parallel applications. These techniques include a toolchain
to obtain the time-series dataset of communications among
tasks and a data clustering method to identify groups of tasks
that potentially cause the memory congestion. For validation
purposes, we have conducted experimental evaluations using
a real NUMA system and a multicore simulator. In this paper,
we provide the following contributions.
• A generalized task mapping method that detects implicit
communications among tasks in shared-memory parallel
processing. The preliminary study of this work focuses
only on MPI process mapping [15].

• Aweighted data clustering technique to analyze the spa-
tial and temporal behaviors of communications among
tasks and identify the communications that potentially
cause the memory congestion.

• A mapping algorithm, called decongested locality map-
ping (DeLocMap), for computing the task mapping
that can address the locality and memory congestion
problems.

• Metrics to describe the communication behaviors of
parallel applications that affect the locality and mem-
ory congestion. These metrics can be used to evaluate
whether a parallel application can benefit from locality
and memory-congestion-aware task mapping.

The rest of the paper is organized as follows. We present
the proposed method in Section II. The procedure of DeLoc
is described in detail in this section. The metrics for char-
acterizing the communication behaviors of applications are
presented in Section III. To validate the proposed method,
in Section IV, we analyze the experimental results using
the proposed metrics. The related studies are described in
Section V. The importance and effects of considering the
temporal communication behavior are also discussed in this
section in comparisonwith other existing approaches. Finally,
Section VI gives the conclusions and future work of this
paper.

II. A LOCALITY AND MEMORY-CONGESTION-AWARE
TASK MAPPING METHOD
In this section, we describe DeLoc, which can address both
the locality and memory congestion problems. The procedure
of DeLoc is summarized as follows.

1) Gather the NUMA node topology information of the
target system.

2) Analyze the spatial and temporal communication
behaviors of the target application.

6938 VOLUME 8, 2020



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

FIGURE 1. An example of the NUMA node topology.

3) Identify the concurrent communications that poten-
tially cause the memory congestion.

4) Compute a mapping between tasks and the processor
cores using the DeLocMap algorithm.

A. GATHERING THE NODE TOPOLOGY INFORMATION OF
THE TARGET SYSTEM
The first step is to retrieve information about the NUMAnode
topology of the target NUMA system. Some tools such as
Hwloc [18] and numactl [19] are available for the informa-
tion retrieval. The topology is modeled as a tree to express
the information on the locations of shared last-level caches,
memory controllers and interconnect links. This information
is required because DeLoc focuses on reducing the amount
of remote-access communication through interconnects and
reducing the congestion on the shared caches and memory
controllers. Note that in the NUMA systems considered in
this work, such as Intel-based and AMD-based NUMA sys-
tems [1], each NUMA node is physically associated with
a shared last-level cache (LLC) and an integrated memory
controller (IMC). Thus, the location of memory controllers
also represents the location of the last-level caches.

Figure 1 depicts an example of the model of a two-node
NUMA system that consists of eight processor cores. The
topology information also includes the identity information
of the NUMA nodes and processor cores. The identity infor-
mation is required later by the mapping algorithm to match
the tasks with the processor cores. To obtain all of the infor-
mation required in this step, the use of a specific tool is not
mandatory.

B. ANALYZING THE COMMUNICATION BEHAVIORS OF A
PARALLEL APPLICATION
The second step is to analyze the spatial and temporal com-
munication behaviors of the target application. Since the
communication behaviors may change during the execution,
we dynamically analyze the communication behaviors by
preliminary executing the application on a real system. We
trace the communication events among tasks during the pre-
liminary execution. Then, we create a time-series dataset of
the communication events. This dataset represents the spatial
and temporal communication behaviors of the application.
Note that the tracing methods can be different for different
parallel processing methods. This is because the method

of task communication is dependent on the communication
paradigm used by the parallel processing method [20]. In
the next two subsections, we present methods to analyze the
communication behaviors of parallel applications based on
distributed-memory and shared-memory parallel processing.

1) ANALYZING THE COMMUNICATION BEHAVIORS OF AN
APPLICATION BASED ON DISTRIBUTED-MEMORY PARALLEL
PROCESSING
In parallel applications based on distributed-memory parallel
processing, such as the message passing interface (MPI) [21],
a task is represented by a process, and each process has
a unique identifier called a process ID. Thus, in the MPI,
process mapping is also referred to as task mapping [22].
In the MPI, communication is explicit and is performed by
sending and receiving messages. The process that sends the
message is called a sender, and the process that receives the
message is called a receiver. For each communication, there is
a pair of sender and receiver processes. Thus, we can define a
communication event as one message with its corresponding
sender and receiver pair. This pair is also referred to as a
task pair.

In the MPI, a process can communicate with other pro-
cesses by using point-to-point (P2P) operations and collec-
tive operations. In P2P operations, a process sends messages
to another process by explicitly specifying the ID of the
receiver. On the other hand, rather than explicitly sending
and receiving these messages, a collective operation involves
communications among all processes in a communicator.
Note that in an internalMPI, a collective operation is typically
implemented using multiple P2P operations [23], [24]. Thus,
in that case, each collective operation can be decomposed into
P2P operations.

To analyze the communication behaviors of an MPI appli-
cation, we preliminary run the target application and trace
the communication events among the MPI processes. For
this tracing purpose, we develop a low-level monitoring tool.
The monitoring tool is implemented as a component of the
monitoring framework, which was proposed in [25]. This
framework is built on top of the point-to-point management
layer (PML) of the Open MPI stack [26]. Since the PML
can monitor point-to-point operations organizing a collective
communication, the communication events can be traced in
both point-to-point and collective communications. Further-
more, the PML monitors not only MPI_Send-MPI_Recv but
also MPI_Isend-MPI_Irecv operations. Thus, the monitoring
tool also traces both blocking and non-blocking communica-
tions. The tool generates the time-series dataset of communi-
cation events by recording the IDs of the sender and receiver,
the timestamp, and the data size of each event.

2) ANALYZING THE COMMUNICATION BEHAVIORS OF AN
APPLICATION BASED ON SHARED-MEMORY PARALLEL
PROCESSING
In parallel applications based on shared-memory parallel pro-
cessing, such as OpenMP and Pthreads, a task is represented

VOLUME 8, 2020 6939



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

FIGURE 2. Memory accesses of different threads can be seen as their
communications.

by a thread of execution, and each thread has a unique iden-
tifier called a thread ID. Thus, in shared-memory parallel
processing, thread mapping is also referred to as task map-
ping [3]. The communication among threads is performed
implicitly by accessing the shared memory space. By tracing
accesses to memory addresses at the cache line granularity,
we can define a communication event as two consecutive
write and read memory accesses from different threads to
the same cache line. These two memory accesses are referred
to as communicating memory accesses [27]. Figure 2 shows
communicating and non-communicating memory accesses
for one cache line. The communicating memory accesses
are shown in black, while non-communicating memory
accesses are shown in gray. Two different threads that
perform the communicating memory accesses are called
a pair of threads, and this pair is also referred to as a
task pair.

To analyze the communication behaviors of a parallel
application based on shared-memory parallel processing,
we preliminarily run the application and trace the memory
accesses performed by the application threads. For this trac-
ing purpose, we developed a tool. The tool is based on a
dynamic binary instrumentation framework, called a pin [28].
The tool detects communication from memory accesses of
the threads at a granularity of 64 byte-wide memory blocks.
It generates the time-series dataset of communications by
recording the IDs of the pair of threads, the timestamp, and
the data size of memory access of each event.

C. IDENTIFYING CONCURRENT COMMUNICATIONS
In this section, we describe the step to identify the concurrent
communications among tasks. After the time series data of
communications of the target application are obtained, they
are analyzed to identify the concurrent communications by
using a weighted k-means clustering method [29]. We use
the number of communication events as the weights for the
clustering because a higher number of concurrent communi-
cations indicates a higher risk of memory congestion. Given a
set of communication timestamps {t1, t2, . . . , tn} and a set of
clusters {C1,C2, . . . ,Ck}, the clustering method aims to min-
imize the objective function j defined by equation (1), where
k is the number of clusters, µi is the mean of timestamps in a
cluster, and Ncommt is the number of communication events

in timestamp t .

j =
k∑
i=1

∑
t∈Ci

Ncommt‖t − µi‖2. (1)

The clustering method needs to predefine a parameter, k ,
to specify the number of clusters. However, the actual number
of clusters is generally unknown in advance, even though
the parameter certainly affects the clustering results. This
parameter affects the accuracy of detecting the concurrent
communications. If the value of k is too small, two com-
munication events may be falsely identified as concurrent
communications. Thus, it is important to estimate an optimal
number of clusters for the clustering. In this work, we find
k by using the Bayesian information criterion (BIC) [30].
We use the BIC because it has been empirically shown not
only to find an optimal value of k but also to accelerate the
clustering process for large datasets [31]. Since the number of
communication events in long-running parallel applications
can be very large, accelerating the clustering process becomes
important.

Figure 3 shows the communication behaviors of the
IS-MPI,MG-MPI, EP-MPI and LU-MPI applications of NAS
parallel benchmarks (NPBs) [32], with the class C input
size. The x-axis and y-axis show the time elapsed during the
execution and the number of communication events, respec-
tively. The figure shows that the number of communication
events changes during the application’s execution. In IS,
the communications mostly occur between 30% and 81% of
the total execution time. In EP, the communications occur
only at the beginning and the end of the execution. This is
because EP is an embarrassingly parallel application, and the
communications are required only for the allreduce operation.
On the other hand, the communications in MG and LU are
distributed over the execution time.

The colors in Figure 3 show the clustering results of the
four NPB applications, with different colors representing
different clusters. The figure shows that the time periods
that are close to each other and have a high number of
communication events are likely to be grouped in the same
cluster. The communication events that belong to the same
cluster are identified as concurrent communications. In IS,
the clusters with the highest number of communication events
are shown in the middle of the execution. In MG, the clusters
with the highest number of communication events are shown
at the beginning of the execution. In EP, there are only two
clusters, and the cluster shown at the end of the execution
has the highest number of communication events. On the
other hand, in LU, the number of communication events is
distributed over all of the clusters. From Figure 3, we can
see that a cluster can have a high number of communication
events. If all of the communication events of this cluster
happen in the same NUMA node, then memory congestion
will likely occur. Thus, the DeLocMap algorithm aims to
prevent the memory congestion by distributing the concurrent
communications of the same cluster over the NUMA nodes.

6940 VOLUME 8, 2020



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

FIGURE 3. The communication behaviors and clustering results of the NPB applications (colors represent clusters).

Algorithm 1 The DeLocMap Algorithm
Require: T {The topology tree}
Require: C {The clusters of communication events}
Ensure: M {The map of processor core IDs and task IDs}
1: M ← createMap(T )
2: G← buildTaskGroups(C)
3: sorted_G← sortByLc(G)
4: i← 0
5: current_node← firstNode(T )
6: while i < size(G) and isAvailable(M ) do
7: P← sorted_G[i]
8: sorted_P← sortByWp(P)
9: j← 0
10: for j = 0 to size(sorted_P) do
11: if not mapped(sorted_P[j]) then
12: mapPair(sorted_P[j], current_node,M )
13: current_node← nextNode(T )
14: end if
15: end for
16: i← i+ 1
17: end while

D. COMPUTING THE TASK MAPPING
The final step is to compute the mapping between tasks
and processor cores using the DeLocMap algorithm. This
algorithm, depicted in Algorithm 1, can compute a match
between task IDs and processor core IDs using the node
topology information and the clustering result.

The algorithm works as follows: first, DeLocMap uses the
topology model to construct the map of processor core IDs

and task IDs (Line 1). The keys of the map represent the IDs
of processor cores available in the system, and each value
represents the ID of the task associated with the key. At the
beginning of the algorithm, each value is set to empty. Then,
the algorithm uses the clustering results to generate groups
of task pairs. This step is performed by the buildTaskGroups
function (Line 2). Each group consists of task pairs of the
communications that belong to the same cluster. Note that a
task pair can belong to multiple groups because the pair can
communicate at different times. Since the mapping is static,
the groups with the larger amount of communication must
take precedence over the other groups. In this case, avoid-
ing congestion may increase the amount of remote-access
communication. We discuss this case in the experimental
evaluation of Section IV-B.

To determine the order of the groups, we calculate two load
metrics. The algorithm first calculates the load of a task pair
Wp by normalizing the size of data exchanged by the task
pair Scomm to its highest value, as defined by Equation (2).
Scomm represents the amount of communication of the task
pair. Then, the load of a group, Lc, is calculated by Equa-
tion (3), where P is the total number of pairs in all groups and
Pc is the total number of task pairs in the group c.

Wp =
Scomm∑P
i=1 Scomm i

, (2)

Lc =
Pc∑
i=1

Wpi. (3)

After calculating the load metrics, the algorithm selects
a task pair that has not been mapped to processor cores

VOLUME 8, 2020 6941



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

sequentially from the groups with the highest to the lowest
Lc and from the pairs with the highest to the lowestWp. This
selection is achieved by the sorting steps in the algorithm
(Lines 3 and 8). A NUMA node is available for the mapping
if it has one or more unmapped cores. The algorithm then
maps each task pair to the processor cores that are currently
available in the current NUMA node (Line 12). The current
NUMA node is obtained by traversing the NUMA nodes in
the topology tree (Lines 5 and 13). The algorithm aims to
improve the locality by mapping two tasks of a pair to the
same NUMA node while also reducing the memory con-
gestion by mapping the task pairs in the same group to the
different NUMA nodes.

III. COMMUNICATION BEHAVIORS THAT AFFECT THE
LOCALITY AND THE MEMORY CONGESTION
In this section, we present five metrics to describe the com-
munication behaviors that affect the locality of communica-
tion and thememory congestion. The purpose of thesemetrics
is to determine if a parallel application can gain performance
improvement from our proposed method. The first two met-
rics are communication load and communication-to-memory
ratio. These two metrics are used to describe the communi-
cation behaviors that can benefit from communication-aware
task mapping. The two other metrics are called communica-
tion concurrency andDRAM-to-memory ratio. In conjunction
with the previous metrics, these two metrics are proposed to
describe the communication behaviors that can benefit from
memory-congestion-aware task mapping. The last metric,
called communication locality, is proposed to describe the
communication behavior that can benefit from locality-based
task mapping.

An improvement according to a specific communication-
aware task mapping method depends on how much tasks
are communicating. The improvement is expected to be
higher for parallel applications, in which the total amount
of transferred data is larger. To describe the load of com-
munication, we use the Lcomm metric, defined as the
total amount of communication by all tasks. Lcomm is
calculated by

Lcomm =
T∑
i=1

T∑
j=1

Scomm[i][j], (4)

where T is the total number of tasks and Scomm[i][j] is the
amount of communication between a pair of tasks i and j.
However, the load of communication itself is not sufficient
to evaluate if an application will gain performance benefit
from communication-aware task mapping. If the number of
non-communicating accesses is a lot higher than the num-
ber of communicating accesses, a communication-aware task
mapping method might not significantly affect the overall
memory access behavior. For this reason, we define the
communication-to-memory ratio metric CommR, which is a
ratio of the load of communication to the total size of memory

accesses of the tasks. CommR is calculated by

CommR =
Lcomm∑T
i=1MemV [i]

, (5)

whereMemV [i] is the size of memory accessed by task i. The
expected performance gains are higher for parallel applica-
tions that have higher values of Lcomm and CommR.
For communication-aware task mapping methods that aim

to reduce the memory congestion, it is necessary to evaluate
how the communication among tasks affects thememory con-
gestion. Even if the load of communication is high, the task
mappingmethodmight not give a performance benefit if most
of the communication events do not occur simultaneously.
In addition, the communication events may not access the
memory controllers. If tasks have much more memory access
to the cache memory than to the DRAM, a communication-
aware task mapping method might not affect the congestion
on memory controllers. In that case, the task mapping can
affect the congestion on the shared caches. For these two
reasons, we introduce the communication concurrency and
DRAM-to-memory ratio metrics.

Communication concurrency (CommC) is defined as the
average number of tasks per group. It is calculated by

CommC =

∑G
g=1 TaskN [g]

T · G
, (6)

where G is the total number of groups and TaskN [g] is the
number of tasks in group g. These groups are obtained from
the buildTaskGroups function of the DeLocMap algorithm.

The DRAM-to-memory ratio (DramR) is defined as the
ratio of the number of DRAM accesses to the total number
of memory accesses. DramR is calculated by

DramR =

∑T
i=1DramV [i]∑T
i=1MemV [i]

, (7)

whereDramV [i] is the size of the DRAM accesses performed
by task i. A communication-aware mapping method will
have higher impacts on the memory congestion of parallel
applications that have higher values of CommR, CommC
and DramR.

For communication-aware task mapping methods that aim
to improve the locality of communication, it is necessary to
have a high variance in the amount of communication per
task pair. This variance is necessary because the locality-
based mapping focuses on mapping tasks that have a larger
amount of communication than that of other tasks. We define
the communication locality metric CommLoc to describe the
variance.We adopt a related work [7] to formulate this metric.
First, we normalize the amount of communication of each
task pair to the largest amount of communication of all task
pairs. This normalization is shown by

Scommnorm[i][j] =
Scomm[i][j]
max(Scomm)

. (8)

6942 VOLUME 8, 2020



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

Then, CommLoc is calculated by

CommLoc =

∑T
i=1 var(Scommnorm[i][1..T ])

T
, (9)

where max and var are the functions that calculate the
maximum and variance, respectively. A locality-based task
mapping method will gain higher performance improvements
when considering parallel applications that have higher val-
ues of CommLoc.
In a parallel application that has a low or zero

communication-to-memory ratio, a task mapping method
can still affect the memory access behavior. In this case,
distributing the non-communicating memory accesses can
reduce the memory congestion because it will improve the
balance of memory accesses among the NUMA nodes. How-
ever, we focus on analyzing the communicating memory
accesses because of two reasons. First, as shown in related
work [8], [14], the cost of remote-access communication
remains the limiting factor in modern NUMA systems. Sec-
ond, in many parallel applications, improving the commu-
nication locality also significantly affects the balance of
memory accesses [16], [33], indicating that tasks that have
higher amounts of communication also perform numerous
memory accesses. We discuss the impacts of our method on
both the communication locality and the memory congestion
in Sections IV-A-3 and IV-B.

IV. EXPERIMENTAL EVALUATION
To evaluate the effectiveness of the proposedmethod, we con-
ducted experiments on a real system and a simulation envi-
ronment. In this section, we present the experimental setup
and discuss the performance results.

A. PERFORMANCE EVALUATION ON A REAL SYSTEM
The experiments were conducted on a 2-node Intel-based
NUMA system consisting of two Intel Xeon E5-2680v4 pro-
cessors, named Purple. These NUMA nodes are connected
withQuickPath Interconnect (QPI), and each node has 28 log-
ical cores, 64 GB of main memory, and an integrated memory
controller (IMC) [34]. Each NUMA node or processor has
private L1 and L2 caches and an L3 cache as a last-level cache
that is shared among all cores of the node. The system has
56 logical cores in total, and it runs the Linux OS kernel v4.4.

We evaluate the proposed method using three sets of par-
allel benchmarks: the MPI and OpenMP implementations
of the NPB [32] v3.3.1 and the PARSEC benchmark suite
[35] v2.1. We execute all of the NPB applications with
the class C input size. For PARSEC, we use the native
input size, which is the largest size available. The appli-
cations of PARSEC and the OpenMP implementation of
NPB (NPB-OMP) are executed with 56 threads. For the
MPI implementation (NPB-MPI), the number of processes
executing the CG-MPI, FT-MPI, IS-MPI, and MG-MPI must
be a power of two. Thus, 32 processes are launched to execute
these four applications. The number of processes of BT-MPI
and SP-MPI is required to be a square, and thus, 49 processes

are launched to execute BT-MPI and SP-MPI. EP-MPI and
LU-MPI are executed with 56 processes using all the cores.
For the NPB-MPI applications, we use Open MPI v3.1 [26]
as the MPI runtime system. By default, Open MPI uses the
vader BTL component to optimize the data transfer between
NUMA nodes.

We apply the task mapping obtained in Step 4 by assigning
tasks to processor cores when the application is launched.
To assign tasks to processor cores, the use of a specific tool
is not mandatory. For the MPI applications, we assign tasks
to processor cores by specifying the mapping between MPI
ranks and processor core IDs in the rank file. For the multi-
threaded applications, we assign tasks to processor cores by
setting the processor affinity for each thread according to
the mapping result. Some tools such as Hwloc-bind [18] and
Likwid-pin [36] can be used to set the processor affinity of
the threads.

To detect the communications in multi-threaded applica-
tions, we trace the timestamp of a communication event in
the ns and µs time resolutions. We use only µs for the
NPB-OMP due to the tracing time constraints. The number of
memory accesses for NPB-OMP applications with the class C
input size is much higher than that for PARSEC applications,
and dynamic binary instrumentation drastically increases
the duration of the tracing process. However, the results of
analysis of the communication behaviors of the NPB-OMP
applications show that we can still effectively analyze the
communication behaviors of the NPB-OMP applications
using the µs time resolution. These results are presented in
Section IV-A-1.
We compare DeLoc with a dynamic mapping method and

five static mapping methods. The dynamic mapping method
is called AutoNUMA [3], [14], [37], which is the default
thread and memory mapping algorithm used in the Linux
kernel. It can be enabled and disabled through the sysctl inter-
face by setting kernel.numa_balancing to 1 and 0,
respectively. AutoNUMA uses information on page faults of
parallel applications to dynamically detect memory accesses
and performs thread and memory mapping. During the appli-
cation runtime, it may migrate memory pages and threads to
improve the locality and balance of memory access among
the NUMA nodes, and thus, it incurs overhead from the
migration.

The five static methods used for the evaluation are
Packed, Scatter, Balance, Locality, and Random mapping.
Both Packed and Scatter do not consider the communication
behaviors of the application. Packed maps the neighboring
tasks to the same NUMA node, while Scatter maps the
neighboring tasks to different NUMA nodes. In our pre-
vious work [15], Scatter corresponded to the Socket-span
mapping policy. In the case where neighboring tasks have a
larger amount of communication than that of the other tasks,
Packed will increase the locality of communication, while
Scatter will reduce the communication load imbalance among
the NUMA nodes. We describe this case in more detail in
Section IV-A-2.

VOLUME 8, 2020 6943



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

In contrast to Packed and Scatter, Balance and Locality
consider the spatial communication behavior of the applica-
tion. Balance minimizes the communication load imbalance
among the NUMA nodes. It iteratively maps the unmapped
task with the largest amount of communication to the NUMA
node that currently has the smallest amount of commu-
nication. Locality minimizes the amount of remote-access
communication by mapping tasks that have a larger amount
of communication to the same NUMA node. We use the
TreeMatch algorithm [13] to calculate the mapping for Local-
ity. For Random, we randomly generate a task mapping for
each execution. We use Random mapping to evaluate the
importance of task mapping. In the case of executing the
benchmarks with the static mapping methods, we disable
AutoNUMA to avoid the effects of the memory page and
thread migrations on the results of the static methods. For
data mapping, we use the first-touch mapping [38], which is
the default mapping policy of the Linux kernel.

We are aware that data mapping can also improve the local-
ity of memory accesses on NUMA systems. As shown in [7],
[39], task mapping is a prerequisite of data mapping, and the
primary benefit of data mapping is that it can prevent unnec-
essary task migrations between NUMA nodes to improve
the locality. However, DeLoc and the other static mapping
methods apply task mapping only when the target application
is launched, and thus, these methods do not need to migrate
tasks during the execution of the application. Furthermore,
in first-touch data mapping, a memory page is allocated to
the same node with the task that first uses the page, and the
page is not migrated during the execution. Therefore, in the
case of DeLoc and the other static methods, the task mapping
also determines the data mapping. However, in contrast to
the other static mapping methods, the DeLocMap algorithm
computes the taskmapping that can both improve thememory
access locality and reduce the memory congestion.

1) COMMUNICATION BEHAVIORS OF THE BENCHMARKS
In this subsection, we analyze the communication behav-
iors of the benchmarks using the metrics introduced in
Section III. All of the metrics, except the DRAM-to-memory
ratio, are obtained from Steps 2 and 3 described in
Section II. The DRAM-to-memory ratio is obtained by mea-
suring performance counters with the Linux perf tool [40].
Figures 4, 5, and 6 show the values of the metrics for the
NPB-MPI, NPB-OMP, and PARSEC applications, respec-
tively. The vertical axis of each figure represents the values
of the metric shown by the figure. The values of CommC ,
CommR, DramR and CommLoc are shown as percentages,
and the values of Lcomm are in gigabytes.

EP-MPI has a low communication load (Figure 4(a))
and communication-to-memory ratio (Figure 4(c)), indicat-
ing that it cannot gain improvement from communication-
aware task mapping. CG-MPI, FT-MPI, IS-MPI, MG-MPI
and SP-MPI have a higher communication concurrency
(Figure 4(b)) and DRAM-to-memory ratio (Figure 4(d)) than
those of the other applications. These results indicate that

FIGURE 4. Communication behaviors of the NPB-MPI.

they can gain a higher performance improvement from
memory-congestion-aware task mapping than that from the
other applications. In BT-MPI, CG-MPI, LU-MPI, and
SP-MPI, the communication locality is higher than that of
the other applications (Figure 4(e)). However, LU-MPI has a
low communication-to-memory ratio andDRAM-to-memory
ratio, indicating that it cannot gain significant performance
improvement from communication-aware task mapping.
On the other hand, BT-MPI, CG-MPI, and SP-MPI can gain
a higher performance improvement from locality-based map-
ping than from the other applications. The results in Figure 4
indicate that all NPB-MPI applications, except EP-MPI and
LU-MPI, are expected to benefit from the proposed method.

For NPB-OMP applications, the results of communication-
to-memory (Figure 5(c)) and communication locality
(Figure 5(e)) indicate that all the applications, except
EP-OMP and FT-OMP, can benefit from locality-based
mapping. In EP-OMP and FT-OMP, the load of com-
munication (Figure 5(a)) and communication-to-memory
ratio are low, indicating that these two applications cannot

6944 VOLUME 8, 2020



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

FIGURE 5. Communication behaviors of the NPB-OMP.

gain performance improvement from communication-aware
task mapping. The results of the communication con-
currency (Figure 5(b)), communication-to-memory ratio
and DRAM-to-memory ratio (Figure 5(d)) show that all
NPB-OMP applications, except EP-OMP and FT-OMP, have
a high risk of memory congestion. In CG-OMP, although
the DRAM-to-memory ratio is low, the communication-to-
memory ratio is the highest among the NPB-OMP appli-
cations. This result means that CG-OMP has many more
memory accesses to the cache memory than that to the
DRAM and that it can benefit from the proposed method
to reduce the congestion of memory access to the shared
caches. The results in Figure 5 suggest that all NPB-OMP
applications, except EP-OMP and FT-OMP, are expected to
benefit from the proposed method.

Although most PARSEC applications have a high com-
munication concurrency (Figure 6(b)), some applications
have a low communication-to-memory ratio (Figure 6(c)),
which means that not all PARSEC applications will benefit
from communication-aware task mapping. In Blackscholes,

Swaptions and Vips, the load of communication (Figure 6(a))
and communication-to-memory ratio are negligible, indicat-
ing that these three applications cannot gain performance
improvement from communication-aware task mapping. In
Freqmine, although the communication load is higher than
that of other PARSEC applications, the communication-to-
memory ratio is low, which means that Freqmine cannot gain
significant improvement from communication-aware task
mapping. Although Canneal, Dedup, Ferret and Fluidanimate
have a lower communication load than that of Freqmine, these
four applications have higher communication-to-memory
and DRAM-to-memory ratios (Figure 6(d)). Thus, Can-
neal, Dedup, Ferret and Fluidanimate can still gain perfor-
mance improvements from memory-congestion-aware task
mapping.

In Bodytrack, the DRAM-to-memory ratio is low. How-
ever, it has a higher communication-to-memory ratio than
that of most of the other applications, which means that
Bodytrack has many more memory accesses to the cache
memory than to the DRAM. Thus, it can benefit from the
proposed method to reduce the congestion of memory access
to the shared caches. In contrast to Bodytrack, Raytrace
has a higher DRAM-to-memory ratio than that of most of
the PARSEC applications, which means that it can benefit
from the proposed method to reduce the congestion on mem-
ory controllers. On the other hand, Facesim, Streamcluster
and X264 have higher loads of communication, commu-
nication concurrency, communication-to-memory ratio and
DRAM-to-memory ratio than those of most of the other
applications, indicating that these three applications will
gain significant performance improvements from memory
congestion-aware task mapping. In Facesim, the communica-
tion locality (Figure 6(e)) is the highest among the PARSEC
applications, indicating that it will gain a higher performance
improvement from locality-based mapping compared with
the other applications. The results in Figure 6 indicate that
all PARSEC applications, except Blackscholes, Freqmine,
Swaptions, and Vips, are expected to benefit from the pro-
posed method.

2) PERFORMANCE RESULTS
The performance results obtained in the real system are
shown in Figure 7. We measure the execution time of the
applications with each mapping method. The results are the
averages obtained from 10 sample executions, which are
normalized to the results of Scatter mapping. We also pro-
vide the 95% confidence interval calculated with Student’s
t-distribution. The error line of the bar represents the confi-
dence intervals of the samples. We use Scatter as the baseline
because, as shown in our previous work [15] and related
work [14], [41], [42], the memory access imbalance among
the NUMA nodes can increase the memory congestion, and
Scatter can reduce the memory access imbalance among the
NUMA nodes without the need for information about the
communication behavior of the application.

VOLUME 8, 2020 6945



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

FIGURE 6. Communication behaviors of the PARSEC.

Figure 7(a) depicts the execution time of the NPB-MPI
applications. The results of Random mapping show that most
of the NPB-MPI applications are affected by the task map-
ping. On average, DeLoc shows the highest improvements
among the methods, by 4.8% compared with Scatter. As
predicted by our analysis of the communication behaviors of
the NPB-MPI applications, DeLoc can achieve the highest
improvements for all NPB-MPI applications, except EP-MPI
and LU-MPI. Compared with Locality, DeLoc gains the high-
est performance improvements for FT-MPI and MG-MPI,
by 36.8% and 61%, respectively.

In BT-MPI, CG-MPI and SP-MPI, Locality has a shorter
execution time than that of Packed because these three appli-
cations have the highest communication locality among the
NPB-MPI applications (Figure 4(e)). However, in most of the
NPB-MPI applications, DeLoc, Balance, AutoNUMA and
Scatter outperform Locality, indicating that locality-based
mapping cannot achieve the best performance among the
applications. These results suggest that in the Purple system,
the impact of memory congestion on the performance of the
NPB-MPI applications is higher than that of the locality.

We note that in the case where the number of tasks is
less than the number of processor cores available, Local-
ity can map more tasks to one NUMA node to reduce the
amount of remote-access communication. Since the num-
ber of concurrent communications on one NUMA node
increases, the memory congestion increases on that particular
node. However, the results of Balance and DeLoc also show
that minimizing the communication load imbalance itself
is not sufficient to achieve the best performance and that

considering both the locality and the memory congestion is
still crucial to achieving the best performance.

For NPB-OMP applications, task mapping also affects
most of the applications. However, as shown in Figure 7(b),
Scatter has the lowest performance among the methods in
most of the NPB-OMP applications. These results are in con-
trast to those of NPB-MPI applications. Moreover, on aver-
age, Locality can achieve higher performance improvements
than can Packed, Balance and Scatter. These results indicate
that most of the NPB-OMP applications gain more benefit
from locality-based mapping. On the other hand, DeLoc
achieves the highest performance improvements among the
methods in most of the NPB-OMP applications, by up to
16.1% in the cases of BT-OMP and MG-OMP (8.3% on
average). As predicted by our analysis of the communication
behaviors of NPB-OMP applications, DeLoc can achieve the
highest performance improvements in BT-OMP, LU-OMP,
MG-OMP and SP-OMP. As shown in the results of the com-
munication concurrency, communication-to-memory ratio
and DRAM-to-memory ratio, these four applications have
the highest risk of memory congestion among the NPB-OMP
applications. This fact indicates that considering only the
locality is not sufficient to achieve the best performance for
these applications.

As discussed in Section IV-A-1, DeLoc can reduce the
execution times of most of the PARSEC applications. More-
over, on average, DeLoc can achieve the highest improve-
ments among themethods. Among the PARSEC applications,
DeLoc can achieve the highest performance improvements
in Facesim, Streamcluster, and X264, by 9.7%, 11% and

6946 VOLUME 8, 2020



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

FIGURE 7. Performance results (normalized to Scatter).

14.1%, respectively. Compared with Balance, DeLoc shows
the highest improvement in Facesim by 14.3%. These results
suggest the importance of increasing locality to improve the
performance of Facesim. In Fluidanimate, DeLoc can achieve
a 23.7% shorter execution time than that of Locality. More-
over, compared with Packed, Balance and DeLoc, Locality
shows the lowest performance in Fluidanimate, Streamcluster
and X264, indicating that maximizing the locality degrades
the performance of these three applications.

In the case of a parallel application that has a higher com-
munication locality and a lower DRAM-to-memory ratio,
such as Facesim, reducing the amount of remote-access com-
munication is more effective in improving the performance.
In this case, we may further increase the performance by
tuning the DeLocMap algorithm to maximize the locality
of the communication among task pairs that have a higher
amount of communication. However, the impacts of the local-
ity and memory congestion on the execution time may be
different for different NUMA systems, even for the same

application. Thus, to accurately estimate the impacts of the
locality and memory congestion on the execution time of an
application, we also need to take into account the latency
and bandwidth characteristics of the NUMA system. For this
reason, we consider the tuning of our method as our future
work.

In most of the NPB-OMP applications and some PARSEC
applications, AutoNUMA has the longest execution time
among the methods. In LU-OMP, AutoNUMA experiences
the highest performance degradation, by 46.5% and 32.4%
compared with DeLoc and Scatter, respectively. Furthermore,
in FT-OMP and Bodytrack, although most of the static meth-
ods show a similar execution time, AutoNUMA has a much
longer execution time than that of the other methods. In con-
trast to the static mapping methods, AutoNUMA suffers from
overhead from migrating memory pages and threads during
the application runtime. These results show that the migra-
tion overhead significantly degrades the performance of the
applications. For NPB-MPI applications, AutoNUMA shows

VOLUME 8, 2020 6947



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

higher performance improvements than those of NPB-OMP
applications, as NPB-OMP applications have much more
memory accesses compared with NPB-MPI applications. The
migration overhead has higher impacts on the performance
of NPB-OMP applications. We discuss the impacts of the
migration overhead in more detail in Section IV-A-3.

Figure 7 shows that DeLoc can consistently achieve the
highest performance among the methods. By taking into
account both the spatial and temporal communication behav-
iors of the applications, DeLoc can effectively reduce the
amount of remote-access communication and memory con-
gestion. The experimental results also show the effectiveness
of our metrics in evaluating whether the applications can
benefit from task mapping.

We observe that Scatter can achieve shorter execution
times than can Locality and Packed for most NPB-MPI
applications and that Packed can achieve shorter execution
times than can Balance for most NPB-OMP applications.
Although Packed and Scatter do not consider the communi-
cation behaviors of applications, these two mapping methods
can effectively improve the performance of applications that
have a communication behavior in which neighboring tasks
have a larger amount of communication than that of the other
tasks. However, as shown in the results of the NPB-MPI,
NPB-OMP and PARSEC applications, both Packed and Scat-
ter cannot consistently improve performance. Furthermore,
as shown in our previous work [15], when the number of
NUMA nodes in the system becomes larger, Scatter may
suffer from high latencies of the remote-access communi-
cation, and it cannot effectively reduce the memory conges-
tion. The experimental results show that to effectively reduce
the amount of remote-access communication and memory
congestion, it is necessary to consider the communication
behaviors of the application.

Figure 8 shows examples of the communication behav-
ior that can benefit from Packed and Scatter mapping.
Figures 8(a), 8(b), 8(c) and 8(d) show the spatial communi-
cation behaviors of SP-MPI, CG-OMP, MG-OMP and Flu-
idanimate, respectively. In the figures, the x-axis and y-axis
show the task ID, and each cell represents the amount of
communication (Scomm) between a task pair of the corre-
sponding axes. The darker cells indicate a larger amount of
communication. As shown in the figures, SP-MPI, CG-OMP,
MG-OMP and Fluidanimate exhibit a similar communication
behavior, with a large amount of communication between
neighboring tasks, such as task pair (0, 1). These results show
that in these four applications, Packed will reduce the amount
of remote-access communication, and Scatter will reduce the
communication load imbalance among the NUMA nodes.
Moreover, SP-MPI and Fluidanimate show a similar amount
of communication between tasks that are further apart, such
as task pairs (1, 7) and (2, 8) in SP-MPI and task pairs
(1, 5) and (2, 6) in Fluidanimate. These results show that in
SP-MPI and Fluidanimate, Scatter can also reduce the amount
of remote-access communication.

FIGURE 8. The communication behaviors of SP-MPI, CG-OMP, MG-OMP
and Fluidanimate.

3) PERFORMANCE RESULTS ANALYSIS
To investigate the sources of performance improvements,
we analyze the performance characteristics of six applica-
tions selected from NPB-OMP and PARSEC. These appli-
cations are CG-OMP, MG-OMP, and SP-OMP of the NPB
and Fluidanimate, Streamcluster and X264 of the PARSEC.
We use the last-level cache misses, IMC queue, and QPI
volume metrics for the analysis. These metrics are obtained
by measuring the Intel performance counters [34] with the
Linux perf tool. The L3 cache misses represent the number
of last-level cache misses across all NUMA nodes. The IMC
queue is the total wait time of memory accesses in the queue
of memory controllers. A higher value of this metric indicates
a longer queuing delay caused by the congestion on memory
controllers. We also use last-level cache misses to evaluate
the impact of memory congestion because the congestion of
memory access to last-level caches will increase the number
of cache misses [43]. The QPI volume is the volume of
data sent through interconnects and represents the amount of
remote-access communication. A higher value of this counter
indicates longer latencies from remote-access communica-
tion. In this evaluation, we do not evaluate Random mapping
because the performance monitoring results of Randommap-
ping can significantly change for different executions.

Figure 9 shows the performance monitoring results of the
six applications, which are normalized to the results of Scatter
mapping. In MG-OMP and SP-OMP, DeLoc can achieve the
highest improvement by reducing the number of last-level
cache misses, IMC queue and amount of remote-access com-
munication. The results of MG-OMP and SP-OMP show that
DeLoc increases the locality of communication. Furthermore,
by distributing the communication load over the NUMA

6948 VOLUME 8, 2020



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

FIGURE 9. The monitoring results of the NPB and PARSEC applications.

nodes, DeLoc can reduce not only the congestion on memory
controllers but also the congestion of memory access to the
last-level caches. In CG, Packed shows a significant reduction
in QPI volume because, as shown in Figure 8(b), CG has a
communication behavior that can benefit from Packed map-
ping. The results of the IMC queue show a small difference
among the methods, which means that in CG, the locality has
a higher impact than the memory congestion; thus, Packed
and Locality have higher performance improvements than
does Balance. On the other hand, DeLoc shows the lowest
QPI volume and IMC queue; thus, it can achieve the highest
performance improvement among the methods.

In Fluidanimate, DeLoc and Locality have fewer last-level
cachemisses than do the othermethods because bothmethods
improve the locality of communication. We note that Scatter
has a lower IMC queue than that of Packed and DeLoc and
a lower QPI volume than that of Packed and Balance. This is

because, as shown in Figure 8(d), this application has a com-
munication behavior that can benefit from Scatter mapping.
In the case of Locality, although the number of cache misses
is lower than that of Balance and Scatter, the IMC queue is
much higher than that of Balance and Scatter. Thus, Locality
has a lower performance than that of Balance, DeLoc and
Scatter. On the other hand, DeLoc can achieve the highest
performance improvements by simultaneously reducing the
memory congestion and the amount of remote-access com-
munication.

In Streamcluster, DeLoc gains the highest performance
improvements by simultaneously reducing the number of
cachemisses, IMC queue andQPI volume. Locality has fewer
cache misses than do Packed, Balance and Scatter. However,
Locality has the highest IMC queue. On the other hand,
Balance and Scatter have a lower IMC queue and execution
time than those of Locality. As predicted by our analysis of
the communication behaviors of the PARSEC applications,
in Streamcluster, the impact of memory congestion is higher
than that of the locality. The performance monitoring results
show that maximizing the locality can degrade the perfor-
mance of this application because doing so will significantly
increase the memory congestion.

In X264, Locality has the lowest QPI volume among the
methods. However, Balance and DeLoc have the lowest IMC
queue and shortest execution time among the methods. As
shown in Figure 6(d), X264 has a higher DRAM-to-memory
ratio than that of most of the PARSEC applications. These
results show that both methods can achieve a higher perfor-
mance improvement than can the other methods by signifi-
cantly reducing the congestion on memory controllers. Note
that Locality can achieve a lower IMCqueue than that of Scat-
ter, indicating that in X264, improving the locality of commu-
nication can also reduce the communication load imbalance
among the NUMA nodes. On the other hand, DeLoc can
achieve the highest performance improvements from reduc-
tions in the IMC queue and QPI volume, which means that it
can effectively reduce the congestion on memory controllers
and the amount of remote-access communication.

In CG-OMP,MG-OMP, and SP-OMP, AutoNUMAhas the
lowest IMC queue, indicating that this method effectively
reduces the memory congestion in these three applications.
However, in all six applications, AutoNUMA has a higher
QPI volume than that of DeLoc and Locality. The highest
QPI volume is shown in MG-OMP, by 67.9% compared
with Scatter. By migrating memory pages and threads to a
different NUMA node, AutoNUMA potentially increases the
data traffic on interconnects because the threads may need
to access data that reside in a remote NUMA node. These
results suggest that the migration overhead has a significant
impact on the volume of data traffic on the interconnects. On
the other hand, DeLoc and Locality do not suffer from the
migration overhead, and thus, these twomethods have a lower
QPI volume than that of AutoNUMA.

The performance monitoring results show that DeLoc
gains performance improvements from the reductions in

VOLUME 8, 2020 6949



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

TABLE 1. Simulation configuration.

the last-level cache misses, IMC queue and QPI volume.
Higher improvements are achieved by the applications that
have a higher communication concurrency, communication-
to-memory ratio and DRAM-to-memory ratio.

B. PERFORMANCE EVALUATION WITH A SIMULATOR
To evaluate the effectiveness of the proposed method on a
larger-scale system, we conduct experiments in a multicore
simulator, called Sniper [44]. A 4-node NUMA system is
used for the simulation configuration. We set the specifica-
tions of each processor, memory controllers, and QPI accord-
ing to the hardware specifications of the Purple system.

Table 1 shows the configuration parameters for the simula-
tion. As the benchmark applications, we use six applications
that are used in the performance analysis of the real system
evaluation (Figure 9). These applications are executed with
64 threads. We use the simlarge input size for the PARSEC
applications. For theNPB-OMP applications, we use the class
B input size for CG-OMP andMG-OMP and the class A input
size only for SP-OMP. We do not use the larger input sizes
due to the simulation time constraints. The simulation time
drastically increases with the input size. We observed that for
one CG-OMP execution, the simulation time with the class B
input size is slower than that with the class A input size by
two orders of magnitude.

In this evaluation, DeLoc is compared with Locality, Bal-
ance, and Scatter. We choose these three methods because
Locality and Balance consider the spatial communication
behavior of the application, and in the real system evalua-
tion, Scatter shows a higher performance improvement than
achieved by Packed, Balance, Locality and AutoNUMA in
the case of Fluidanimate. Moreover, in Fluidanimate, the per-
formance difference between Scatter and Packed is the largest
among the NPB-OMP and PARSEC applications.

Figure 10 shows the results of executing the six appli-
cations in the simulator, which are also normalized to the
results of Scatter mapping. In this evaluation, we use four
performance metrics used in the performance analysis of the
real system evaluation. These metrics are obtained from the
simulation output of Sniper. The IMC queue and QPI volume
metrics are obtained by measuring the DRAM queuing delay
and network packet counters in the simulator. As shown
in Figure 10, on average, DeLoc can achieve the highest per-
formance improvement among the methods, by up to 19.4%
in the case of SP-OMP.

In all the tested applications, except Fluidanimate, DeLoc
and Locality achieve higher performance improvements than
do Scatter and Balance. The performance improvements
are mainly obtained from the reductions in last-level cache
misses and QPI volume, with the highest reductions exhibited
in SP-OMP andX264. In X264, the reductions in QPI volume
of DeLoc and Locality are 36.4% and 32.9%, respectively.
In CG-OMP and Streamcluster, Balance has a higher QPI
volume than that of Scatter and Locality, respectively, which
is contrary to the results of the real system evaluation. These
results suggest that on the simulated system, the impact of
communication locality on the execution time is higher than
that of the real system. Thus, reducing the amount of remote-
access communication becomes more effective in improving
the performance of most of the applications.

In SP-OMP, DeLoc has not only the lowest last-level cache
misses and QPI volume but also the lowest IMC queue; thus,
it achieves the highest performance improvement among the
methods. Moreover, the reductions in the IMC queue and
execution time are higher than those of the real system evalua-
tion. This fact shows that on the simulated system, the impact
of memory congestion on the execution time of SP-OMP is
also higher than that in the real system, as the number of cores
of each NUMA node in the simulated system is higher than
that in the Purple system.

In Fluidanimate, DeLoc and Scatter achieve the highest
improvements among the methods. Scatter can achieve a
comparable performance with DeLoc because this applica-
tion has a communication behavior that can benefit from
Scatter mapping, which is also exhibited in the real sys-
tem evaluation. These results show that the communication
behavior of Fluidanimate is not changed, even if the input
size is changed. We observe that Locality has the highest
IMC queue and number of last-level cache misses among
the methods. By minimizing the amount of remote-access
communication, it increases the congestion of memory access
to the last-level caches and memory controllers. On the other
hand, DeLoc can achieve a shorter execution time than that of
Balance and Locality from the reductions in both the memory
congestion and the amount of remote-access communication.

We note that reducing memory congestion may increase
the amount of remote-access communication. As shown in
Streamcluster and Fluidanimate, DeLoc has a higher QPI
volume than that of Locality. This is because, to reduce
memory congestion, DeLoc distributes the concurrent com-
munications over the NUMA nodes. However, as discussed
in the real system evaluation, the memory congestion has
a high impact on the execution time of Streamcluster and
Fluidanimate. Thus, in these applications, DeLoc can still
achieve shorter execution times than those of Locality.

The simulation results show that in most of the tested
applications, the impact of communication locality on the
execution time increases with the number of nodes. The appli-
cations that have a higher communication-to-memory ratio
and communication locality, such as SP-OMP and X264, will
gain a higher performance improvement from locality-based

6950 VOLUME 8, 2020



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

FIGURE 10. Performance results in the simulator (normalized to Scatter).

task mapping. DeLoc can achieve the highest performance
in most of the applications by simultaneously reducing the
amount of remote-access communication and the memory
congestion.

V. RELATED WORK
In this section, we review the related work. First, the methods
for MPI process mapping and thread mapping are reviewed.
Then, we compare our proposed method with two thread and
memory placement methods considering memory congestion
on modern NUMA systems.

Various MPI process mapping methods have been pro-
posed in related studies. Related work in this area mostly
focuses on improving the locality of communication. The
MPIPP framework uses the execution profile to place MPI
processes on different nodes of a cluster [9]. Hendrickson
and Leland proposed graph-based partitioning algorithms to
optimize the process mapping [10]. Zhang et al. [11] and
Ma et al. [12] proposed process placement strategies for
MPI collective operations. A more recent method was pro-
posed by Jeannot et al. with a tree-based algorithm called
TreeMatch [13], where they took into account the application
communication pattern and the hardware topology of the
NUMA clusters. TreeMatch achieves a better performance
than that of the previous graph-based partitioning algorithms
by taking into account the application communication pattern
and the qualitative information of the node topology. A key
difference between the above related work and our proposed
method is that the related workmainly focused on the locality.
In contrast, our method focuses on improving the locality and
reducing the memory congestion onmodern NUMA systems.

A threadmappingmethodwas proposed byDiaz et al. [22].
The method analyzes the spatial communication behavior
of multi-threaded applications to improve the locality and
balance of the communication load. An online-based com-
munication detection method, called CDSM, was proposed
by Diener et al. [8]. During the application runtime, it peri-
odically monitors and analyzes the spatial communication
behavior of the application and performs thread mapping.
In contrast to these related work, DeLoc considers not only
the spatial communication behavior but also the temporal
communication behavior of the application. As shown in our
evaluation, by considering both the spatial and temporal com-
munication behaviors, DeLoc is more effective in reducing
the memory congestion. It can achieve the lowest queuing
delay caused by the memory congestion in most of the tested
applications.

Dashti et al. [14] proposed a memory placement method,
called Carrefour, to reconcile the data access locality and
memory congestion on modern NUMA systems. Carrefour
works as a Linux kernel policy to dynamically place memory
pages on NUMA nodes to avoid congestion. It struggles to
reduce the runtime overheads from the memory access moni-
toring and the memory migration. Lepers et al. [45] proposed
a thread and memory placement method, called AsymSched,
that takes into account the bandwidth asymmetry of asymmet-
ric NUMA systems to minimize congestion on interconnect
links and memory controllers on modern NUMA systems.
It relies on continuous monitoring of the communication
volume, threadmigration, andmemorymigration. As a result,
AsymSched also incurs runtime overheads from the monitor-
ing and migrations.

VOLUME 8, 2020 6951



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

CDSM, Carrefour and AsymSched introduce monitoring
and migration overheads to the execution of the parallel
application. In contrast to these methods, DeLoc assigns
tasks to processor cores when an application is launched.
The overhead of DeLoc is incurred by the profiling step
to analyze the communication behaviors of the application.
However, a rerun of the profiling is required only when the
communication behaviors of the application have changed.

We cannot compare DeLoc with CDSM, Carrefour and
AsymSched because CDSM depends on a previous version
of the Linux kernel and because Carrefour and Asymsched
require a profiling mechanism that is available only in AMD
processors. However, as shown in our evaluation and our
previous work [33], the migration overhead can have a sig-
nificant impact on performance, and DeLoc does not suffer
from this overhead. Moreover, unlike these methods, DeLoc
works on the application level and does not rely on a specific
operating system or hardware. Compared with AsymSched,
DeLoc focuses on reducing not only memory congestion but
also the amount of remote-access communication. As shown
in our evaluation, Facesim and most of the NPB-OMP appli-
cations can gain significant improvements from reducing the
amount of remote-access communication.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a task mapping method, DeLoc,
to address both the locality and memory congestion prob-
lems. The proposed method analyzes the spatial and temporal
communication behaviors of parallel applications to identify
groups of tasks that potentially cause memory congestion.
We also introduced metrics to describe the communication
behaviors and determine if a parallel application can benefit
from locality and memory-congestion-aware task mapping.

To evaluate the proposed method, we compared DeLoc
with a dynamic mapping method, two greedy-based methods,
a random method, a balance-based method and a locality-
based method. The evaluation was conducted on a real
NUMA system using MPI and OpenMP implementations of
the NPBs and the PARSEC benchmark suite. In addition,
experiments with a larger number of NUMA nodes have
been conducted on a multicore simulator. The experiments
show that our proposed method consistently outperforms the
other methods. For parallel applications that can benefit from
communication-aware task mapping, DeLoc can achieve the
highest performance by improving the locality and reducing
the memory congestion.

DeLoc can achieve performance improvements of up
to 46.5%, 61%, and 14.3% compared with the dynamic map-
ping, locality-based mapping, and balance-based mapping
methods, respectively. It can achieve higher performance
improvements in applications that have a higher commu-
nication concurrency, communication-to-memory ratio and
DRAM-to-memory ratio. The performance improvements
are obtained from the reductions in last-level cache misses,
queuing delay in memory controllers, and data traffics in
interconnects.

Our future work will focus on improving DeLoc to make it
applicable to a large-scale cluster of modern NUMA systems,
which needs hybrid MPI/OpenMP parallel programming.
Another interesting issue is the effect of the proposed method
on the power and energy consumption of NUMA systems,
which will be discussed in our future work.

ACKNOWLEDGMENT
The authors would like to thank Kazuhiko Komatsu of
Tohoku University for valuable discussions on this work.

REFERENCES
[1] D. Molka, D. Hackenberg, and R. Schöne, ‘‘Main memory and cache

performance of intel sandy bridge andAMDbulldozer,’’ inProc.Workshop
Memory Syst. Perform. Correctness (MSPC), 2014, pp. 4:1–4:10.

[2] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Quéma,
R. Lachaize, and M. Roth, ‘‘Challenges of memory management on
modern NUMA systems,’’ Commun. ACM, vol. 58, no. 12, pp. 59–66,
Nov. 2015.

[3] M. Diener, E. H. M. Cruz, M. A. Z. Alves, P. O. A. Navaux, and I. Koren,
‘‘Affinity-based thread and data mapping in shared memory systems,’’
ACM Comput. Surv., vol. 49, no. 4, pp. 1–38, Dec. 2016.

[4] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, ‘‘Intel quickpath
interconnect architectural features supporting scalable system architec-
tures,’’ in Proc. 18th IEEE Symp. High Perform. Interconnects, Aug. 2010,
pp. 1–6.

[5] J. E. Boillat and P. G. Kropf, ‘‘A fast distributed mapping algorithm,’’ in
CONPAR, H. Burkhart, Ed. Berlin, Germany: Springer, 1990, pp. 405–416.

[6] J. M. Orduña, F. Silla, and J. Duato, ‘‘On the development of a
communication-aware task mapping technique,’’ J. Syst. Archit., vol. 50,
no. 4, pp. 207–220, Mar. 2004.

[7] M. Diener, E. H. Cruz, L. L. Pilla, F. Dupros, and P. O. Navaux, ‘‘Charac-
terizing communication and page usage of parallel applications for thread
and data mapping,’’ Perform. Eval., vols. 88–89, pp. 18–36, Jun. 2015.

[8] M. Diener, E. H. Cruz, P. O. Navaux, A. Busse, and H.-U. Heíß,
‘‘Communication-aware process and thread mapping using online com-
munication detection,’’ Parallel Comput., vol. 43, pp. 43–63, Mar. 2015.

[9] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, ‘‘MPIPP: An auto-
matic profile-guided parallel process placement toolset for SMP clusters
and multiclusters,’’ in Proc. 20th Annu. Int. Conf. Supercomput. (ICS),
2006, pp. 353–360.

[10] B. Hendrickson and R. Leland, ‘‘The chaco user’s guide: Version 2.0,’’
Sandia Nat. Lab., Albuquerque, NM, USA, Tech. Rep. SAND95-2344,
1995.

[11] J. Zhang, J. Zhai, W. Chen, and W. Zheng, ‘‘Process mapping for MPI
collective communications,’’ in Proc. Eur. Conf. Parallel Process. Berlin,
Germany: Springer, 2009, pp. 81–92.

[12] T. Ma, T. Herault, G. Bosilca, and J. J. Dongarra, ‘‘Process distance-aware
adaptiveMPI collective communications,’’ inProc. IEEE Int. Conf. Cluster
Comput., Sep. 2011, pp. 196–204.

[13] E. Jeannot, G. Mercier, and F. Tessier, ‘‘Process placement in multicore
clusters: Algorithmic issues and practical techniques,’’ IEEE Trans. Paral-
lel Distrib. Syst., vol. 25, no. 4, pp. 993–1002, Apr. 2014.

[14] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, ‘‘Traffic management: A holistic approach to
memory placement on NUMA systems,’’ ACM SIGPLAN Notices, vol. 48,
no. 4, pp. 381–394, Apr. 2013.

[15] M. Agung, M. A. Amrizal, K. Komatsu, R. Egawa, and H. Takizawa,
‘‘A memory congestion-aware MPI process placement for modern NUMA
systems,’’ in Proc. IEEE 24th Int. Conf. High Perform. Comput. (HiPC),
Dec. 2017, pp. 152–161.

[16] M. Diener, E. H. M. Cruz, M. A. Z. Alves, M. S. Alhakeem,
P. O. A. Navaux, and H.-U. Heíß, ‘‘Locality and balance for
communication-aware thread mapping in multicore systems,’’ in Euro-Par
2015: Parallel Processing, J. L. Träff, S. Hunold, and F. Versaci, Eds.
Berlin, Germany: Springer, 2015, pp. 196–208.

[17] A. Bhatelé, L. V. Kalé, and S. Kumar, ‘‘Dynamic topology aware load
balancing algorithms for molecular dynamics applications,’’ in Proc. 23rd
Int. Conf. Conf. Supercomput. (ICS), 2009, pp. 110–116.

6952 VOLUME 8, 2020



M. Agung et al.: DeLoc: Locality and Memory-Congestion-Aware Task Mapping Method for Modern NUMA Systems

[18] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, ‘‘Hwloc: A generic framework for
managing hardware affinities in HPC applications,’’ in Proc. 18th Euromi-
cro Conf. Parallel, Distrib. Netw.-Based Process., Feb. 2010, pp. 180–186.

[19] A. Kleen, ‘‘A NUMA API for linux,’’ Novel Inc., Washington, DC, USA,
Tech. Rep. 462-001437-001, 2005.

[20] H. Kasim, V. March, R. Zhang, and S. See, ‘‘Survey on parallel program-
ming model,’’ in Proc. IFIP Int. Conf. Netw. Parallel Comput. Berlin,
Germany: Springer, 2008, pp. 266–275.

[21] Message Pasing Interface Forum. (Sep. 2012). PI: A Message-Passing
Interface Standard. [Online]. Available: http://www.mpi-forum.org

[22] J. Diaz, C. Munoz-Caro, and A. Nino, ‘‘A survey of parallel programming
models and tools in the multi and many-core era,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1369–1386, Aug. 2012.

[23] R. L. Graham and G. Shipman, ‘‘MPI support for multi-core architectures:
Optimized sharedmemory collectives,’’ inRecent Advances in Parallel Vir-
tual Machine and Message Passing Interface, A. Lastovetsky, T. Kechadi,
and J. Dongarra, Eds. Berlin, Germany: Springer, 2008, pp. 130–140.

[24] H. Zhu, D. Goodell, W. Gropp, and R. Thakur, ‘‘Hierarchical collectives in
MPICH2,’’ in Recent Advances in Parallel Virtual Machine and Message
Passing Interface, M. Ropo, J. Westerholm, and J. Dongarra, Eds. Berlin,
Germany: Springer, 2009, pp. 325–326.

[25] G. Bosilca, C. Foyer, E. Jeannot, G. Mercier, and G. Papauré, ‘‘Online
dynamic monitoring ofMPI communications,’’ in Proc. Eur. Conf. Parallel
Process. Berlin, Germany: Springer, 2017, pp. 49–62.

[26] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, ‘‘Open MPI:
Goals, concept, and design of a next generation MPI implementation,’’ in
Proc. Eur. Parallel Virtual Mach./Message Passing Interface Users’ Group
Meeting. Berlin, Germany: Springer, 2004, pp. 97–104.

[27] N. Barrow-Williams, C. Fensch, and S. Moore, ‘‘A communication char-
acterisation of splash–2 and parsec,’’ in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Oct. 2009, pp. 86–97.

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, ‘‘Pin: Building customized program anal-
ysis tools with dynamic instrumentation,’’ ACM SIGPLAN Notice, vol. 40,
no. 6, pp. 190–200, Jun. 2005.

[29] M. Ackerman, S. Ben-David, S. Brânzei, and D. Loker, ‘‘Weighted clus-
tering,’’ in Proc. 26th AAAI Conf. Artif. Intell. (AAAI), 2012, pp. 858–863.

[30] G. Schwarz, ‘‘Estimating the dimension of a model,’’ Ann. Statist., vol. 6,
no. 2, pp. 461–464, Mar. 1978.

[31] P. Dan and A. W. Moore, ‘‘X-means: Extending k-means with efficient
estimation of the number of clusters,’’ in Proc. ICML, vol. 1, Jun. 2000,
pp. 727–734.

[32] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, and
R. S. Schreiber, ‘‘The NAS parallel benchmarks,’’ Int. J. Supercomput.
Appl., vol. 5, no. 3, pp. 63–73, 1991.

[33] M. Agung, M. A. Amrizal, R. Egawa, and H. Takizawa, ‘‘An automatic
MPI process mapping method considering locality and memory con-
gestion on NUMA systems,’’ in Proc. IEEE 13th Int. Symp. Embedded
Multicore/Many-Core Syst.-Chip (MCSoC), Oct. 2019, pp. 17–24.

[34] Intel. (2016). Intel Xeon Processor E5 and E7 V4 Product Families Uncore
Performance Monitoring Reference Manual. [Online]. Available: https://
www.intel.com/content/www/us/en/products/docs/processors/xeon/xeon-
e5-e7-v4-uncore-performance-monitoring.html

[35] C. Bienia and K. Li, ‘‘PARSEC 2.0: A new benchmark suite for chip-
multiprocessors,’’ in Proc. 5th Annu. Workshop Modeling, Benchmarking
Simulation, Jun. 2009.

[36] J. Treibig, G. Hager, and G.Wellein, ‘‘Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments,’’ in Proc. 1st Int.
Workshop Parallel Softw. Tools Infrastruct. (PSTI), San Diego CA, USA,
2010.

[37] J. Corbet. (2012). AutoNUMA: The Other Approach to NUMA Schedul-
ing. Accessed: Oct. 1, 2019. [Online]. Available: https://lwn.net/Articles/
488709

[38] C. Lameter, ‘‘NUMA (non–uniform memory access): An overview,’’
Queue, vol. 11, no. 7, p. 40, Jul. 2013.

[39] C. Terboven, D. An Mey, D. Schmidl, H. Jin, and T. Reichstein, ‘‘Data and
thread affinity in openmp programs,’’ in Proc. Workshop Memory Access
Future Processors Solved Problem (MAW), 2008, pp. 377–384.

[40] A. C. De Melo, ‘‘The new linux’perf’tools,’’ in Slides From Linux
Kongress, vol. 18. Nuremberg, Germany: Georg Simon Ohm Univ.
Nuremberg, 2010.

[41] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian, and A. Davis,
‘‘Handling the problems and opportunities posed by multiple on-chip
memory controllers,’’ in Proc. 19th Int. Conf. Parallel Archit. Compilation
Techn. (PACT), 2010, pp. 319–330.

[42] R. Lachaize, B. Lepers, and V. Quéma, ‘‘MemProf: A memory profiler for
NUMA multicore systems,’’ in Proc. USENIX Conf. Annu. Tech. Conf.,
Berkeley, CA, USA, 2012, p. 5.

[43] A. Fedorova, S. Blagodurov, and S. Zhuravlev, ‘‘Managing contention
for shared resources on multicore processors,’’ Queue, vol. 8, no. 1,
pp. 20:20–20:35, Jan. 2010.

[44] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
‘‘An evaluation of high-level mechanistic core models,’’ ACM Trans.
Archit. Code Optim., vol. 11, no. 3, pp. 1–25, Aug. 2014.

[45] B. Lepers, V. Quéma, and A. Fedorova, ‘‘Thread and memory placement
onNUMA systems: Asymmetrymatters,’’ inProc. USENIXConf. USENIX
Annu. Tech. Conf., Berkeley, CA, USA, 2015, pp. 277–289.

MULYA AGUNG received the master’s degree
in informatics from the Bandung Institute of
Technology, in 2015. He is currently pursuing
the Ph.D. degree with Tohoku University. His
work addresses data science and high-performance
computing.

MUHAMMAD ALFIAN AMRIZAL received the
B.E. degree in mechanical engineering and the
M.S. and Ph.D. degrees in information sciences
from Tohoku University, in 2012, 2014, and 2017,
respectively. He is currently an Assistant Professor
with the Research Institute of Electrical Commu-
nication (RIEC), Tohoku University. His research
interests are in the area of high-performance
computing (HPC), including the dependability of
HPC systems, novel fault tolerance techniques,
performance modeling, and optimization.

RYUSUKE EGAWA received the B.E. and
master’s degrees in information sciences from
Hirosaki University, in 1999 and 2001, respec-
tively, and the Ph.D. degree in information sci-
ences from Tohoku University, in 2004. He is
currently an Associate Professor with the Cyber-
science Center, Tohoku University. His research
interests include computer architecture, VLSI
design, and high-performance computing. He is a
member of IEEE CS, IEICE, and IPSJ.

HIROYUKI TAKIZAWA received the B.E. degree
in mechanical engineering and the M.S. and Ph.D.
degrees in information sciences from Tohoku Uni-
versity, in 1995, 1997, and 1999, respectively.
He is currently a Professor with the Cyberscience
Center, Tohoku University. His research interests
include high-performance computing systems and
their applications. He is a member of IEEE CS,
ACM SIGHPC, IEICE, and IPSJ.

VOLUME 8, 2020 6953


