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ABSTRACT Positron emission tomography (PET) has rich pseudo color information that reflects the
functional characteristics of tissue, but lacks structural information and its spatial resolution is low. Magnetic
resonance imaging (MRI) has high spatial resolution as well as strong structural information of soft tissue,
but lacks color information that shows the functional characteristics of tissue. For the purpose of integrating
the color information of PET with the anatomical structures of MRI to help doctors diagnose diseases
better, a method for fusing brain PET and MRI images using tissue-aware conditional generative adversarial
network (TA-cGAN) is proposed. Specifically, the process of fusing brain PET and MRI images is treated
as an adversarial machine between retaining the color information of PET and preserving the anatomical
information of MRI. More specifically, the fusion of PET and MRI images can be regarded as a min-max
optimization problem with respect to the generator and the discriminator, where the generator attempts to
minimize the objective function via generating a fused image mainly contains the color information of PET,
whereas the discriminator tries to maximize the objective function through urging the fused image to include
more structural information of MRI. Both the generator and the discriminator in TA-cGAN are conditioned
on the tissue label map generated from MRI image, and are trained alternatively with joint loss. Extensive
experiments demonstrate that the proposed method enhances the anatomical details of the fused image while
effectively preserving the color information from the PET. In addition, compared with other state-of-the-art
methods, the proposed method achieves better fusion effects both in subjectively visual perception and in
objectively quantitative assessment.

INDEX TERMS Positron emission tomography, magnetic resonance imaging, image fusion, generative
adversarial network, loss function.

I. INTRODUCTION
Positron emission tomography (PET), a nuclear medicine
imaging technology, provides a color image with functional
information that reflects the metabolism of different tissues.
However, PET image has a low spatial resolution and lacks
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structural information of tissues [1]. On the other hand,
magnetic resonance imaging (MRI), another non-invasive
imaging tool, presents strong soft tissue structure informa-
tion with higher spatial resolution. However, MRI image
lacks color information that reflects the metabolic function
of specific tissues [2], [3]. Therefore, effectively integrat-
ing PET with MRI via image fusion can provide more
meaningfully complementary information. In other words,
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the fused image not only retains the spatial structure infor-
mation of MRI, but also preserves the color information
of PET. As a result, this kind of complementary informa-
tion can assist clinical diagnosis and treatment of diseases
better [4], [5].

Over the past few decades, different types of methods for
fusing PET and MRI images have been developed. These
methods can be roughly categorized into four classes via their
implementation mechanisms. The first one is IHS (Intensity–
Hue-Saturation) based method which is realized based on
the transformation and the replacement strategies [5]–[7].
This type of method first transforms the PET image from
RGB color space into IHS color space; then replaces the I
component of the transferred PET with the matchedMRI (the
MRI and the PET need to be registered in advance); finally,
inversely transfers the PET with the substituted I component
from IHS color space to RGB color space, and then obtains
the fused image. This kind of approach usually generates a
fused image which contains rich structural information with
high resolution, but it generally distorts the color information
of PET image due to the substitutive MRI image is rater
different from the replaced I component of the PET image.
The second type of method for merging PET andMRI images
is implemented by the multi-resolution analysis (MRA) strat-
egy [8]–[10]. This kind of method first decomposes PET and
MRI images into multi-scale coefficients and transforming
bases; then merges the decomposed coefficients according to
a certain fusion rule; finally, inversely transforms the fused
coefficients and transforming bases so as to get the final fused
image. This kind of method can effectively preserve the color
information of PET, but it has limitations in enhancing the
spatial structure information of fused PET. Moreover, one of
key issues confronting by theMRA approach is designing the
specific fusion rule, which is very crucial to the fusion effect.
The third type of method for fusing PET and MRI images
is sparse representation (SR)-based method [11], [12]. This
type of approach first solves the sparse representation coef-
ficients both for PET and for MRI images, respectively; then
merges the calculated coefficients via specific fusion rule;
lastly reconstructs the target image using the fused sparse
coefficients and a predefined/learnt over-complete dictionary.
Sparse representation has achieved remarkable effects on
image fusion. However, in most of the proposed SR-based
methods for fusing PET and MRI images, the dictionary is
learnt or constructed using the entire image, i.e., extracting
the image patches from the entire image to learn or construct
a global dictionary. Since the structural similarities among the
image patches are not considered while learning or construct-
ing the global dictionary, hence, the sparse coefficients solved
by this kind of global dictionary are not very suitable for accu-
rately reconstructing the target image [13]. Furthermore, sim-
ilar to the MRA-based fusion method, designing the specific
fusion rules is also an inevitable issue encountering by the
SR-based fusion method. The last but not the least, inspired
by other new ideas, the methods for fusing PET and MRI
images include such as nonparametric density model-based

method [14], ant colony optimization-based method [15] and
so on.

Although these recent advanced methods achieve remark-
able performance, one of major problems involved in these
methods is designing fusion rule. Unfortunately, the fusion
rules in the most of existing approaches are manually
designed, and become more and more complicated. As a
result, the fusion schemes with these complex hand-crafted
fusion rules inevitably have the limitations such as implemen-
tation difficulty and time-consuming computation.

In recent few years, deep learning (DL) has become one of
themost attractive topics in the field of computer vision due to
its strong ability to extract image features. Correspondingly,
in the field of image fusion, DL has also been successfully
applied to various applications, such as remote sensing image
fusion [16]–[18], multi-focus image fusion [19]–[21], med-
ical image fusion [22] etc. Liu et al. [23] comprehensively
summarized DL-based methods for image fusion in details.
Actually, most of the proposed DL-based methods for image
fusion are realized based on convolutional neural network
(CNN), in which a critical prerequisite must be satisfied,
i.e., the ground truth should be available in advance. However,
in the task of fusing PET and MRI images, it is nearly
impossible to establish the ground truth due to defining a stan-
dard for final fused images is unrealistic. Moreover, in order
to complete the image fusion task, most of the proposed
CNN models require additional post-processing procedures
because they are not designed in the end-to-end manner [24].

More recently, generative adversarial network (GAN) has
drawn a tremendous amount of attention, and has been suc-
cessfully applied to various applications in the field of com-
puter vision and machine learning, especially to the image
synthesis [25]–[27]. In the particular case of image fusion,
Ma et al. [28] firstly applied the GAN to the image fusion,
i.e., fusion of infrared and visual images. Ma et al. [29]
further improved the image fusion algorithm for infrared and
visual images by adding an edge-enhancement constraint.
Guo et al. [30] proposed an algorithm for multi-focus image
fusion using conditional GAN. To the best of our knowledge,
there are no reports on the application of GAN and its variants
to the fusion of medical images.

According to the above analysis, and inspired by the
[28], we propose a method for brain PET and MRI image
fusion through the generative adversarial mechanism. Specif-
ically, conditioned on the multiple input images together
with the tissue label map generated from the input MRI
image, a novel end-to-end tissue-aware framework based on
conditional generative adversarial network (TA-cGAN) is
proposed. Similar to the original GAN, the training proce-
dure of our proposed TA-cGAN like a two-layer min-max
game in which the generator and the discriminator are trained
simultaneously with the goal of one beating another, i.e., the
generator attempts to output a fused image mainly contains
the color information of PET, whereas the discriminator tries
to urge the fused image to include more anatomical infor-
mation of MRI. Furthermore, our proposed TA-cGAN is an
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end-to-end model, in which the fused image can be generated
automatically from the combining of source images and the
tissue label map without manually designing the complicated
fusion rules.

The reminder of this paper is organized as follows.
In Section II, related works regarding the generative adver-
sarial network and the conditional generative adversarial
network are briefly reviewed. Section III details our pro-
posed method. Experiments and analysis are presented in
Section IV. The concluding remarks are given in Section V.

II. RELATED WORKS
A. GENERATIVE ADVERSARIAL NETWORK
Generative adversarial network was firstly proposed by
Goodfellow et al. [31] in 2014, and has drawn appealing
attention in the field of machine learning and computer
vision. The GAN is a generative model which consists of two
adversarial networks namely generator G and discriminator
D. The generator attempts to generate fake but plausible sam-
ples, whereas the discriminator tries to distinguish between
the generated samples and the real samples. Specifically, the
generator learns to capture the real data distribution and then
generate new plausible samples so as to fool the discrimina-
tor, while the discriminator learns to distinguish the model
generated distribution from the real data distribution. The two
networks are trained against each other until the discriminator
be unable to tell whether the generated samples come from
the generator or not.

Mathematically, in the original GAN, D and G are trained
in a competitive fashion by solving the following min-max
optimization problem:

min
G

max
D

V(D,G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))], (1)

where x is the real sample from true dataset, and z is the
noise; G(·) and D(·) denote the output of the generator G and
the discriminator D, respectively; Pdata denotes the real data
distribution, and Pz denotes the prior distribution of noise. G
tries to minimize the above objective function as shown in (1)
whereas D attempts to maximize it.

B. CONDITIONAL GENERATIVE ADVERSARIAL NETWORK
In the standard GAN, there is no control on modes of the
synthesized data. Actually, it is possible to guide the sample
synthesis by conditioning the GAN on auxiliary information,
such as class label, text information, data from other modali-
ties, et al. Hence, Mirza and Osindero [32] extended the basic
GAN framework to the conditional generative adversarial
network (cGAN) by feeding the auxiliary information into
both the generator and the discriminator as extra input layer.

Mathematically, in the cGAN, D and G are trained by
solving the following two-player optimization problem:

min
G

max
D

V(D,G) = Ex∼Pdata(x)[logD(x|y)]

+Ez∼Pz(z)[log(1− D(G(z|y)))], (2)

where y is the auxiliary input which could be any kind of extra
information.

III. PROPOSED METHOD
A. PIPELINE OF PROPOSED METHOD
The main goal of this study is to design a method for fusing a
pair of pseudo color PET image and a gray MRI image so as
to obtain the fused image with meaningfully complementary
information as much as possible. In particular, the conditional
generative adversarial network is employed to fulfill the
fusion of PET and MRI images. More specifically, we regard
the PET andMRI image fusion task as a two-player adversar-
ial game between the generator and the discriminator, where
both the generator and the discriminator are conditioned on
the tissue label map which is generated from MRI image.

Fig. 1 illustrates the general pipeline of our proposed
method that consists of training and testing stages, where IP
stands for the PET image, IM stands for the MRI image, IL
denotes the tissue label map, and IF denotes the fusion result.

Assume we have a set of ‘‘pairs’’ of PET and MRI images,
and all paired PET andMRI images are registered.We further
suppose that all MRI images are segmented into white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF) so
as to obtain the tissue label maps.

In the training stage, firstly stack the PET image IP, the
MRI image IM together with the tissue label map IL . Then
feed the concatenated ‘‘image’’ into the generator and obtain
the fused image IF . Next, input the fused image IF , the MRI
image IM , and the tissue label map IL into the discriminator
whose goal is attempting to distinguish IF from IM . It worth
noting that both the generator and the discriminator are condi-
tioned on the tissue label map IL , and trained simultaneously
in a competitive fashion, i.e., the generator tries to contain
more and more color information from the PET image IP,
while the discriminator urges the fused image IF includemore
and more structural details from the MRI image IM . In this
way, the fused image IF will gradually include more and
more anatomical details from the MRI image IM . Once the
generated image (i.e., IF ) produced by the generator cannot
be distinguished by the discriminator, the final expected fused
image IF is obtained. In the testing stage, firstly concatenate
the PET image IP, the MRI image IM together with the cor-
responding tissue label map IL , then input the concatenated
‘‘image’’ into the trained generator, and finally get the fused
image IF .

B. JOINT LOSS FUNCTION
In the framework of traditional GAN, the generatorG aims to
generate samples by using random noise that follows a prior
probability distribution z ∼ Pz(z). In our proposed TA-
cGAN, instead of using random noise as the input, we con-
dition the model on multiple images from different modality,
i.e., the PET image IP, the MRI image IM and its correspond-
ing label map IL . Furthermore, different from the conven-
tional GAN in which the log likelihood cost is used for the
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FIGURE 1. Pipeline of the proposed method for fusing brain PET and MRI images.

adversarial loss, we adopt the least square loss which has been
proved can boost training stability as well as generate high
quality image [33]. During the training process, to satisfy
with the PET and MRI image fusion task, except for only
using adversarial loss to train the generator G, our proposed
TA-cGAN utilizes joint losses including spectral loss LSpec,
structural loss LStr , and adversarial loss LAdv. Mathematically,
the joint loss used in our work is expressed as follows:

LJoint = λ1LSpec + λ2LStr + λ3LAdv, (3)

where the spectral loss LSpec urges the fused image to contain
similar color information (Characterized by the pixel inten-
sities of PET image) as those of the PET image; The struc-
tural loss LStr attempts to make the fused image has similar
structure information (Characterized by the gradients of MRI
image) as those of the MRI image; The adversarial loss LAdv
aims to add more detailed information to the fused image;
λ1, λ2,and λ3 are the corresponding weights for spectral loss,
structural loss and adversarial loss, respectively.

1) SPECTRAL LOSS
Formally, the spectral loss LSpec is defined based on mean
square error (MSE) as follows:

LSpec =
1
MN
||IP − IF ||22, (4)

where IP is the original PET image; IF is fused image gen-
erated by the generator G; M and N denote the width and
height of the image. The spectral loss mainly tries to make

the fused image similar with the PET image in terms of pixel
intensities, i.e., to make the fused image IF preserve the color
information contained in the PET image IP.

2) STRUCTURAL LOSS
The structural loss LStr is defined based on image gradient
difference as follows:

LStr =
1
MN

(||∇x(IM )−∇x(IF )||22

+ ||∇y(IM )−∇y(IF )||22), (5)

where∇x and∇y denote the gradient operation of image with
respect to the horizontal and vertical direction, respectively.
The structural loss attempts tominimize themagnitude differ-
ence of the gradients between the MRI image and the fused
image, i.e., to make the fused image IF retain the gradient
information contained in the MRI image IM .

3) ADVERSARIAL LOSS
The adversarial loss LAdv is defined based on the probabilities
of the discriminator D over the concatenated training data
IConcat = {IP, IM , IL} (the PET image IP, the MRI image IM
and its corresponding label map IL) as follows:

LAdv = [D(G(IConcat ))− c]2, (6)

where c denotes the value that the generator G wants the
discriminator D to believe for fake data.
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FIGURE 2. U-Net-like network architecture of the generator. Green boxes stand for feature maps with the number of
channels indicated under each box. The arrows denote different kinds of operations, where Conv = convolution, BN = batch
normalization, and ReLU = rectified linear unit.

C. NETWORK ARCHITECTURE
Similar to the original GAN, the proposed TA-cGAN also
consists of two sub-networks, i.e., the generator and the dis-
criminator. However, different from the original GAN which
is mainly used for image-to-image translation, our proposed
TA-cGAN is designed for images-to-image translation, i.e.,
input multiple images (PET image IP, MRI image IM and its
corresponding label map IL) and output one fused image IF .
The network architectures of the TA-cGAN are detailed as
follows.

1) NETWORK ARCHITECTURE OF GENERATOR
In our proposedmethod, the generator is constructed based on
the U-Net [34]. The U-Net utilizes skip connection technique
to integrate the low-level feature coming from the shallow
encoder layers and the high-level feature coming from the
deep decoder layers.Moreover, the skip connection technique
can be used to partially solve the problem of gradient vanish-
ing. Due to adopting the idea of skip connection, the U-Net
has been successfully applied to many image applications,
such as image synthesis [27]. In this work, the network
architecture of generator G consists of two parts, i.e., the
encoder and the decoder, as shown in Fig. 2. The inputs of
the network are the PET image IP, the MRI image IM and its
corresponding label map IL ; and the output of the network is
the fused image IF .

Specifically, as illustrated in Fig. 2, the entire generator
network is composed of 12 convolutional layers. The encoder
part consists of 6 down-sample layers that perform convolu-
tions using 3× 3 filters with stride 2 in each direction, batch
normalization (BN), and rectified linear unit (ReLU) activa-
tion operations with slope of negative 0.2. Note that, we do
not use pooling operation mainly because it will reduce the
spatial resolution of feature maps and will make the network
unable to capture fine details in the MRI images. In addi-
tion, zero padding with 1 × 1 in each down-sample layer is
employed. The decoder part consists of 6 up-sample layers,
where the first five layers perform convolution-BN-ReLU
operations, and the last layer only perform convolutional
operation using 1 × 1 filter. In the decoder part, the feature
maps in the encoder layers are concatenated with those in

FIGURE 3. Network architecture of the discriminator. The blue boxes
denote the convolutional layers with the number of channels indicated
below each box; the orange box denotes the fully connected layer. The
arrows denote different kinds of operations, where Conv = convolution,
BN = batch normalization, and ReLU = rectified linear unit.

the decoder layers using skip connection (as indicated by the
dotted arrows in Fig. 2).

2) NETWORK ARCHITECTURE OF DISCRIMINATOR
Different from the generatorG, the discriminatorD is mainly
designed for solving the problem of classification. Specifi-
cally, in this study, the major goal of the discriminator D is
attempting to distinguish the fused image pair (Fused image
IF and label map IL) from theMRI image pair (MRI image IM
and label map IL). Fig.3 illustrates the network architecture
of the discriminator D used in our study. As shown in Fig. 3,
the inputs of the discriminatorD is either the fused image pair
or the MRI image pair; and the output of the network is the
class label, i.e., distinguished (labeled by 1) or not (labeled
by 0).

Briefly, as illustrated in Fig. 3, our network architec-
ture of the discriminator D is a simple convolutional neural
network consisting of 5 convolutional layers and 1 fully
connected layer followed by a sigmoid activation function.
The five convolutional layers, similar to the encoder struc-
ture of the generator G, perform the convolution-BN-ReLU
operations.

D. TRAINING PARADIGM
Similar to the original GAN, the generator networkG and the
discriminatorD are trained alternatively. Specifically, first fix
G to train D for one step according to the joint loss function
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as (3), and then fix D to train G for one step too. More
intuitively, the training process of the generatorG and the dis-
criminatorD is just like playing a two-player min-max game,
where the generator G aims to minimize the loss function,
whereas the discriminator D attempts to maximum it. In this
way, the training process will continue, and both the generator
G and the discriminator D will gradually become more and
more powerful until the termination condition of iteration is
satisfied. In the training stage, both G and D are optimized
using the Adam solver [35] with β = 0.5 and learning rate
of 0.0002. Note that, the settings for other parameters during
the training process as well as the preparation of training
samples will be elaborated in the section IV.A.

In the testing stage, first concatenate the PET image IP,
the MRI image IM , and its corresponding label map IL ; then
input the concatenated image into the trained generator G,
and output the final fused image IF .

IV. EXPERIMENTS AND ANALYSIS
In this section, we firstly introduce the experimental settings
including experimental data and preprocessing, parameters’
setting, compared methods, and evaluation metrics. Then
we demonstrate and analyze the experimental results both
visually and quantitatively.

A. EXPERIMENTAL SETTINGS
1) EXPERIMENTAL DATA AND PREPROCESSING
In order to validate the performance of our proposed method,
we use a publicly available dataset of Whole Brain database
(http://www.med.harvard.edu/aanlib/) which is created by
the School of Medicine, Harvard University. In this study,
36 pairs of PET and MRI images are collected for the usage
of experiments. The collected images include 30 cases of
normal control (NC) and 6 cases of mild Alzheimer’s disease
(AD). For the case of normal control, both the PET and MRI
images have the same size of 256 × 256. However, for the
case of mild AD, the sizes of the PET images are different
from those of the MRI images, i.e., the PET images have the
size of 128 × 128, whereas the MRI images have the size
of 256 × 256. Therefore, it is necessary to firstly reduce the
size of the MRI images into 128 × 128 for the case of mild
AD. Furthermore, all the collected MRI images (including
the resized MRI images) are segmented into white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF) by
the HMRF-EM algorithm [36].

Normally, large amount of training samples is preferable to
train deep neural networks. However, the number of training
samples is limited in our study. Hence, in the process of
training data preparation, we adopt the data augmentation
technique to expand the training samples. Moreover, instead
of using the entire images as input, we take the large image
patches with the size of 64 × 64 as input. The detailed
information of preparing the training data is elaborated as
follows:

(1) First, each paired images (PET image, MRI image
and its corresponding label map) were flipped from left to

right, and then from top to down. Thus, we expand the
samples from 36 pairs to 144 pairs which include 120 pairs
for the case of normal control and 24 pairs for the case of
mild AD.

(2) Next, for all image pairs obtained in the step (1),
we crop the entire image without overlap into large image
patches with size of 64 × 64, and thus increase the
training samples from 144 pairs to 2016 pairs, where
1920 pairs were cropped from the images with normal
control, and 96 pairs were cropped from the images with
mild AD.

2) PARAMETERS’ SETTINGS
In the training stage, the network was trained using the Adam
optimizer with an initial learning rate of 0.0002 and a mini-
batch size of 10 over 100 epochs. The number of training
iterations is set to 100. λ1 = λ2 = 1, λ3 = 0.5. c = 0.9,
where c is a label value as shown in (6).

3) COMPARED METHODS
For the purpose of validating the performance of our
proposed method, the following five state-of-the-art
methods are used to compare with our method: the
IHS combined with retina-inspired models (IHS-Retina)
method [5], the non-subsampled shearlet transform (NSST)
method [10], the low-rank sparse dictionaries learn-
ing (LSDL) method [11], the nonparametric density
model (NDM) method [14], and the convolutional neural
networks (CNNs) method [22].

4) EVALUATION METRICS
It is usually difficult to assess the fusion performance only
via visually subjective evaluation. Therefore, it is necessary
to choose some quantitative metrics to objectively evaluate
the performances of different fusion methods. In this paper,
we adopt the following four commonly used metrics to eval-
uate the performances of different methods: the entropy (EN)
[37], the average gradient (AG) [38], the spectral discrepancy
(SD) [5], and the QAB/F [39]. The definitions of these four
metrics are sequentially presented as follows:

EN is mainly used to measure the amount of information
contained in the fused image. Mathematically, EN is formu-
lated as follows:

EN = −
∑L−1

i=0
P(i) log2P(i), (7)

where L denotes the number of gray scale, and it is 256 in our
experiments. P(i)(i = 0, 1, . . . ,L − 1) is the occurring prob-
ability of the pixels with the gray scale i(i = 0, 1, . . . ,L− 1)
in the fused image. Normally, the larger EN is, the richer
information is contained in the fused image, and the better
performance is achieved by the fused method.

AG usually reflects the clarity of the fused image, and is
mainly used to measure the spatial resolution of the fused

VOLUME 8, 2020 6373



J. Kang et al.: Fusion of Brain PET and MRI Images Using TA-cGAN With Joint Loss

FIGURE 4. Fusion results for a case of normal control. (a) MRI image; (b) PET image; (c) Result using IHS-Retina; (d) Result using NSST;
(e) Result using LSDL; (f) Result using NDM; (g) Result using CNNs; (h) Result using proposed method.

image. Formally, AG is defined as follows:

AGk =
1

(M − 1)(N − 1)

×

M−1∑
x=1

N−1∑
y=1

√
( ∂Fk (x,y)

∂x )2 + ( ∂Fk (x,y)
∂y )2

2
,

k = R,G,B, (8)

where Fk (x, y)is the pixel value of the fused image at position
(x, y). R, G, B are the three components of the fused image
with the size of M × N . In this paper, M = N = 256
for the case of normal control, and M = N = 128 for the
case of mild AD. Simply, the larger AG is, the higher spatial
resolution fused image has.

SD is mainly used to measure the spectral (color) quality
of fused image. Mathematically, SD is expressed as follows:

SDk =
1

M · N

M∑
x=1

N∑
y=1

|Fk (x, y)− Ok (x, y)|

k = R,G,B, (9)

where Fk (x, y) and Ok (x, y) are the pixel values of the fused
image and the original PET image at position (x, y), respec-
tively. The meanings of R, G, B and M , N are same as those
of (8). A small SD indicates a good fusion result. In other
words, smaller AD indicates that the color of the fused image
is closer to that of the original PET image.
QAB/F is mainly used to measure the edge preservation

from the source images during the process of fusion. QAB/F

is mathematically defined as follows:

QAB/F =

M∑
x=1

N∑
y=1

(QAF (x, y)ωA(x, y)+ QBF (x, y)ωB(x, y))

M∑
x=1

N∑
y=1

(ωA(x, y)+ ωB(x, y))

,

(10)

where A and B denote the two source images, and F rep-
resents the fused image. QAF (x, y) and QBF (x, y) are the
edge preservation values. ωA(x, y) and ωB(x, y) are the
weights. QAF (x, y) and QBF (x, y) are weighted by ωA(x, y)
and ωB(x, y), respectively. Usually, a larger QAB/F means a
good fusion result.

B. EXPERIMENTAL RESULTS WITH VISUAL AND
STATISTICAL ANALYSIS
To demonstrate the advantage of our proposed method in
terms of fusion effect, in this section, the proposed method
is compared with other five competitive methods on two
aspects: subjectively visual evaluation and objectively quan-
titative assessment.

1) SUBJECTIVELY VISUAL EVALUATION
To qualitatively compare the fusion performances of the pro-
posed method with those of the other five state-of-the-art
fusion methods mentioned in the section IV. A., we visually
demonstrate the fusion results for two cases of PET and MRI
images, i.e., the case of normal control as well as the case of
mild AD. Subsequently, we analysis the fusion results from
two aspects, i.e., the structural details extraction from the
original MRI images and the color fidelity preservation from
the original PET images.

Fig. 4 shows the fusion results using different fusion meth-
ods for a case of normal control. Similarly, the fusion results
achieved by different fusion methods for a case of mild
AD are displayed in Fig. 5. Note that, for easily observ-
ing the differences among the fused images resulted by the
different methods, the regions marked by the red rectangles
are enlarged and displayed under their corresponding fused
image, as shown in Fig. 4 and Fig. 5.

From Fig. 4, it can be seen that the LSDL method fails
to preserve the anatomical details [Pointed by the top white
arrow as shown in the close-up region of Fig. 4 (e)] from the
original MRI image; the anatomical structure [Pointed by the
top white arrow as shown in the close-up region of Fig. 4 (c)]
is blurred by the IHS-Retina method; Both the NDM method
and the CNNs method retain the anatomical structures more
or less [Pointed by the top white arrows as shown in the close-
up regions of Figs. 4 (f) and (g), respectively] from the orig-
inal MRI image. In contrast, both the NSST method and the
proposed method successfully integrate the structure details
from the original MRI image to the fused images [Pointed
by the top white arrows as shown in the close-up regions of
Figs. 4 (d) and (h), respectively]. Nevertheless, the anatom-
ical structure resulted by the proposed method is clearer
than that of the NSST method [Pointed by the right-down
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FIGURE 5. Fusion results for a case of mild AD. (a) MRI image; (b) PET image; (c) Result using IHS-Retina; (d) Result using NSST; (e) Result
using LSDL; (f) Result using NDM; (g) Result using CNNs; (h) Result using proposed method.

white arrows as shown in the close-up regions
of Figs. 4(h) and (d), respectively].

From Fig. 5, it can be observed that both the NSST method
and the LSDL method blurred the structural details [Marked
by the white circles as shown in the close-up regions of
Figs. 5(d) and (e), respectively] coming from the original
MRI image; The IHS-Retina method and the NDM method
preserved the structural details [Marked by the white cir-
cles as shown in the close-up regions of Figs. 5(c) and (f),
respectively] more or less from the original MRI image.
By contrast, both the CNNs method and the proposed method
well retained the anatomical structures [Marked by the white
circles as shown in the close-up regions of Figs. 5(g) and
(h), respectively] from the original MRI image. Nevertheless,
the anatomical structure resulted by the proposed method
is closer to the MRI image than that of the CNNs method
[Pointed by the top white arrows as shown in the close-up
regions of Figs. 5(h) and (g), respectively].

Moreover, in terms of the ability to preserve color fidelity
from the original PET image, from Fig. 4, it can be seen that
the LSDL method resulted a serious color distortion [See the
close-up region of Fig. 4(e)]; The color in the fused images
produced by the NDMmethod and the CNNsmethod is much
lighter [See the blue parts of the fused images as shown in the
close-up regions of Figs. 4 (f) and (g), respectively] than that
of the original PET image. Compared with the NDMmethod
and the CNNs method, the IHS-Retina method preserve the
color information better [See the blue part of the fused image
as shown in the close-up region of Fig. 4 (c)] from the original
PET image. In contrast, the NSST method and the proposed
method successfully preserve the spectral color information
from the original PET image [See the blue parts of the fused
images as shown in the close-up regions of Figs. 4(d) and (h),
respectively]. Nevertheless, compared the red color in the
fused image [See the red part of the fused image as shown
in the close-up region of Fig. 4(d)] generated by the NSST
method, the red color in fused image [See the red part of the
fused image as shown in the close-up region of Fig. 4(h)]
produced by the proposed method is closer to that of the
original PET image.

Similarly, as shown in Fig. 5, we can also see that the LSDL
method seriously distorted the spectral color information

[See the blue part as shown in the close-up region of
Fig. 5(e)]; both the IHS-Retina method and the NDMmethod
preserve the color information more or less [See the blue
parts as shown in the close-up regions of Figs. 5(c) and (f)]
from the original PET image. By contrast, the NSST method,
the CNNsmethod and the proposedmethod preserve the color
information well [See the blue parts as shown in the close-
up regions of Figs. 5(d), (g) and (h)] from the original PET
image. However, for one thing, the NSST method seriously
distorted the structural details [Marked by the white circle
as shown in the close-up region of Fig. 5(d)] in the MRI
image; for another, the clarity of the anatomical structure
resulted by the CNNs method is worse than that of the
proposed method does [Pointed by the top white arrows
as shown in the close-up regions of Figs. 5(g) and (h),
respectively].

In summary, comprehensively considering both the struc-
tural details extraction from the original MRI images and
the color fidelity preservation in the original PET image,
we can conclude that the proposed method achieves the best
fusion results in terms of visual quality than other five fusion
methods.

2) OBJECTIVELY QUANTITATIVE ASSESSMENT
To quantitatively compare the fusion performance of the pro-
posed method with those of the competitive fusion methods,
we investigate the statistical results of different fusion meth-
ods for fusing two types of PET and MRI images, i.e., the
images of normal control (NC) and the images of mild AD.
In our study, four popular-used objective metrics i.e., EN,
AG, SD and QAB/F , are exploited to validate the fusion per-
formance of different methods. The statistical results in terms
of EN, AG, SD and QAB/F are tabulated in Table 1, Table 2,
Table 3, and Table 4, respectively. Note that, the best perfor-
mance is highlighted in bold.

From Table 1, we can see that the proposed method ranks
the first place in terms of EN, i.e., it achieves the largest aver-
age value of EN over all fused images including the case of
normal control and the case of mild AD. This fact implies that
the fused images resulted by our proposed method contain
more information including spectral colors and anatomical
structures. The reason for this is mainly due to incorporating
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TABLE 1. Quantitative comparison of different image fusion methods in
terms of EN.

TABLE 2. Quantitative comparison of different image fusion methods in
terms of AG.

TABLE 3. Quantitative comparison of different image fusion methods in
terms of SD.

TABLE 4. Quantitative comparison of different image fusion methods in
terms of QAB/F .

the spectral loss as well as the structural loss into the loss
function as shown in (3).

Similarly, From Table 2, it can be observed that our pro-
posed method achieves the largest value of AG across both
the normal control images and themild AD images. This indi-
cates that the fused images produced by our proposed method
have higher spatial resolution than those images generated by
other competing methods.

Again, from Table 3, we can observe that our proposed
method achieves the smallest average value in terms of SD.
Thismeans that comparedwith other fusionmethods, the pro-
posedmethod preservesmore spectral color information from
the original PET images. In other words, the spectral colors
of the fused images generated by the proposed method are

FIGURE 6. Quantitative comparison between no tissue label conditioned
model and the tissue label conditioned model, in terms of EN, AG, SD, and
QAB/F , respectively. Note that the NC denotes the case of normal control,
and the Mild AD denotes the case of mild Alzheimer’s disease (AD).

closer to that of the original PET images. The main reason
for this is due to incorporating the spectral loss into the loss
function as shown in (3).

Also, from Table 4, it is clearly that the proposed method
ranks the first place in terms of QAB/F . In other words, the
proposed method obtains the highest average value of QAB/F .
This reflects that compared with other fusion methods, our
proposed method has stronger ability to preserve edge details
from the source images, i.e., PET and MRI images.

Overall, from aforementioned four tables, we can conclude
that the proposed method achieves the best fusion results
in terms of quantitative assessment than other five fusion
methods. Specifically, the images fused by the proposed
method are more informative, clearer. Moreover, our pro-
posed method can produce the fused images with less color
distortion and more structural details.

C. EFFECTIVENESS OF LABEL CONDITION
In our proposed method, TA-cGAN, both the generatorG and
the discriminator D are conditioned on the tissue label map
generated via segmenting the MRI image into white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF).
To verify the contribution of the tissue label condition to per-
formance improvement, we perform comparison experiments
on two cases of data using the label conditionedmodel and the
model without label condition, respectively. Fig. 6 visually
illustrates the experimental results using two models in terms
of previously mentioned four evaluation metrics, i.e., EN,
AG, SD and QAB/F .
As shown in Fig. 6, we can find that the tissue label

conditioned model performs better on two cases of image
fusions than the model trained without label condition.

This fact proves that the tissue label extracted from the
MRI image is really helpful for improving the fusion perfor-
mance in this study.
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V. CONCLUSION
In this paper, we propose a novel tissue-aware conditional
generative adversarial network called TA-cGAN for fusing
the brain PET and MRI images. In our proposed method,
both the generator G and the discriminator D are conditioned
on the tissue label map generated from the MRI images.
In addition, adversarial loss, spectral loss, and the structural
loss are incorporated to capture both the spectral colors from
the original PET image and the anatomical structures from
the original MRI image. Extensive experiments demonstrate
that our proposed TA-cGAN outperforms the state-of-the-art
fusion methods both in visual perception and in quantitative
assessment. Specifically, the fused images generated by our
proposed method contain more spectral colors and include
more structural details than those images fused by other
competing methods. In the future, we will mainly focus on
improving the performance of the TA-cGAN via including
more cases of PET and MRI images, and extending TA-
cGAN to address the general problems of multi-modality
medical image fusions.
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