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ABSTRACT In the domain of computer vision, camera calibration is a key step in recovering the two-
dimensional Euclidean structure. Circles are considered important image features similar to points, lines,
and conics. In this paper, a novel linear calibration method is proposed using two separate same-radius (SSR)
circles as the calibration pattern. We show that the distinct pair of dual circles encodes three lines, two of
which are parallel to each other and perpendicular to the remaining line. When any two coplanar or parallel
circles degenerate to SSR circles, a solution can be found to recover another pair of parallel lines based
on the geometric properties of the SSR circles. Using the vanishing points obtained as the key helper for
determining the imaged circular points and the orthogonal vanishing points, we deduce the constraints on
the image of the absolute conic (IAC) and then employ it for complete camera calibration. Furthermore,
a closed-form solution for the extrinsic parameters can be obtained based on the projective invariance of the
conic dual to the circular points. Evaluations based on simulated and real data confirmed the effectiveness
and feasibility of the proposed algorithms.

INDEX TERMS Camera calibration, conic dual, image of circular points, parallel lines, SSR circles.

I. INTRODUCTION
Camera calibration is an essential task in computer
vision [1]–[3] because the intrinsic and extrinsic parameters
of the camera are essential for three-dimensional (3D) recon-
structions [4]–[6]. Given the rapid developments in modern
vision applications, it has become important to develop sim-
ple and high-efficiency calibration algorithms for completing
visual tasks. A number of calibration methods [7]–[9] have
been proposed in recent years. Conventional self-calibration
methods [10], [11] do not require any known space geom-
etry; instead, they only need a certain number of matched
image points between two or more images. However, these
methods are sensitive to noise and do not yield accurate
matching points. A sphere has isotropic visibility from any
view [12], [13]. Hence, calibration technology using only
a sphere as the pattern has been studied widely [14]–[16].
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Huang et al. [17] explored a new linear calibration algorithm
based on the properties of the common self-polar triangle
of sphere images. They found that, for two separate sphere
images, there exists a unique common self-polar triangle,
which can be determined from the generalised eigenvectors of
the two sphere images, with one of the vertices of the common
self-polar triangle being an infinity point. Consequently, three
sphere images can yield a vanishing line that can be used
to calibrate the camera. Zhang et al. [18] established the
relationship between the dual of the sphere image and the
dual image of the absolute conic (DIAC). That is to say,
the common pole-polar of the two sphere images is also
the pole-polar with regards to the image of the absolute
conic (IAC). Three sphere images can be used to completely
calibrate the camera based on these algebraic constraints on
the IAC. However, the size of the sphere, as well as the
distance from the sphere projection to the principal point,
may affect the calibration results. Recently, a conic, which is
a common and simple two-dimensional (2D) object, was used
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in calibration, given that conics play an important role similar
to points and lines and have more geometric information for
camera calibration [19], [20]. Ying and Zha [21] considered
two principal-axis-aligned (PAA) conics as the calibration
pattern and showed that if the eccentricity of one of the PAA
central conics is known, the two constraints on the IAC can be
obtained from the image of the PAA. On the other hand, if the
parameters of the PAA are not known, only one constraint on
the IAC can be obtained. Based on the geometric properties
of conics with a common axis of symmetry, Zhao [22] was
able to obtain a solution for recovering the line at infinity
and the symmetry axis, and also to deduce the constraints
for determining the two-dimensional (2D) Euclidean struc-
ture. However, these special conics are difficult to obtain in
practice.

In contrast, circles are available readily in daily life,
and can also be extracted with precision from images,
allowing for calibration with acceptable accuracy. Hence,
circles [23]–[25] have been widely employed for camera
calibration. For instance, Huang et al. [26] showed that there
are an infinite number of common self-polar triangles for
concentric circles; however, these common self-polar trian-
gles share a common vertex, and their opposite side lies on
the same line. An analysis of the algebraic properties of the
common self-polar triangle indicates that the common vertex
and its opposite side are the centre of the concentric circle
and the infinite line on the supporting plane, respectively.
Therefore, on the image plane, the image of the circle centre
and the vanishing line can be determined by the generalised
eigenvalue decomposition of the two concentric circles. Thus,
the IAC can induce good constraints. Finally, the camera
parameters can be extracted by decomposing the IAC. Chen
and Wu [27] described a novel approach for recovering the
common tangents of a circle-pair via the decomposition of
degenerate conics. Moreover, the vanishing line of the sup-
porting plane can be determined using two vanishing points
in the image plane. Huang et al. [28] found that any two
separating coplanar circles have a unique common self-polar
triangle. Specifically, one vertex of the common self-polar
triangle lies on the line at infinity. Given three separating
circle images, the vanishing line of the support plane can be
obtained, allowing the imaged circular points to be detected.

In this study, we employed two separate same-radius
(SSR) circles as the calibration pattern. Employing a similar
approach [29], Da et al. first obtained two pairs of con-
jugate complex intersections of two parallel circles. Next,
the imaged circular points were recovered based on their
quasi-affine invariance [30]. Owing to the tangent invariance
of the perspective projection, the common tangents of two
SSR circles and their intrinsic parameters were utilized to
determine the extrinsic parameters. However, they did not
provide a camera calibration method for estimating the intrin-
sic parameters. In addition, the equations for the computing
extrinsic parameters are highly complex. Accordingly, in this
study, we explored the geometric and algebraic properties
of two SSR circles. We determined that two SSR circles

encode three lines, two of which are parallel to each other and
perpendicular to the remaining line. Based on the geometric
properties of two SSR circles, it is possible to determine the
line at infinity. Subsequently, the conic dual to the circular
points can be recovered. Moreover, the planar homography
and the IAC can be estimated correspondingly. In this study,
we only used two SSR circles with unknown centres and
radii. The novelty of the study is that it provides new insights
about the geometric structures of two SSR circles based on
the camera calibration problem.

The remainder of this paper is organised as follows.
Section II briefly describes the projection model of the pin-
hole camera and the equation of the circle image. Section III
describes in detail the calibration algorithms proposed based
on the projective and geometric properties of two SSR circles.
Section IV presents the results of simulations and compares
them to those obtained using real data. Finally, Section V
summarises the main findings of the study.

II. PRELIMINARIES
In this section, we briefly review the camera imaging model
and the projection process of the circle.

A. MODEL OF PINHOLE CAMERA
In the world coordinate system Ow − XwYwZw, there exists
a space point M =

[
X Y 0 1

]T on plane OwXwYw, such
that the homogeneous coordinates of the corresponding point
on the image plane after a projective transformation are
m=

[
x y 1

]T. Hence, the relationship between them may
be written in the matrix form as follows:

λmm = K
[
R T

]
M, (1)

where λm is a nonzero scale factor and
[
R T

]
represents the

extrinsic parameter matrix. The upper triangular matrix,

K =

 fu s u0
0 fv v0
0 0 1

 ,
comprises the effective focal length fu, fv in terms of the pixel
dimensions along the u, v-axes on the image plane, skew
factor s, and principle point

[
u0 v0 1

]T.
Let the ith (i = 1, 2, 3) column of the rotation matrix, R,

be defined as ri. Then, (1) can be rewritten as follows:

λmm = K
[
r1 r2 T

]XY
1


i

, (2)

where H = K
[
r1 r2 T

]
i is the world-to-image

homography [22].

B. EQUATION OF CIRCLE IMAGE
We consider two SSR circles on the world plane as the
calibration target. Without loss of generality, the world coor-
dinate system, Ow − XwYwZw, is established on an arbitrary
point in space with Ow as the origin (see Fig. 1),where the
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FIGURE 1. Projection model from world plane to image plane.

supporting plane of the two circles, C1 and C2, is the world
plane, OwXwYw. Fig. 1 also shows the camera coordinate
system, Oc − XcYcZc, where another arbitrary point is set as
the origin,Oc;R and T are the rotation matrix and translation
vector, respectively, between theworld coordinate system and
the camera coordinate system.

Given a point M̄ =
[
X Y 1

]T on circle C1, the following
relationship holds:

M̄
T
C1M̄ = 0. (3)

Based on the above description, from (2), the image, m,
of M̄ should satisfy the following relationship:

λmm = K
[
r1 r2 T

]
M̄ = HM̄. (4)

Based on Fig. 1, let conic c1 be the projection of C1 on the
image plane,π , perpendicular to the Zc-axis. According to the
homogeneity of the projective transformation, image pointm
is on circle image c1, and the following relationship holds:

mTc1m = 0. (5)

As H = K
[
r1 r2 T

]
is an invertible matrix, the substi-

tution of (3) and (4) into (5) gives

λc1c1 = H−TC1H−1, (6)

where λc1 is a nonzero scale factor.
Similarly, if the conic c2 is the projection of the circle C2

on π , there is

λc2c2 = H−TC2H−1, (7)

where λc2 is a nonzero scale factor.

III. CALIBRATION METHOD
In this section, we discuss the properties of two copla-
nar or parallel circles and also show how to calibrate a camera
linearly based on two SSR circles.

A. PROPERTIES OF TWO COPLANAR OR
PARALLEL CIRCLES
Given two coplanar or parallel circles C1 and C2, we now
introduce their envelopes C∗1 and C∗2, which span the linear

FIGURE 2. Properties of two coplanar or parallel circles: three lines can
be obtained via generalised eigenvector decomposition, two of which are
parallel to each other and perpendicular to the remaining line.

family of circle envelopes, C∗ (β) [19]. The family has the
following form:

C∗ (β) = C∗1 − βC
∗

2, (8)

where β ∈ C, and the circle envelopes C∗1 and C∗2 are the
duals of the circle loci C1 and C2, respectively [31]. When
C1 and C2 are invertible matrices, C∗1 ∝ C−11 , C∗2 ∝ C−12 ,
where ∝ indicates equality up to a nonzero scale factor.
Consider the pencil of two dual (or line) conics,C∗1 andC

∗

2.
Then,C∗1−λC

∗

2 represents a conic that passes through all the
common tangents of C∗1 and C∗2 [32]. Therefore, the conic
familyC∗ (β) includes three members called degenerate con-
ics, which consist of point-pairs corresponding to the gener-
alised eigenvalues of

(
C∗1,C

∗

2

)
[22].

As shown in Fig. 2, all envelopes of conic family C∗ (β)
touch the four real tangents that are common to two dual conic
C∗1 and C∗2. Further, the degenerate members are the pairs
of the common points on the common tangent-pairs, namely,
(P1,Q1), (P2,Q2), and (P3,Q3), which satisfy the following
relationship:

C∗1 − βC
∗

2 = PQT
+QPT, (9)

where β is the generalised eigenvalue of
(
C∗1,C

∗

2

)
, which can

be determined by solving∣∣C∗1 − βC∗2∣∣ = 0. (10)

Proposition 1: In Fig. 2, assuming that C1 and C2 are two
coplanar or parallel circles, the dual circle-pair

(
C∗1,C

∗

2

)
encodes three lines Li(i = 1, 2, 3), which consist of degener-
ate members (Pi,Qi) of the circle pencilC∗ (β) and represent
three sides of the common self-polar triangle of circlesC1 and
C2, such thatL1 andL2 are parallel and perpendicular to the
other line, L3.
The proof of Proposition 1 is given in Appendix A.

B. TWO LINEAR CALIBRATION THEORIES BASED
ON TWO SSR CIRCLES
Based on the algebraic and geometric properties of the circle
family, it is easy to prove the following proposition:
Proposition 2: From images c1 and c2 of two SSR circles,

vanishing line l∞ can be obtained via generalised eigenvalue
decomposition.
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FIGURE 3. Recovery of parallel lines from model based on SSR circles.

FIGURE 4. Schematic diagram of vanishing line.

The proof of Proposition 2 is shown in Appendix B.
Proposition 3: There exist the images, c1 and c2, of the two

SSR circles on the image plane, π . Then, the imaged circular
points, vI and vJ , can be obtained.

Proof:Based on Proposition 2, we can obtain the vanish-
ing line, l∞, once the images, c1 and c2, of the two SSR circles
have been identified. This is because the vanishing line, l∞,
is the projection of the infinity line, L∞, on plane π1, and any
circle will intersect L∞ at the circular points, VIn and VJ.
As shown in Fig. 4, the vanishing line, l∞, intersects circle

image c1 at the imaged circular points, vI and vJ. Thus,
the following two equations can be obtained:{

vT1I c1v1I = 0

vT1I l∞ = 0,
(11){

vT1J c1v1J = 0

vT1J l∞ = 0.
(12)

Similarly, imaged circular points vI and vJ also lie on circle
image c2. Thus, two other equations can be obtained, as
follows: {

vT2I c2v2I = 0,

vT2I l∞ = 0
(13){

vT2J c2v2J = 0.

vT2J l∞ = 0
(14)

Theoretically, the same solutions to vI and vJ are obtained
from (11), (12), (13), and (14); however, they may differ

because of noise. Therefore, to obtain accurate results,
we take the average values of the solutions as the imaged
circular points, vI and vJ:{

vI = (v1I + v2I)
/
2.

vJ = (v1J + v2J)
/
2

(15)

�
Proposition 4: When the images of the two SSR circles,

c1 and c2, are known, a set of orthogonal vanishing points
(v1∞, v2∞) can be obtained.

Proof: As shown in Fig. 3, because the direction of lines
L1 andL2 is orthogonal to the direction of lineL3, the infinity
point, V1∞, on L1 and L2 and the infinity point, V2∞, on L3
constitute a set of orthogonal infinity points. According to
projective invariance, two lines, l1 and l2, intersect at van-
ishing point v1∞ (see Fig. 4). Vanishing point v2∞ can be
determined based on the intersection of vanishing lines l∞
and l3:

λv2v2∞ = l∞ × l3, (16)

where λv2 is a nonzero scale factor. �

C. DETERMINING EXTRINSIC PARAMETERS
In the Euclidean coordinate system, conic C∗∞ is a degen-
erate (rank 2) line conic, which consists of the two circular
points [31]. It is given in matrix form by

C∗∞ = VIVT
J + VJVT

I =

 1 0 0
0 1 0
0 0 0

 . (17)

For circles, C∗∞ is fixed not only under the scale and
translation transformations but also under the rotation
transformation [21].

Based on the definition of the dual conic C∗∞, we get the
following three properties of C∗∞ in any projective frame:
Property 1 [31]: C∗∞ has four degrees of freedom: a 3 ×

3 homogeneous symmetric matrix has five degrees of free-
dom; however, the constraint detC∗∞ = 0 reduces the degrees
of freedom by one.
Property 2 [31]: L∞ is the null vector of C∗∞. Because

the circular points are a pair of complex conjugate points,
vTI L∞ = vTJ L∞ = 0. Then,

C∗∞L∞ =
(
VIVT

J + VJVT
I

)
L∞ = 0 (18)

Property 3 [31]: Perpendicular lines L1 and L3 are conju-
gate with respect toVIVJ and satisfy the following condition:

LT
1C
∗
∞L3 = 0. (19)

Proposition 5: The images of the two SSR circles, c1 and c2,
provide enough constraints to compute the image, c∗∞, of the
conic dual to the circular points.

Proof: Given the images of the two SSR circles, c1 and
c2, vanishing line l∞ can be obtained from Proposition 2.
Further, the two lines, l1 and l3, that are the projections of
perpendicular lines L1 and L3, can also be computed from
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the generalised eigenvalue decomposition. Therefore, there
are enough constraints for estimating the image of C∗∞:{

c∗∞l∞ = 0.
lT1 c
∗
∞l3 = 0

(20)

�
Proposition 6: Once conic c∗∞ has been identified on the

projective plane, the extrinsic parameters of the camera can
be determined.

Proof: Under the point transformationm = HM, where
H = K

[
r1 r2 T

]
is world-to-image homography, conic C∗∞

transforms to c∗∞ = HC∗∞H
T. Actually, c∗∞ identified in an

image plane using the SVD decomposition can be written as
follows:

c∗∞ = U

 1 0 0
0 1 0
0 0 0

 . (21)

The homography is H = U up to a scale and translation
transformation. From (2), we have the following:

λhK−1H =
[
r1 r2 T

]
. (22)

Because rotation matrix R is an orthogonal matrix, the scale
factor, λh, can be determined. Then, from (22), we have

r1 = λhK−1h1
r2 = λhK−1h2,
r3 = r1 × r2
T = λhK−1h3

(23)

where hi(i = 1, 2, 3) is the ith column of H. Therefore,
after calibrating the camera using the images of two SSR
circles, extrinsic parameters

[
R T

]
can be derived from

homography H. �

D. ALGORITHM
In projective geometry, the two special points (the circular
points) on the infinity line play a vital role and have the
canonical forms VI =

[
1 i 0

]T and VJ =
[
1 −i 0

]T.
Obviously, both VI and VJ satisfy the following conditions:
VT
I VI = 0, VT

J VJ = 0. Hence, VI and VJ also lie on the
absolute conic (AC). If the imaged circular points are denoted
by vI and vJ, then the following relationships are satisfied:

vTI ωvI = 0, (24)

and

vTJ ωvJ = 0, (25)

where ω is the matrix form of the IAC. Because ω is a
3 × 3 symmetric matrix with five degrees of freedom, and
the imaged circular points, vI and vJ, are a pair of complex
conjugate points, only the real and imaginary parts of vI or
vJ separately can provide a constraint. Hence, we need at least
three pairs of circular points for determining the IAC.

Let us assume a pair of vanishing points, v1∞ and v2∞,
from two orthogonal sets of space parallel lines. Then, points

v1∞ and v2∞ are conjugate with respect to the IAC [31].
In other words,

vT1∞ωv2∞ = 0. (26)

Because ω only has five degrees of freedom, it can be esti-
mated if at least five pairs of orthogonal vanishing points are
known. However, in general, for all the orthogonal vanishing
points on a plane, only two sets of orthogonal vanishing
points are linearly independent [31]. Hence, there are at least
three sphere images for estimating ω.

Based on the above discussion, the proposed camera cali-
bration algorithms can be summarized as follows:

Step 1. Take n (n ≥ 3) images of two SSR circles at dif-
ferent orientations, and extract the pixel coordinates of two
conics on each image. Next, fit the coefficients of the two
conics, cnj (j = 1, 2), using the least squares method [35].
Step 2. Using (27), compute the generalised eigenvectors

lni of the conic-pairs, (cn1, cn2), on each image.
Step 3. Determine line ln3 from the generalised eigenvec-

tors; this is the only line having two intersection points with
both cn1 and cn2. Furthermore, the vanishing points, vn1∞,
vn3∞, and vn4∞, on the world plane, πn1, can be obtained
using Proposition 2.

Step 4. Obtain vanishing line ln∞ on plane πn1 using (41).
Further, estimate the images of the circular points, vnI and vnJ,
on the conics, cn1 and cn2, from (11)−(15). Next, compute
the two pairs of orthogonal vanishing points, vn1∞ and vn2∞,
based on the pole-polar relationship.

Step 5. Determine the IAC, ω, from the constraint equa-
tion, that is, (24) or (26), of the IAC and then determine the
intrinsic parameters K by Cholesky factorization and matrix
inversion for ω.

Step 6. Determine the extrinsic parameters of the camera,
Rn and Tn, as described in Section III.C.

IV. EXPERIMENTS
We performed a number of experiments using both simu-
lated data and real images to evaluate the proposed methods.
During the simulations, the sensitivity of the algorithms to
noise was tested. On the other hand, during the experiments
performed using real images, the camera pose was estimated
based on the obtained intrinsic parameters. In addition, the 3D
reconstruction results were analysed. In general, the imaged
circular points and orthogonal vanishing points are harmonic
conjugate [31]. However, in the experiments, we considered
which method to use based on the test performance, namely,
to determine whether the image of the absolute conic is pos-
itive definite. The proposed algorithms were compared with
other algorithms to evaluate their effectiveness and feasibility.
The calibration algorithms based on the images of the circular
points and the orthogonal vanishing points are denoted as ICP
and OVP, respectively. A previously reported algorithm [28]
that uses the common self-polar triangle of separate circles is
denoted as CST, while an algorithm [29] based on two similar
circles is denoted as TSC. Finally, an algorithm [27] that uses
circle-pairs with common tangents is denoted as CCT.
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FIGURE 5. Images of two SSR circles generated using simulated camera.

TABLE 1. Mean values and percentage errors of intrinsic parameters
determined based on synthetic data.

A. SIMULATIONS
Let the initial intrinsic matrix of the simulated camera be

K =

 800 0.2 320
0 880 240
0 0 1

 .
According to the proposed calibration algorithms, three
images of two SSR circles are enough for fully calibrating
the camera. Hence, we simulated three images of two SSR
circles, one of which is shown in Fig. 5.

In the case of each image, the Canny edge detection opera-
tor [36] was used to extract 200 data points on the conic image
of the two SSR circles. Next, the conic coefficients were
determined using the least squares method. Furthermore,
we performed 500 independent experiments and determined
the average values and percentage errors of the intrinsic
parameters recovered using the five approaches; the values
are listed in Table 1. It can be seen from the results that
ICP performed better than TSC and CCT in estimating the
intrinsic parameters; however, its accuracy was slightly lower
than that of CST.

Moreover, the performance of ICP as well as those of CST,
TSC, and CCT were analysed in the presence of noise. For
this, 200 pixel points on each circle image were corrupted
with zero-mean Gaussian noise with different square devia-
tions, σ (ranging from zero to three pixels). The noisy points
were then fitted to obtain the circle images. For each noise
level (σ ), we performed 500 independent trials using the five
algorithms and computed the mean values of the intrinsic

TABLE 2. Runtimes (in seconds) of five algorithms (ICP, OVP, CST, TSC,
AND CCT).

parameters over each run, as shown in Figs. 6(a)−(e). The
accuracy of estimating the intrinsic parameters decreased
with the increase in the noise level, σ . However, the decreases
in the case of ICP, OVP, CST, and CCT were similar; this
may be owing to the fact that the four algorithms are linear
calibration algorithms with stronger antinoise characteristics,
whereas TSC is a nonlinear algorithm. In addition, CST
exhibited higher precision than ICP and OVP, because it uses
three circles, which can provide more constraints. However,
for the same noise level, ICP performed better than CCT
owing to the existence of a few degenerate cases when the
input was not restricted. Therefore, it was confirmed that ICP
and OVP are both feasible and effective.

The runtime for each method was calculated using
MATLAB (R2016b) on a 2.1 GHz Intel Core i3 processor.
The comparison results are presented in Table 2. It can be seen
from the table that the runtime of TSC was approximately six
times longer than that of ICP, possibly because TSC is a non-
linear approach and involves solving a quadratic polynomial
equation. Further, the runtime of CCT was approximately
four times longer than that of ICP because it involves the
decomposition of the degenerate conic. In addition, ICP was
slightly faster than OVP.

B. EXPERIMENTS USING REAL IMAGES
We also performed evaluations using actual images to fully
evaluate the proposed calibration algorithm. For this, we used
a test pattern consisting of two circles, both with a radius
of 45 mm, as shown in Fig. 7. Because CST requires three
separate circles for camera calibration, we did not use CST
in these tests. All the real images used were taken with an
industrial camera with an effective focal length of 16 mm.
Further, the clear image range was 250–350 mm, and the
image resolution was 1132×1029 pixels. In general, Zhang’s
approach [37] is used extensively owing to its high accuracy
and robustness. Therefore, using Zhang’s results as the true
values, the calibration errors of the four algorithms were
analysed. During the evaluation tests, a planar chessboard
with 9×9 feature points was used to calibrate the camera; the
horizontal and vertical spacing between any two adjacent fea-
ture points was 24 mm, and the target accuracy was 0.1 mm.

First, the Canny operator [36] was employed to detect
the edges of the circle images, as shown in Fig. 8; this
was done using the MATLAB toolbox. Moreover, the con-
ics were obtained using a least squares ellipse fitting algo-
rithm. In particular, there may be a case in which a circle
wholly or partially covers another when the camera is in a
critical position. For the contour with partial occlusion, a fast
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FIGURE 6. Comparison of sensitivities of five calibration algorithms for
different noise levels. Average values of fu, fv , u0, v0, s are plotted in
(a), (b), (c), (d), and (e), respectively.

FIGURE 7. Three images of (a), (b), (c) two SSR circles and (d), (e), (f)
chessboard obtained using digital camera.

FIGURE 8. (a)-(f) Edge detection of three circle images and three
chessboard images using Canny operator.

and effective method [15] was adopted to detect the circle
images automatically.

To ensure more stable and robust results, we used the four
algorithms to perform 100 independent tests and took the
average values as the final calibration results, which are listed
in Table 3. It can be seen from the table that the calibration
results for the four algorithms were similar and close to
those for Zhang’s method. Moreover, the values of the angle
between the abscissa and ordinate of the image coordinate
system, θ = a tan(fu/abs(s)) [31], as determined by ICP
and OVP were 89.9991◦ and 89.9940◦, respectively, whereas
that for Zhang’s method is 89.9977◦. These values are very
close to the ideal angle of 90.0000◦. This confirmed that the
proposed algorithms are effective and feasible within a certain
error range.

In addition, we explored the effect of changes in the radius
of the circles on the calibration accuracy. First, we used ICP
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TABLE 3. Results of calibration using actual images.

FIGURE 9. Image of SSR circles with different radii: (a), (b), (c), (d)
artificial circular targets, and (e) common circles.

and OVP with two SSR circles with different radii varying
from 5 to 100 mm; thereinto, to clarify the practicability of
the proposed approach, four common circles (cups, covers,
CDs and bowls) were taken by the digital camera, as shown
in Figs. 9 and 10. Then, for each radius, we performed

FIGURE 10. Edge detection of different SSR circles using Canny operator:
(a), (b), (c), (d) artificial circular targets, and (e) common circles.

500 independent trials and computed the average relative
error between the calculated intrinsic parameters and their
true values. As the performances for fu and fv, u0, and v0
are similar, we show the data for fu, u0, and s, as shown
in Fig. 11. It can be seen from the figure that the relative
errors of the intrinsic parameters decreased significantly with
the increase in the radius of the circles. It is possible that the
larger the radius of the circle in the fixed position, the larger
the projection is. Hence, more contour points can be obtained,
resulting in a more accurate conic fitting.

For further comparison, we first extracted the angular
points of the chessboard in Fig 8. In addition, based on the
epipolar geometric constraints [38], 3D reconstruction was
performed using the camera parameters listed in Table 3; the
results are shown in Fig. 12.

Furthermore, we analysed the relative positioning
error [39] between the reconstructed angular points. In the
case of the world coordinate system, the relative positioning
error refers to the error between the distances of every
two neighbour reconstructed points and that of the actual
target angular points. For each method, we performed 100
independent trials, and computed the mean values of the
relative positioning errors over each run. The results are
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FIGURE 11. Relative error of recovered parameters for different circle
radii: (a) ICP and (b) OVP.

TABLE 4. Mean values of relative positioning errors in horizontal and
vertical directions (mm).

TABLE 5. Average angle (degree) of any two lines in parallel and
orthogonal directions.

shown in Table 4, which shows that ICP and OVP exhib-
ited satisfactory reconstruction results within the acceptable
scope.

Finally, we explored the parallelism and orthogonality
of the reconstructed lines. First, we fitted the lines of
each row and column in Fig. 12 using the Hough trans-
form [40]. We calculated the average angle of any two recon-
structed lines in the parallel or orthogonal direction, as shown
in Table 5. The angles in the parallel and orthogonal direc-
tions between any two reconstructed lines based on ICP were
0.67◦ and 89.23◦, respectively, whereas those in the case
of OVP were 0.82◦ and 88.64◦, respectively. The angles by
Zhang’s methodwere 0.41◦ and 89.67◦. These values are very
close to 0◦ and 90◦, respectively, which are the ideal angles
in Euclidean space.

FIGURE 12. Results of 3D reconstruction of angular points using (a) ICP,
(b) OVP, (c) TSC, (d) CCT, and (e) Zhang’s method.

V. CONCLUSION
In this paper, we proposed a novel, stable, and easy to
implement technique for calibrating cameras. This technique
requires a 2D calibration pattern, which includes two SSR
circles. By analysing the properties of the two SSR circles,
we discovered that three lines can be obtained via generalised
eigen decomposition. Specifically, one of the lines is a line
joining the two circle centres whereas the other two lines
are a set of parallel lines perpendicular to it. Based on the
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symmetry of the two SSR circles, the other set of parallel
lines can be recovered. Subsequently, the imaged circular
points and the orthogonal vanishing points can be com-
puted simultaneously. These allow one to determine the con-
straint on the IAC. Consequently, camera calibration can
be completed using at least three images of the two SSR
circles. Based on these results, we proposed two calibration
methods, which exhibited satisfactory results. Simulations
and tests performed using actual images confirmed that the
proposed calibration algorithms are robust and effective.
Further, by using these methods, one can avoid having
to solve quadratic equations, which are sensitive to noise.
In addition, in contrast to conventional calibration methods
such as Zhang’s approach using a planar grid pattern, the pro-
posed methods do not require any high-precision calibration
objects or objects with a particular structure and need only
two SSR circles with unknown radius and position. Addi-
tionally, for Zhang’s approach, point matching is vital and
needs to be done manually in camera calibration. Moreover,
based on the proposed method the camera can be fully lin-
early calibrated using only generalised eigen decomposition
without having to make any assumptions, such as zero skew
or a unitary aspect ratio.

As is the case for most calibration methods that use cir-
cles, we have not provided a solution for the distortion
coefficients. It is difficult to solve lens distortion compared
with the chessboard because the correspondence between the
apparent contour point and its projection is undetermined.
Furthermore, the calibration process will fail in some critical
cases. First, when the line connecting the images of the two
circle centres passes through or is close to the principal point,
the calibration results are poor, because the vanishing point
estimated from a set of parallel lines is close to the infinity
point on the image plane. Second, when the camera is located
at some extreme angles, the SSR circle images cannot be
captured. However, in practice, we can easily ensure precise
calibration, especially when we have at least three images of
two SSR circles. In the future, we will explore an approach
for overcoming the above-mentioned difficulties and will
focus on developing a unified calibration method based on
circles with the same radii, which will include tangent circles,
intersecting circles, and enclosing circles.

APPENDIXES
APPENDIX A
Considering two 3×3 symmetric matricesC1 andC2, which
represent two separate circles. Algebraically, the problem
of computing the generalised eigenvectors of matrix pair(
C∗1,C

∗

2

)
is that of determining the eigenvectors of matrix

C2C∗1, namely, the generalised eigenvalue decomposition of
two circles C1 and C2:

C∗1L = βC
∗

2L, (27)

or (
C∗1 − βC

∗

2
)
L = 03×3, (28)

or (
C2C∗1 − βI

)
L = 03×3, (29)

where I is an identity matrix. Equations (8) and (28) suggest
that the generalised eigenvector, L, of

(
C∗1,C

∗

2

)
is the null

space of circle family C∗ (β) consisting of the base circles,
C∗1 and C

∗

2. On substituting (28) into (9), we get :(
C∗1 − βC

∗

2
)
L = PQTL+QPTL = 03×3. (30)

Because (Pi,Qi) are the degenerate point-pairs of circle
familyC∗ (β), as shown in Fig. 2, the generalised eigenvector,
Li, with eigenvalues λi(i = 1, 2, 3) comprises the intersection
points, Pi and Qi, of the common tangent of C1 and C2:

λiLi = Pi ×Qi, (31)

where λi is a nonzero scale factor.
If there exists a common self-polar triangle between C1

and C2, the vertex, X, and the side, L, of the triangle should
satisfy the following relationship [33]:

X = C∗1L, (32)

X = βC∗2L. (33)

Simultaneously solving (32) and (33) gives the following
equation:

C∗1L = X =βC∗2L. (34)

Equations (27) and (34) suggest that the generalised eigen-
vector,Li, of

(
C∗1,C

∗

2

)
includes the three sides of the common

self-polar triangle of C1 and C2.
In Fig. 2, one of the sides, L3, of the common self-polar

triangle is formed by the intersection point, P3, of the internal
common tangent and the intersection point, Q3, of the exter-
nal common tangent. Hence, L3 is the line passing through
the centres of two circles [34]. Because the common pole of
L1 with respect toC1 andC2 is also the intersection point,E2,
of L2 and L3, according to the polarity principle [31], line L1
also passes through the common pole ofL3 with respect toC1
and C2, namely, an infinity point, V1∞, on plane OwXwYw.
Similarly, V1∞ is also on L2.
Given that one of the intersection points, D of line L3 and

circleC1, and the tangent Ld at that point are shown in Fig. 2.
Based on the properties of circles, because L3 is the diameter
of C1, we have Ld⊥L3. Moreover, Ld is also the polar of
D with respect to C1. Therefore, Ld passes through V1∞.
Moreover, L1 and L2 also pass through V1∞. As per the
properties of projective spaces, Ld ‖ L1, Ld ‖ L2 [31], so
L1⊥L3, L2⊥L3.

APPENDIX B
As shown in Fig. 3, if there exist two SSR circles C1 and C2
on the support plane, on the basis of Proposition 1, the three
sides Li(i = 1, 2, 3) of the common self-polar triangle of
C1 and C2 can be obtained from the generalised eigenvalue
decomposition of matrix pair

(
C∗1,C

∗

2

)
. Because two lines,
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L1 and L2, are parallel to each other and perpendicular to the
remaining line, L3, L1 and L2 intersect at infinity pointV1∞:

λV1V1∞ = L1 × L2, (35)

where λV1 is a nonzero scale factor, and × denotes the outer
product.

It can be seen from Fig. 3 that L1 exhibits real intersection
points M1 and M2 with respect to C1 and only complex
intersection points with respect to C2. Similarly, L2 exhibits
real intersection points N1 and N2 with respect to C2 and
only complex intersection points with respect to C1. Based
on the definition of intersecting points, these points, namely,
M1,M2,N1,N2, could be determined using the following
equations: {

LT
1 x = 0

xTC1x = 0,
(36){

LT
2 x = 0

xTC2x = 0.
(37)

The geometric properties of two SSR circles imply that
there is an isosceles triangle 1O2N1N2. Furthermore, it is
not difficult to prove that line U1, which consists of points
E1 and N1, is parallel to line V1, which consists of points
E2 andM2. Similarly, lineU2 passing through two points, E2
andM1, is parallel to line V2 passing through two points, E1
and N2.
Based on the property of invariance for projective pro-

jections, the generalised eigenvectors of
(
C∗1,C

∗

2

)
would be

preserved under the projective transformation from C2C∗1 to
HTC2C∗1H

−T. As shown in Fig. 4, there exist two conics, c1
and c2, on the image plane, π , representing the images of
the two SSR circles. In this case, the generalised eigenvector
of
(
c∗1, c

∗

2

)
corresponds to three lines, namely, l1, l2, l3. Let

l1 intersect c1 at two points, m1 and m2. Further, let it also
intersect l3 at point e1. Similarly, let l2 intersect c2 at two
points, n1 and n2. Further, let it also intersect l3 at point e2.
From the above discussion, vanishing point v1∞ lies on l1
and l2:

λv1v1∞ = l1 × l2. (38)

Line u1 is formed by connecting e1 and n1, while line v1 is
formed by connecting e2 andm2. Furthermore, the vanishing
point, v4∞, on u1 and v1 can be obtained as follows:

λv4v4∞ = u1 × v1, (39)

where λv4 is a nonzero scale factor.
Hence, line u2, which consists of m1 and line v2, which

consists of e1 and n2 intersect at the vanishing point, v3∞,

λv3v3∞ = u2 × v2, (40)

where λv3 is a nonzero scale factor.
Then, the vanishing line, l∞, can be determined from v1∞

and v3∞:

λll∞ = v1∞ × v3∞, (41)

where λl is a nonzero scale factor.
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