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ABSTRACT One key challenge in facial expression recognition (FER) is the extraction of discriminative
features from critical facial regions. Because of their promising ability to learn discriminative features,
visual attention mechanisms are increasingly used to address pattern recognition problems. This paper
presents a novel multiple attention network that simulates humans’ coarse-to-fine visual attention to improve
expression recognition performance. In the proposed network, a region-aware sub-net (RASnet) learns
binary masks for locating expression-related critical regions with coarse-to-fine granularity levels and
an expression recognition sub-net (ERSnet) with a multiple attention (MA) block learns comprehensive
discriminative features. Embedded in the convolutional layers, the MA block fuses diversified attention
using the learned masks from the RASnet. The MA block contains a hybrid attention branch with a series
of sub-branches, where each sub-branch provides region-specific attention. To explore the complementary
benefits of diversified attention, the MA block also has a weight learning branch that adaptively learns the
contributions of the different critical regions. Experiments have been carried out on two publicly available
databases, RAF and CK+, and the reported accuracies are 85.69% and 96.28%, respectively. The results
indicate that our method achieves competitive or better performance than state-of-the-art methods.

INDEX TERMS Facial expression recognition, multiple attention network, binary masks.

I. INTRODUCTION
Expression, a common form of nonverbal communication,
conveys important cues for emotional states and intentions.
Automatic facial expression recognition (FER) has many
practical applications, such as in improving human-computer
interaction and remote education [1]–[4]. However, irrelevant
facial information (e.g., hair and hat) and complex back-
ground clutter create problems when using automatic FER.
In contrast, human observers can pay selective attention to the
expression-related parts of a facial image while screening out
the irrelevant components, resulting in high-level FER perfor-
mance.Motivated by the attentionmechanism,manymethods
have been developed to improve how FERmodels distinguish
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between different expressions and eliminate or suppress irrel-
evant information.

For FER task, traditional methods use detection techniques
to reduce the negative effects of irrelevant information.
For example, some methods that detected expression-related
facial components (e.g., AUs [5]) and small patches of
interest (e.g., eyes, nose, and mouth [6], [7]) aimed to
extract accurate features from critical facial regions. Several
recent FER studies [8]–[10] used deep networks to mimic
the attention mechanism and achieved excellent FER per-
formance. However, two of these studies [8], [9] simply
adopted single-level (i.e., global-level) attention without any
consideration for diversified saliencies, which may distract
attention to expression-irrelevant components. Li et al. [10]
adopted region-level attention to examine the importance of
different regions, but this method cannot learn discriminative
features.
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Therefore, there is a pressing need for a FER method with
the following properties:

1. It should automatically locate critical facial regions,
thereby eliminating the influence of irrelevant facial
parts.

2. It should fuse diversified attention to effectively learn
discriminative features.

Therefore, this paper presents a novel multiple attention
network that mimics coarse-to-fine attention in humans to
improve FER performance. The proposed network consists
of two sub-nets. The first is a region-aware sub-net (RASnet)
that learns masks to automatically locate critical regions with
different scales and positions, and it is trained using ground-
truth binary masks generated with relatively few landmarks.
The second is an expression recognition sub-net (ERSnet)
that learns discriminative features, and it is supported by a
multiple attention (MA) block built with the learned masks.
Specifically, the MA block contains a hybrid attention branch
with a series of sub-branches, and each sub-branch special-
izes attention for one region by combing region attention
and channel attention. The former aims to locate critical
regions, and the latter to learn region-specific discriminative
features. In addition, to aid in feature discrimination, the MA
block also has a weight learning branch, which learns weight
vectors and then adaptively fuses the learned features from
different regions.

The main contributions of our work are as follows:

1. A novel multiple attention network that mimics coarse-
to-fine visual attention to learn discriminative features
from expression-related regions is proposed to improve
FER performance.

2. The proposed framework includes two sub-nets: a RAS-
net to automatically locate critical regions and an
ERSnet to learn discriminative features from these crit-
ical regions.

3. A MA block is included to address region-specific
attentions and fuse various attentions. The MA block
is embedded in the convolutional layers to help the
ERSnet focus on learning discriminative features from
expression-related regions.

4. Experiments were conducted on two databases to
demonstrate that the proposed approach achieves
competitive performance compared to state-of-the-art
methods.

II. RELATED WORK
Our method shares several similarities with other FER meth-
ods and deep attention models. In general, deep learning
models have shown promising results, which inspired us to
mimic the attention mechanism in a deep learning framework
to achieve better FER performance.

A. FACIAL EXPRESSION RECOGNITION METHODS
FER is a widely studied topic in the pattern recognition field
because it has a wide range of practical applications. A key

component of a FER system is the extraction of expression
feature. Because facial images often present diverse back-
grounds and facial attributes, accurate discriminative feature
extraction is crucial to optimizing FER performance.

To boost FER performance,manymethods focus on critical
facial parts, such as the eyes, nose, and mouth. One method
[7] divided each facial image into several local patches and
then explored the common patches shared by all expres-
sions and the expression-specific ones usingmulti-task sparse
learning to extract expression features. Similarly, Happy
et al. [6] detected salient facial patches, and then extracted
and concatenated features from these patches for training
classifiers.

Many studies focused on improving facial representation.
To learn mid-level representations, Liu et al. [11] modeled
video images as spatial-temporal manifolds and then aligned
them using a universal manifold model. Compared to tradi-
tional methods, deep learning ones – such as convolutional
neural network (CNN) and recurrent neural network (RNN)
– have more potential in feature learning and classification
due to their end-to-end learning capabilities, and this is sup-
ported by many pattern recognition tasks that have included
expression recognition [10], [12]–[15].

To improve expression discrimination, Li et al. [14]
proposed a deep locality-preserving CNN (DLP-CNN),
in which locality-preserving loss was developed to keep
locality closeness. For the same purpose, Cai et al.
[16] proposed island loss that can minimize the intra-
class distances of deep features while maximizing their
inter-class distances. Liu et al. [17] jointly optimized
(N+M)-tuplet cluster loss and softmax loss in their FER
framework, and they proposed using an identity-aware hard-
negative mining strategy to achieve an identity-invariant
property.

Jung et al. [18] presented a joint fine-tuning strategy with
a deep framework. This framework contained two different
CNNs: one for extracting temporal appearance features from
video sequences and another for extracting temporal geome-
try features from landmark trajectories. The outputs of these
two networks were combined using weighted summation,
and the whole framework was trained via a joint fine-tuning
method.

In literature [19], the authors constructed a deeper FER
network by utilizing inception layers, and they aimed to
expand the depth and width of the network without increasing
its computational cost. Fan et al. [20] learned deep fea-
tures from more crucial components. They cropped different
local facial regions, and then used the paired images (i.e.,
the cropped region and the whole image) to train multiple
CNN classifiers for ensemble. Zhao et al. [21] embedded a
feature selection mechanism into an advanced deep archi-
tecture to filter irrelevant features and emphasize correlated
features. Liu et al. [15] proposed an AU-aware deep networks
(AUDN), and they used a feature selection method in the
middle layer to select AU-aware receptive fields to learn
expression features.
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FIGURE 1. An overview of the proposed framework, which contains two sub-nets. The first one is a
region-aware sub-net that learns various region masks automatically, and the architecture and
configuration are shown in table 1. The second one is an expression recognition sub-net containing a
backbone network and a MA block, and the configuration is shown in figure 2.

B. DEEP ATTENTION MODEL
When people observe objects, they tend to focus selec-
tively on the critical parts rather than the whole object to
obtain important clues. Inspired by this, some visual atten-
tion models adaptively emphasize the important information
while suppressing the irrelevant information, and they have
achieved impressive results for addressing problems in pat-
tern recognition, computer vision, and other fields [22]–[25].

Several recent FER studies [8]–[10] have mimicked
the attention mechanism with a deep learning framework.
Sun et al. [9] integrated visual attention into CNN to learn
features of interest. However, their method learn only global
attention from the whole images, thus is prone to distract
attention to irrelevant components. This may lead to negative
outcomes for expression recognition methods.

Jang et al. [8] mimicked human visual fixation over time
to generate sequences for still-images, and they extracted
the CNN features of these sequences to train an RNN for
recognizing facial attribute, including expression. However,
this method customize attention in fixed positions, which
may lead to poor generalization since these positions do
not consider the differences of expressions and individuals.
Notably, different expressions reflect different facial feature
movements, showing different saliencies. In addition, differ-
ent individuals may express the same expression in different
ways. For example, when expressing happiness, one person
may smile with an open mouth, while another may smile
with a closed mouth. Furthermore, mimicking attention in
input [8] may limit the representation learning capability of
the deep network, because low-level semantics are messy.
Consequently, early attention inputs are prone to introducing
irrelevant information.

Li et al. [10] proposed Patch-Gated Convolution Neutral
Network (PG-CNN) for FER. They used landmark informa-
tion to extract small patches of interest, and embedded PG-
Units in their network to learn the weights for these patches

TABLE 1. Configuration parameters in the RASnet.

to obtain region-level attention, enabling their method to
be occlusion-aware. However, region-level attention can not
learn more discriminative features.

III. METHODOLOGY
To learn discriminative features, our CNN mimics visual
attention that accounts for the diversity of expressions and
individuals. Unlike other deep attention models, our model
fuses diversified attention that covers different granularities,
which improves its ability to learn comprehensive discrimi-
native features. Notably, fusing diversified attention helps the
model to avoid attention distraction and to focus on only the
most important facial information.

The overview of the proposed framework is shown in fig-
ure 1. It consists of a RASnet and an ERSnet. The RASnet
learns binary masks to automatically locate critical regions,
and the ERSnet performs feature learning and expression
recognition using the learned masks.

In pattern recognition tasks, full convolution networks are
often tasked with learning binary masks. One benefit is that
full convolution network can retain spatial information. But
when learning multiple binary masks where overlap exist,
a network may cause competitions between different masks
since spatial information is retained. To avoid this, we regress
the masks using fully connected (fc) layers at the bottom of
RASnet. The configuration parameters of RASnet are shown
in table 1. It contains three convolution (conv) layers and two
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FIGURE 2. A visualization of the MA block. It contains a hybrid attention branch and a weight learning
branch. The parameter settings are shown in the figure.

fc layers. Each conv layer is followed by a ReLu and aMPool.
The last fc layer is followed by a reshape layer and a sigmoid
layer.

The ERSnet contains two main components: a backbone
and a MA block. The backbone adopts VGG16 architec-
ture (including five conv blocks and three fc layers), but
the number of the neuron in the last fc layer is changed to
the expression class number. The MA block is embedded
between the fourth and fifth conv blocks of the backbone to
benefit from two aspects. First, the network has learnt deep
features with high-level semantics at the fourth block, and
the embedded MA block is consequently able to learn more
accurate features. Second, the outputted feature maps from
the fourth block have an appropriate scale, which makes it
appropriate to implement multiple attention at this location.

The MA block is designed with consideration for three
important factors. First, the network should learn features
from critical regions while filtering out as many irrele-
vant facial features as possible. Second, the network should
mimic coarse-to-fine attention to fuse diversified saliencies.
Third, the learned salient features should be fused adaptively.
For differently categorized expressions, the discriminative
features should show significant differences. For expres-
sions in the same category, individual differences should be
minimized.

To address these factors, the MA block contains two
branches designed to fuse diversified attention: a hybrid
attention branch and a weight learning branch, as shown
in figure 2. The hybrid attention branch contains N sub-
branches, and each sub-branch learns region-specific atten-
tion for its current facial part. Each sub-branch starts with
a region attention layer, which inputs the learned region
masks from the RASnet and the shared convolutional fea-
tures from the fourth conv block of ERSnet. The following
is a 1 × 1 convolution layer that serves as a buffer, aim-
ing to learn diversified representations for different regions.
Next, a Squeeze-and-Excitation (SE) [29] block is imple-
mented to learn region-specific channel attention. Mean-
while, the weight learning branch learns the weights for
different regions to adaptively fuse diversified discriminative
features. It contains five layers, and the first two layers reduce
the numbers of dimension and channel. The following layer

FIGURE 3. Example images of facial regions with different granularities.
From left to right are coarse-grained regions (i.e., the whole face),
middle-grained regions (i.e., eyes together with brows and mouth
together with nose), and fine-grained regions (i.e., left eye, right eye, left
mouth corner, and right mouth corner), respectively.

is a fc layer that transforms the input into a N -dimensional
weight vector. And the last two layers transform the weight
vector to a normalized probability vector.

A. REGION-AWARE SUB-NET
The RASnet learns masks for multiple critical regions.
To train the FER classifier, irrelevant facial parts are
filtered out using the learned masks. Taking an image
I as input, the RASNet predicts mask MN×A×B

=

[M1, . . . ,Mr , . . . ,MN ] for N regions, which can be denoted
as

M = σ (φ(g(� : I ))) (1)

where g(·) represents the convolutional and full connected
operations, and � represents all the parameters. g(·) outputs
a vector with length N ×A×B. φ denotes reshape operation,
and it produces N maps with size A × B, which is the same
with the inputted conv features from the MA block. σ is the
sigmoid function.

We obtain M by training the parameters of RASnet via
Euclidean loss. For one sample, the loss is computed by
formula (2):

Lm =
∑
r

∑
i,j

(Mr (i, j)− M̂r (i, j))2 (2)

where M̂ = [M̂1, . . . , M̂r , . . . , M̂N ] is the ground-truth
mask, and (i, j) is the element coordinate. For one batch,
the total loss is computed as follows:

LM =
1
K

K∑
k=1

Lkm (3)
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FIGURE 4. The eight selected facial landmarks as indicated on facial
images from RAF [14].

TABLE 2. The region settings.

where K is the batch size, and Lkm is the loss for the k-th
sample.

M̂ is generated using the following method.

1) GROUND-TRUTH MASK GENERATION
As suggested in some FER literatures [6], [7], the regions
around nose, eyes, and mouth are extremely useful for learn-
ing discriminative expression representations. For one image,
we select N = 8 regions (i.e., whole image, eyes together
with brows, mouth together with nose, left eye, right eye,
nose, left mouth corner, and right mouth corner), as shown
in figure 3. These regions provide coarse-to-fine granular-
ities. The whole face provides a coarse global view of the
face. Eyes together with brows provides an overall view of
the eyes, while left eye and right eye respectively provide
different local views. The mouth together with nose provides
an overall view of the middle and lower facial part, while
the nose, left mouth corner and right mouth corner provide
diversified local views for their respective facial parts.

The proposed method learns discriminative features by
fusing diversified attention that target these eight expression-
related regions. Eight facial landmarks (as shown in figure 4)
are used to generate ground-truth masks that guide the learn-
ing of RASnet.

On an original image with size (W ,H ), the coordinates for
the eight landmarks are denoted as l1, . . . , l8, respectively.
A region r ∈ {1, . . . ,N } is denoted by (x, y,w, h), where
(x, y) is the center coordinate and (w, h) is the size. We empir-
ically define the center coordinate and the size of each region,
as shown in table 2. In particular, for global views, we select
the region as the whole image.

The mask for the r-th region is denoted by M̂r , which is
the same size with the input conv features of the MA block.

M̂r is computed by the following formula:

M̂r (i, j) =


1, if λ(xr−0.5wr )≤ i ≤λ(xr+0.5wr )

and λ(yr−0.5hr )≤ j ≤λ(yr+0.5hr )
0, otherwise

(4)

where λ is the scale factor, which is used to adjust the size of
the mask to fit the input feature size ofMA block. Because we
embed this block between the fourth and fifth conv blocks of
the backbone, the value of λ is 1/16. We construct the masks
using formula (4) as supervision to train the RASnet.

B. EXPRESSION RECOGNITION SUB-NET
The ERSnet has a backbone that performs feature learning
and classification. The MA block fuses diversified atten-
tion to guide the discriminative expression feature learning.
In particular, the MA block first learns region-specific salient
features by combining region attention and channel attention
and then fuses the learned features to obtain comprehensive
discriminative representations. The benefits of our attention
mechanism are three-fold. First, the use of region attention
filters out irrelevant facial parts as much as possible, and
this greatly improves the robustness of our model to against
complex background variations. Second, the use of channel
attention improves the model’s ability to learn region-specific
feature saliencies, and this aids in learning discriminative
features. Third, fusing diversified attention enables the model
to adapt to different expressions and individuals.

1) HYBRID ATTENTION
The hybrid attention branch contains N sub-branches, and
each sub-branch specializes attention for one region. In each
sub-branch, the first layer filters irrelevant regions. The next
is a convolution layer that serves as a buffer, and it learns
diversified features for the current region from the shared
representations outputted by the fourth conv block. Region-
specific channel attention is implemented with a SE block.
The SE block includes squeeze and excitation operations.
The former squeezes global spatial information into a channel
descriptor using global average pooling. The latter captures
channel dependencies using the fc layer, ReLU and sigmoid.

V denotes the outputs of the fourth conv block of ERSnet.
The r-th sub-branch has inputs V and Mr . The outputs F for
the r-th sub-branch can be formulated as

F = f (V,Mr : �) = fscale(fSE (t : ω), t),

t = ω2(V⊗Mr )+ b2 (5)

where V ⊗ Mr denotes that each channel of V multiplies
Mr . ω2 and b2 are the convolutional filter weight and bias of
the buffer, respectively. t represents the outputs of these two
layers. fSE (·) denotes the squeeze and excitation operations
with parameter ω, and it outputs activation map that is the
same size with t. The final outputs F are obtained by rescaling
t with the activation map using a scale operation fscale.
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2) MULTIPLE ATTENTION FUSION
The salient features vary because of the different granu-
larities considered. For example, global attention can learn
global saliency, while local attention can learn fine saliency.
Therefore, fusing multiple attention helps the model effec-
tively learn discriminative features. However, because differ-
ent saliencies contribute differently to expression recognition,
prematurely fusing them may impact performance. Hence,
the weight learning branch is built to learn the importance
of different regions before the fusion occurs.

The weight learning branch inputs the features from the
fourth conv block, and outputs a N -dimensional vector q =
[q1, . . . , qr , . . . , qN ]. Therefore, the outputs ofMA block can
be computed by the weighted sum of all the sub-branches:

F =
N∑
r=1

qr fr (6)

In this way, our network can adaptively learn comprehensive
discriminative features.

3) LOSS FUNCTION
We regard the FER task as a typical classification problem,
and denote the ground-truth expression label for the k-th
sample as a one-hot vector yk = [y1k , y

2
k , . . . , y

c
k , .., y

C
k ],

where C is the class number. The ERSnet is trained via cross-
entropy loss, which is defined as follows:

LE = −
1
K

K∑
k=1

C∑
c=1

yck log p
c
k (7)

where pck denotes the predicted probability of the c-th cate-
gory for the k-th sample.

C. TRAINING
It is empirically difficult to train the two sub-nets simultane-
ously because the ERSnet needs to encode high-level seman-
tics and the RASnet needs to only encode simple spatial infor-
mation. Hence, we use a two-stage training strategy. In the
first stage, the RASnet is trained end-to-end and ERSnet
does not update its parameters during training. In the second
stage, the ERSnet is trained while RASnet does not update its
parameters and serves as a mask generator for MA block.

IV. EXPERIMENT RESULTS
We evaluate the proposed method on two publicly avail-
able databases: RAF [14] and CK+ [26]. After obtaining
our results, we compared them with those of state-of-the-art
methods.

A. DATABASE
RAF is a widely used expression database that contains real-
world facial images with large variations in illumination,
occlusion, and background. Its 29,672 images are divided into
single-label and two-tab subsets. The first subset was used in
our experiment, and it contains 15,339 images (12,271 sam-
ples for training and 3,068 for testing). Each image is labeled

with one of seven emotional categories: anger, disgust, fear,
happiness, sadness, surprise and neutral.

CK+ database is collected in lab environment, and this
database was also used in our experiment. It contains
327 video sequences from 123 subjects. Each sequence is
labeled with one of seven expressions: 6 basic expressions
(anger, disgust, fear, happiness, sadness, surprise) and con-
tempt. In addition, each sequence displays the expression
from the neutral to the peak frame. We selected only the
last three frames of each sequence, resulting in 981 images.
For fair comparison with the existing state-of-the-art methods
[6], [15]–[17], [32], we adopted person-independent 10-fold
cross-validation protocol for the CK+ database. Specifically,
we arranged the IDs in ascending order and divided the
database into ten subsets using sampling interval 10. One
subset was used for testing, and the rest for training. The
average recognition accuracy measures performance.

Both the CK+ and RAF databases have provided land-
marks. In the experiments, we used affine transformation to
align the images according to the landmarks, and we then
cropped and resized the images to 224 × 224 resolution.
The ground-truth masks for training RASnet were generated
using eight landmarks (as shown in figure 4) provided by the
databases.

B. IMPLEMENTATION
Our method was implemented using Caffe on GTX 2080 Ti.
The dropout ratio, momentum, weight decay, and batch size
were set to 0.5, 0.9, 0.0005, and 42, respectively. We began
with a learning rate of 0.001. For the RAF database, the learn-
ing rate was decreased by multiplying it with 0.1 after each
5K iterations, and the total training number was set to 20K.
For the CK+ databases, the learning rate was decreased
by multiplying it with 0.1 after each 0.5K iterations, and
the total training number was set to 1K. On both RAF and
CK+ databases, a popular pre-trainedmodel VGG-Face [27],
trained for the related task of facial recognition, was used to
initialize the five conv blocks of the backbone of ERSnet.
Xavier was used to initialize the remaining layers.

C. PERFORMANCE COMPARISON ON THE RAF DATABASE
Table 3 shows the performance comparison between our
method and state-of-the-art methods. We used VGG as back-
bone, and we fine-tuned it on RAF database and reported
the result in table 3 as a baseline. In addition, we imple-
mented a single attention model, referred to as VGG+SE,
for comparison. This model was built by embedding a SE
block between the fourth and fifth conv blocks ofVGG. These
two baseline methods were initialized with VGG-Face. For
comparing with the methods without using transfer, we also
reported the results of training from scratch. In general, using
appropriate transfer can greatly improve performance.

VGG+SE obtained an accuracy of 83.28%, indicating
a slight performance degradation compared to VGG fine-
tuning. One possible reason is that the SE block in VGG+SE
model learns attention from the whole image, thus making it
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prone to dispersing attention to irrelevant facial components,
as demonstrated in figure 5.

Li et al. [14] released the RAF database and proposed a
deep locality-preserving CNN (DLP-CNN) for FER tasks.
To improve the discriminative ability of the deep features,
locality-preserving loss was developed by minimizing intra-
class local scatters. The authors directly extracted features
from the DLP-CNN to train a SVM classifier, and they
obtained an accuracy of 74.20%.

Li et al. [10] used landmark information to extract small
patches of interest and embedded PG-Units into their CNN,
aiming to improve occlusion perception by learning the
weights for these patches. They adopted VGG16 as a base
and used the pre-trained model based on ImageNet dataset
for initialization. However, their network only learnt region-
level attention, and they obtained an accuracy of 83.27% on
this database.

Fan et al. [20] proposed a multi-region ensemble CNN
(MRE-CNN) framework. They cropped different local facial
regions and then used paired images (i.e., the cropped region
and the whole image) as the input to fine-tune VGG-Faces to
obtain multiple classifiers. In the inference stage, they made
an ensemble of these classifiers, resulting in an accuracy
of 76.73%.

FSN [21] embedded a feature selection mechanism into
an existing advanced deep architecture, i.e., AlexNet. The
mechanism used pre-defined masks to locate facial regions
and isolate relevant features. They used the pre-trained result
on the ImageNet dataset to initialize the five convolution
layers and then fine-tuned the whole network. This method
could not automatically learn masks, and finally obtained an
accuracy of 72.46%.

Ghosh et al. [2] fused individual expression, facial visual
attribute, and scene information in a deep network frame-
work for automatic group-level affect analysis. They trained
a capsule network on RAF database and obtained an accuracy
of 77.48% .

Our method obtained an accuracy of 85.82%, which is a
significant performance gain compared to the baselines VGG
fine-tuning and VGG+SE. Moreover, our method outper-
formed the state-of-the-art methods [10], [14], [20], [21].

Table 4 shows the confusion matrix of our method. Hap-
piness was easily distinguishable, with a high recognition
accuracy of 94.60%. Disgust and fear were the most difficult
to recognize, and they both had relatively low recognition
accuracies. Disgust was often misclassified as neutral, and
fear was often misclassified as surprise. This may be caused
by the fact that these expressions share many similar appear-
ance features.

1) VISUALIZATION
To get a better understanding of the proposed method, fig-
ure 5 compares the visualization results (i.e., grad-cam maps
and guided grad-cam maps [28]) between the proposed
method and the two baseline methods. VGG fine-tuning
and VGG+SE obtained messy attention as the class-specific

TABLE 3. Performance comparison on the RAF database.

TABLE 4. Confusion matrix for the RAF database (%).

activations dispersed to the background and other expression-
irrelevant facial components. In contrast, our model learned
from more explanatory regions that improved its FER accu-
racy, such as nose, mouth and eyes, as demonstrated in the
grad-cam maps. Besides, our model learned more accurate
features than the two baseline models, as demonstrated in the
guided grad-cam maps.

The class activations ofmultiple individuals for ourmethod
are shown in figure 6, where each row shows the same
expression. As can be seen, our method can learn discrimi-
native features from expression-related regions that vary with
individuals.

D. PERFORMANCE COMPARISON ON THE CK+ DATABASE
Table 5 reports our experimental results and shows the com-
parisons with the state-of-the-art methods on CK+ database.
VGG+SE outperformed VGG fine-tuning. This is because
the CK+ database is collected in lab environment and has
few background variations. Our method achieved the high
accuracy of 96.28%, and this is because fusing diversified
attention enabled the model to learn more discriminative
features.

Notably, the proposed method outperformed other meth-
ods, including deep learning and traditional ones [6], [11],
[15], [16] that adopted the same person-independent 10-fold
cross-validation protocol for the CK+ database. Liu et al.
[11] proposed STM-ExpLet to learn mid-level expression
representation, and obtained accuracy of 94.19%.AUDN [15]
used a feature selection method to detect AU-aware receptive
fields, and this mechanism was embedded into the CNNs
to learn high-level features. But this method is prone to
receiving expression-irrelevant fields because the true AUs
are not always detected. Cai et al. [16] proposed using island
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FIGURE 5. Visualization comparison for the three methods on RAF
database. From left to right, the guided grad-cam maps correspond to the
proposed method, VGG fine-tuning, and VGG+SE, respectively. From top
to bottom, the maps correspond to surprise, fear, disgust, happiness,
sadness, anger and neutral, respectively.

loss to train CNNs, which ideally reduced the intra-class
similarities and increased the inter-class similarities of the
deep features, and they obtained an accuracy of 94.35%.
Happy and Routray [6] extracted features from salient facial
patches for expression recognition. To explore active facial
patches, they detected facial landmarks via a coarse-to-fine
detection method. But their method is still easy to intro-
duce noise, thus leading to relatively poor results. Ouellet
[33] implemented real-time emotion recognition using con-
volutional network features. Zeng et al. [34] compressed
features by principal component analysis, and then trained
an established deep sparse autoencoders (DSAE), obtain-
ing the accuracy of 95.79%. Meng et al. [31] proposed
an identity-aware convolutional neural network (IACNN),
where expression-sensitive contrastive loss and identity-
sensitive contrastive loss were built to achieve identity-
invariant expression recognition. Zhao et al. [30] proposed
a Peak-Piloted Deep Network (PPDN). PPDN used the deep
features of a peak expression to supervise the intermediate
feature learning of a non-peak expression. PPDN obtained
accuracy of 97.30% when recognizing 6 basic expressions.

FIGURE 6. Class activations of multiple individuals on RAF database.
From top to bottom, the expressions correspond to surprise, fear, disgust,
happiness, sadness, anger and neutral, respectively.

Liu et al. [17] proposed (N+M)-tuplet clusters loss, and
developed an identity-aware hard-negative mining scheme
and an online positive mining scheme to learn identity-
invariant features for expression recognition. Yang et al. [32]
proposed De-expression Residue Learning (DeRL), which
extracted the expressive component generated by the gen-
erator of GAN for recognition. Both of these two methods
[17], [32] used data augmentation to augment database and
obtained high accuracy. Other methods [8], [10] also adopted
attention mechanism in their deep learning networks, and
they obtained accuracies of 97.23% and 97.03%, respec-
tively. However, to test a new sample, these two methods
require extra facial landmark information. The method in
[8] first needs to detect landmarks to generate visual fix-
ation sequences as inputs. PG-CNN [10] needs to extract
small patches using landmarks in the middle layer of the
network for attention. In contrast, without using landmarks,
our method can automatically predict masks for different
regions, which then support the multiple attention for the
expression recognition.
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TABLE 5. Performance comparison on the CK+ database.

TABLE 6. Confusion matrix for the CK+ (%).

Table 6 shows the confusion matrix for our method. It can
be observed that happiness and disgust were perfectly rec-
ognized. Surprise was also easier to distinguish, and it had
accuracy above 98%. Fear was relatively hard for the network
to recognize, and it was easily misclassified as happiness.

1) VISUALIZATION
Figure 7 shows the guided grad-cam maps for the proposed
method and the two baseline methods. Although the images’
backgrounds contain few variations, the two baseline meth-
ods still easily learned irrelevant features, such as hairstyles
and facial outlines. Moreover, these two baseline methods
seemed to treat different facial regions equally. And they both
learnt features from the whole face for different expressions,
without emphasizing the differences between expressions. In
contrast, our method intensified the important regions while
suppressing the less important ones, and learnt more accurate
features, resulting in a better performance.

Figure 8 shows the class activations of multiple individuals
and multiple expressions. Because in CK+ database, each
individual has only 4∼5 expressions or less that are labeled,
so we present the visualizations for part expressions. CK+
database contains posed expression from different individ-
uals in a tightly controlled environment. But for the same
expression, each individual’s performance still has some dif-
ferences. In figure 8, each column shows that our method

FIGURE 7. Visualization comparison for the three methods on CK+

database. From top to bottom, the guided grad-cam maps correspond to
the proposed method, VGG fine-tuning, and VGG+SE, respectively. From
right to left, the maps correspond to anger, contempt, disgust, fear,
happiness, sadness, and surprise, respectively.

FIGURE 8. Class activations from multiple individuals and multiple
expressions on CK+ database. Each row presents different expressions
from one individual, and each column presents the same expression.

can learn different discriminative regions for different indi-
viduals. As can be seen from each row, different expressions
have different activations. The visualization indicates that our
method can learn variant attention for different expressions
and individuals.

V. CONCLUSION
To improve the extraction of discriminative features for FER
tasks, we have presented a novel multiple attention network
that learns facial representations by simulating coarse-to-fine
visual attention. The proposed network includes a RASnet
and an ERSnet. The RASnet learns binarymasks for automat-
ically locating critical regions, and the ERSnet learns discrim-
inative features by embedding aMA block that fuses multiple
attention from the critical regions. The proposed method has
been evaluated on two publicly available databases, RAF and
CK+, and it has achieved accuracies of 85.69% and 96.28%,
respectively. Comparisons with state-of-the-art methods ver-
ify that the proposed method achieves competitive or better
FER performance.
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