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ABSTRACT The inspiring increase in the Internet-enabling devices has influenced health industry due
to the nature of these devices where they offer health related information swiftly. One of the prominent
characteristics of these devices is to provide physicians with effective diagnosis of sensitive diseases. Internet
of Medical Things (IoMT) is a means of connecting medical devices to computing nodes with the help of
Internet for affording real-time communications between patients and clinicians to understand the interaction
of human protein complexes. A secure and correct protein complex prediction plays an important job in
perceiving the principal method of various cellular determinations and to elucidate the functionality of
different un-annotated proteins. Different experimental schemes have been evolved to accomplish this task,
however, these schemes have high error rates and are not efficient in terms of time, cost, privacy, and
security. To tackle these limitations, numerous computational models have been developed that consider
a protein complex as a dense sub-graph and utilize some basic topological properties such as density and
degree statistics as a feature set for protein complex prediction. Different kinds of sub-graph structures, e.g.,
ring, star, linear, and hybrid have also been found in Protein-Protein Interaction Network (PPIN), therefore,
more advance topological properties may be helpful to predict these structures. Moreover, the amino acid
sequence of protein determines its formation, thus, the sequence information is important for predicting
the interacting property among proteins in a secure way. In this study, we have computed basic as well as
advance topological features by considering the interaction network of human protein complexes in the oMT
environment. In addition, biological features, i.e., discrete wavelet coefficients, length, and entropy from
amino acid sequences of proteins have been computed. The supervised learning method based on association
rules such as Partial Tree (PART) and Non-Nested Generalized Exemplars (NNGE) are trained to identify
human protein complexes on the basis of integrated topological and biological properties. The 10-fold cross
validation is exercised to measure the proposed methods. Experimental results show that association rule
learners with integrated features outperform other complex mining algorithms, i.e., probabilistic Bayesian
Network (BN), and Random Forest, in terms of accuracy and efficiency in addition to provide privacy.

INDEX TERMS Discrete wavelet transform, NNGE, PPI, PART, privacy, security.

I. INTRODUCTION

Internet of Medical Things (IoMT) is a perception of linking
computing nodes to medical equipment with the help of Inter-
net [1]-[3]. To supervise various lingering ailments, different
equipment are used in hospitals and healthcare units to protect
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patients’ privacy in a secure way [4], [5]. Nevertheless, with
technological evolution, IoMT is becoming more feasible to
set up a convincing control over a range of tools for working
together in identifying and/or curing numerous health related
issues [6]-[9]. In IoMT applications, safeguarding the secu-
rity of patients’ information, systems, and equipment in addi-
tion to the privacy of information and information processing,
is critical [10]. While IoMT devices offer various aids,

VOLUME 8, 2020


https://orcid.org/0000-0002-2695-8546
https://orcid.org/0000-0002-7822-8983
https://orcid.org/0000-0002-8253-9709
https://orcid.org/0000-0001-8896-547X
https://orcid.org/0000-0001-5332-2685
https://orcid.org/0000-0003-3886-4309

M. Sikarndar et al.: loMT-Based Association Rule Mining for the Prediction of Human Protein Complexes

IEEE Access

they also foster life-threatening privacy and security issues.
One of the most prominent among different issues is the
secure identification of protein complexes. An organism is
composed of proteins, which are tiny particles or biological
molecules that are made up of amino acid residues. Proteins
are different from each other due to variations in amino
acid sequence determined by codon and which usually result
protein folding into a specific three-dimensional structure
that regulates its activity. Different molecular and biologi-
cal processes in an organism are mediated through protein
actions. Proteins interact with each other that result to the
formation of protein complexes, which perform different bio-
logical functions. A molecular interaction of several proteins
with one another at the same locality and time produces a
protein complex [11]. Protein complexes mediate different
types of functions within an organism, such as replication
of DNA, response to stimuli, catalysing metabolic reactions,
and molecules transportation to different locations within a
cell [12].

The complete elucidation of PPIN in an organism will
have important applications for science [13], for example,
protein complexes control the mechanism leading to diseased
and healthy states in an organism. Therefore, the molecular
basis of a disease can be elucidated from protein interaction
network, which helps in finding techniques for diagnosis,
treatment, and prevention of a disease. Due to these reasons,
elucidation of PPIN and protein complex identification is an
important goal in the BioNLP field [13]. Protein complex
identification is a challenging and the most important task in
post genome era. Some of the challenges involve in protein
complex detection are as follows:

« Protein-protein interaction data is noisy due to high rates
of false negative and false positive.

« A protein may be a participant of more than one com-
plex, i.e., protein complexes may overlap and involve in
different biological functions.

o The representation of a protein complex structure such
as clique, star, linear or hybrid.

Different experimental and computational methods have
been devised to undertake these challenges with maxi-
mum accuracy, however, there still exists a bottleneck. The
most preferable experimental methods are Tandom Affinity
Purification with Mass Spectrometry (TAP-MS) [14] and
Yeast to Hybrid (Y2H), but these methods have high error
rates and are not efficient in terms of time and cost [15].
To tackle these limitations, numerous computational models
have been developed that can be categorised into four groups,
i.e., agglomerative, clique finding, traditional graph cluster-
ing, and core attachment methods [16]. In agglomerative
methods, each single node or a sub-graph makes a cluster
at initial stage where these clusters are merged and grow
under certain limitations. The two examples of agglomerative
methods are MCODE [17] and DPClus [18]. The MCODE
selects a seed protein as a primary cluster based on high
weight and then increases it. Likewise, the DPClus augments
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clusters that start from the seed nodes that are selected based
on high weights. The examples of Clique finding methods are
CFinder [19], CMC [20], and ClusterONE [21]. The CFinder
identifies functional modules in the PPIN by utilizing the
clique percolation method and detects the k-clique percola-
tion cluster. The CMC predicts the complexes by generating
maximal cliques on the basis of weights assigned to protein
pairs. These weights are assigned through the iterative scor-
ing method in CMC. Finally, from the generated maximal
cliques, highly cohesive clusters are merged or removed on
the basis of their interconnectivity. The ClusterOne method
augments the cluster on the basis of seed vertex and finds the
highly cohesive groups. The graph clustering methods use the
premises where a protein complex in the PPIN is subject to
a dense sub-graph. An example of traditional graph cluster-
ing method is Markove clustering (MCL) [22]. The Markov
clustering splits the PPIN into several non-overlapping dense
sub-graphs or clusters by simulating random walks within the
graph. An architecture, named COACH [23], is proposed for
complex detection, which is based on the premises where a
protein complex has the core-attachment. The basic idea of
COACH is such that it selects a sub-graph as a core, and then
augments it.

All these methods are unsupervised learning methods and
most of them use only a few basic topological features
of the PPIN. These methods neither utilize the available
known true complexes as a prior knowledge nor the avail-
able biological information of proteins (biological features).
If the available known true complexes and biological fea-
tures are used as a prior knowledge, the protein complex
identification from a PPIN can be improved. However, some
supervised learning techniques are proposed by different
researchers [ [11], [16], [24]], which also utilize some bio-
logical features. [24] introduced a supervised learning tech-
nique, known as probabilistic Bayesian Network model, for
the detection of protein complexes. In their proposed model,
biological and topological features of the PPIN have been uti-
lized. [16] proposed another supervised learning technique,
i.e., Regression model, which is used to help in filtering and
growing cliques using topological features. [11] proposed
the Random forest by using topological feature vector for
prediction of protein complexes. Shi et al. [25] introduced
a semi-supervised learning method based on neural network
that uses biological and topological feature vectors. The
DyCluster [26] method utilized the gene expression data for
detection of a protein complex. A number of computational
approaches along with their frameworks and feature sets
are depicted in Table 1. Results from prior research exhibit
that the use of supervised learning methods with biological
and topological features are more effective to detect pro-
tein complexes than using unsupervised learning techniques
with only topological features [27]. The above mentioned
supervised methods achieved adequate accuracy rates for the
identification of complexes, however, these rates require to
be surpassed because the more accurate they are the more
reliable they will be, and more likely to be used by biologists
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TABLE 1. Overview, features, and frameworks of existing methods.

Name Category Topological Features

Biological Features Framework

MCode [17] Agglomerative

density statistics,

Clustering coefficient statistics, degree statistics,

NA Unsupervised

DPCLUS [18] Agglomerative Degree statistics

NA Unsupervised

CFinder [19] Clique finding graph size,

Clustering coefficient statistics,

weighted density statistics

NA Unsupervised

CMC [20] Clique finding Density statistics

NA Unsupervised

ClusterONE [21] Clique finding

Cohesiveness based on edge weights NA

Unsupervised

MCL [22] Graph clustering | Density statistics

NA Unsupervised

COACH (23] Core attachment

neighborhood affinity

Degree statistics, density statistics,

NA Unsupervised

Degree statistics,
density statistics,
edge weight statistics,
Probabilistic Bayesian NA
Network [24]

first eigenvalues,

node size, degree correlation statistic,
clustering coefficient statistics,
topological coefficient statistics,

density w.r.t. weight cutoffs,

NA Supervised

Degree statistics,
graph density,

Regression model [16] | NA
Graph density,

edge weight statistics,
degree statistics,
topological change

For unweighted network:

clustering coefficient statistics
For weighted network:

NA Supervised

Density statistics,
distance statistics,

Random forest [11] NA . -
singular values,

degree statistics, vertex betweenness statistics,

clustering coefficient statistics,
edge betweenness statistics, weighted features

NA Supervised

Graph density,
Feed-Forward
Neural network [25] NA

topological change

edge weight statistics, degree statistics,
clustering coefficient, topological coefficient,

Protein length,

. . . mi- IVis
polarity of amino acids Semi-supervised

DyCluster [26] NA NA

Biclustering used on

. Supervised
gene expression data

and scientists. Hence, keeping in view the significance of
supervised learning models and various topological and bio-
logical feature vectors for the detection of protein complexes,
we propose the association rule learners— supervised learning
models, i.e., PART and NNGE, to detect protein complexes
from a PPIN of humans by incorporating the basic and
advanced topological and biological feature set of proteins.

The remainder of this paper is organized in the follow-
ing fashion: Section II describes the material and methods
including the extraction of topological and biological fea-
tures and proposed methodology. Section III presents the
evaluation scores in terms of f-measure, recall, and precision
for the proposed models in contrast to two state-of-the-art
techniques, i.e., Bayesian network and Random forest, on the
basis of 10-fold cross validation. Nevertheless, the evaluation
scores indicate that the proposed methods outperform the
mentioned two techniques.

Il. MATERIAL AND METHODS

In PPIN, for the classification of protein complexes, rather
depending only on one topological structure, we have
considered numerous factors for the protein complex
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prediction task. It can be observed from Table 1 that most of
the previous methods consider only basic topological prop-
erties, i.e., degree and density, and predicts a few sub-graph
topologies such as clique, line, and spoke. Besides, other
topological structures of protein complexes, i.e., ring, ring
with clique, clique with star, clique with tail, star with ring,
and star with tail, may also be found in the PPIN, as shown
in figure4a and figure 4b. To predict these structures, it is evi-
dent to incorporate advance topological properties, for exam-
ple, eccentricity, radiality, neighborhood connectivity, topo-
logical coefficient, and stress along with density, size, clus-
tering coefficients, and degree statistics in order to achieve
higher accuracy. Therefore, we have computed basic as well
as advance topological properties of protein complexes for
predicting complexes of varying sub-graph topologies. Apart
from topological structure considerations, we also consider
the biological structure formation of proteins. As the bio-
logical, physical, and chemical properties differentiate the
complex from the noncomplex [24], the characterization of
protein complexes from protein biological behaviors may be
accurate enough. Keeping in view the effect of biological
behaviors of proteins on complex formation, we compute
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FIGURE 1. Flowchart of the proposed framework.

three types of biological features, i.e., DWT, length, and
entropy. As the amino acid sequence is responsible for dif-
ferent biological behaviors in a complex, we utilize it to
compute these biological features. Previously, only a few
methods were used for biological properties to detect com-
plexes, which achieved higher accuracy measures in contrast
to those that only used topological properties of the PPIN.
Inspired by these features, in this study, we compute and
integrate advance biological and topological features, and test
the proposed association rule-based learners, i.e., PART and
NNGE, to classify human protein complexes in the IToMT
environment. The obtained results reveal that the proposed
framework outperforms Bayesnet and Random Forest tech-
niques with respect to time complexity and accuracy. The
proposed system is represented through a flowchart in Fig 1.

A. TOPOLOGICAL FEATURES

A protein complex has proteins where these proteins interact
with each other, therefore, it can be represented as a graph.
A protein itself can be characterized as a node where the
interaction between two proteins can be characterized as an
edge. As a protein complex is subject to a graph, we use
topological structure properties as a feature set for a protein.
We treat the protein complex as an undirected graph and
compute different topological properties as a feature set.
The computed topological features for the classification of
protein complexes are i) average shortest path length, ii) topo-
logical coefficient, iii) neighborhood connectivity, iv) clus-
tering coefficient, v) degree, vi) eccentricity, vii) closeness
centrality, viii) radiality, ix) stress, and x) betweenness
centrality [28].

B. BIOLOGICAL FEATURES

The biological features are extracted through amino acid
sequence data of a gene. Amino acids play central roles
and act as the structure blocks of genes. These features are
computed because the mutation in an amino acid sequence
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may lead to a certain disease and genes causing a certain dis-
ease may have similar amino acid sequence structures. This
feature set consists of discrete wavelet features in addition
to length and entropy, which are used in [28]. Each of these
features is described in the following subsections.

1) DISCRETE WAVELET TRANSFORM

The discrete wavelet features are computed via DWT. The
DWT is used due to its interesting properties such as
compact support, dilating relation, and vanishing moment.
In brief, the compact support is the guaranty of localization
of wavelets, which means that managing a data region using
wavelets does not disturb the data out of that region. The
vanishing moment is the guaranty of distinction between
the important and non-important information, while pro-
cessing wavelet and dilating relation guaranty the speedy
wavelet algorithms [29]. It is the requirements of hierarchical
representation and manipulation, localization, efficiency, and
feature selection in different tasks in data mining, which have
made wavelets a very powerful tool.

The DWT is a method that is used in digital signal pro-
cessing for investigating digital signals in time and frequency
domains. Since a protein amino acid sequence is an alphabet-
ical sequence, this can be treated as a signal by converting
it into numerical values. These values can be utilized to
obtain a useful feature vector for the identification of protein
complexes by applying the DWT. Therefore, to compute the
discrete wavelet features, the frequency parameter is used for
the numeric conversion of protein sequences on the basis of
premises that proteins in a same complex have less or more
similar sequence information. Thus, the frequency of each
amino acid is counted from a protein amino acid sequence.
A vector of length 20 is obtained for a single protein and
then a DWT is applied on this vector. The DWT returns
the detailed and approximation coefficient values for each
protein. The detailed and approximation coefficient values
are utilized as a feature set. Proteins belonging to the same
complex got similar values for the detail and approxima-
tion coefficients, as compared to proteins belonging to other
complexes. Previously, DWTs were used for solving differ-
ent problems such as deoxyribonucleic acid (DNA) cluster-
ing [30], G-protein-coupled receptor classes prediction [31],
and protein analysis. However, the DWTs have not been used
in any study so far. Thus, we are the first to use it for the
prediction of protein complexes.

2) LENGTH

The length is the frequency of each amino acid in a protein
sequence, which is determined by counting the frequency of
each amino acid in a protein.

3) ENTROPY
The entropy is computed as
20
E=—Y (pi x logapi) (1

i=1
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where p; is the probability of amino acid in a sequence.
The entropy calculates the information disorder and a protein
belonging to the same complex may have less information
disorder in comparison to proteins belonging to other com-
plex classes. For this reason, the entropy is utilized in the
proposed framework.

C. MODEL CONSTRUCTION

Association rule based learners have a potential power of
prediction that execute efficiently on a number of features.
Nonetheless, we have modeled protein complexes by using
association rule learners, i.e., PART and NNGE. Firstly, topo-
logical features vector has been computed using the binary
interaction data of proteins that participate in a complex.
Secondly, biological features vector is examined by ana-
lyzing the proteins amino acid sequences. The computed
topological and biological feature vectors are integrated and
divided into train and test sets by applying 10-fold cross
validation. The training set is utilized by PART and NNGE
to generate rules for the prediction of protein complexes. The
working of PART and NNGE is described in the following
subsections.

a: PART

A variety of approaches has been investigated for inducing
a rule set to make predictions. Among these, two dominant
approaches are C4.5 [32] and RIPPER [33]. Both approaches
generate a generalized set of rules for the classification pur-
pose. In addition, both of them involve two steps for inducing
the generalized set of rules. In the first step, they induce an
preliminary rule set, while in the second step, these rules
are accustomed or abandoned via a comprehensive elevating
policy. For example, C4.5 produces an unpruned decision tree
and then transmutes it into a set of rules. A rule is produced
for each trail from parent-to-child node. Then, a rule-ranking
strategy is used to simplify each rule separately. Finally, rules
are deleted from the rule set till the rule set’s error rate
decreases on the training instances. The RIPPER works on
separate-and-conquer strategy for rule generation. It gener-
ates only one rule at a time and discards the instances covered
by this rule from the training set. It repeatedly derives new
rules until no more instance is left in the training set. A state-
of-the-art technique that combines the benefit of C4.5 and
RIPPER is PART [34], which implements the separate-and-
conquer scheme of RIPPER and combines it with C4.5—
a decision tree approach to avoid the global optimization
needed for rule generation. To create a rule, PART shapes a
restricted decision tree on the specified set of occurrences.
A rule is created from the built partial decision tree. The
leaf with the largest coverage is induced as a rule and the
created partial decision tree is discarded, which avoids global
optimization. The instances are also removed from the train-
ing set that are covered by the induced rule. This process
is repeated until no more instances left in the training set.
The motivation behind proposing PART for the prediction of
protein complexes is its simplicity. It does not require global
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optimization due to which its time complexity is reduced and
the performance becomes efficient [34].

Moreover, it is evident from the literature [11], [28] that
tree based approaches are gaining popularity for making
predictions. Thus, if PART- a hybrid approach that induces
a rule set on the basis of decision tree, is used, it may lead to
better prediction results. However, in this study, it is shown
that PART outperforms other existing approaches, i.e., Ran-
dom Forest— a tree base approach, and Probablistic Baysein
Network with respect to accuracy and time complexity.

b: NNGE

The NNGE is an instance based learner and hybrid approach
that combines the idea of Nearest Neighbor classifier with the
rule based classifier. It generates a set of generalized exem-
plars or hyper-rectangles. The generalized exemplars are a set
of instances that can be interpreted as a rule for classification
purposes. For generating a generalized example, it borrows
the distance function element from the nearest neighbor and
computes the similarity between the generalized example and
an example from the training set. It is not necessary that the
similarity between a hyper-rectangle and an example is alike,
i.e., it could be partial depending upon a certain distance
function. However, the distance function used by the NNGE
to compute the similarity is given in equation 2 [35].

n
D(E,H) =W, Z(Wj X
j=1

Ej— H;

maxval; — minval;

e )]

In case of numerical attributes

Ej — Hupper Ej > Hupper
(Ej — H]) = 1 Hiower — E] Ej < Hiower 3)
0 otherwise

In case of nominal attributes

0 E eH
a-m={0 275 @

Ej is the j™ feature value of example, H; is the j feature
value of hyper-rectangle, W), is the weight of hyper-rectangle,
and W; is the weight of hyper-rectangle j™ feature. The
maxval; and minval; are the upper and lower bounds for the j"
feature value of example, and Hyper and Hjoyer are the upper
and lower bounds for the j* feature value of hyper-rectangle.
However, the utilized features weighting scheme is 1B4.

The motivation behind proposing the NNGE for the pre-
diction of protein complexes is that it is a simple and
powerful predictor that can speed up the classification pro-
cess [35]. Due to the model adjustment and generalization
steps, it does not generate overlapped hyper-rectangles and
therefore improves the accuracy and augments the classifica-
tion process. Hence, it is proven through the produces results
that NNGE outperforms the existing schemes (i.e., Random
Forest and Probabalistic Bayesian Network) in terms of accu-
racy and time complexity.
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FIGURE 2. A few elements of PPIN of human protein complexes for the CORUM dataset.

D. COMPLEX PREDICTION AND NEW
SUB-GRAPH TOPOLOGIES
Some of the rules generated by PART and NNGE during the
training phase on CORUM benchmark datasets are shown
in Figure 3a and 3b, respectively. Different features are repre-
sented by variables, feature values are compared by compari-
son operators and combined using AND and OR connectors.
For predicting a specific complex class for a given protein,
during the test phase, each generated rule was checked one
by one. A complex class was assigned to each feature vector
of protein on the basis of satisfaction of conditions given
in the rules. Statistics regarding the rules generated by each
approach are given in Table 2.

From Table 2, it is clear that the total number of exemplars
generated by NNGE are 603 including 405 hyper-rectangles
while the number of rules generated by PART are 401. On the

VOLUME 8, 2020

TABLE 2. Association rule learner statistics.

NNGE PART
Hyper-rectangles | 405 | Number of rules | 401
Exemplars 603

basis of these hyper-rectangles and rules generated by PART,
each complex class is predicted. Some of the new hybrid
complex topologies that were not covered previously, i.e.,
(a) Hybrid of Clique and Ring, (b) Clique with Tail, (c) Star
with Tail, (d) Hybrid of Clique, Star, and Ring, (e) Hybrid
of Ring and Star, and (f) Hybrid of clique and star, which
match on a real complex set predicted by the association rule
learners with the integrated feature vector (see Figure 4a).
Figure 4b shows (a) Clique, (b) Star, (c) Linear, (d) Ring, and
(e) Hybrid of clique and clique shape predicted complexes,
which match with the real complex set.
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Rule generated by PART for complex36

Coefficient <= 0.666667)

Rule generated by PART for complex32

Ifisize = 3 AND Degree Minimum <= 1 AND Degree Maximum > 2 AND appfl0 = 50.911688 AND Clustering
complex3d
if{size = 3 AND ClusteringCoefficientstdev <= 0.08165 AND AverageShortestPathLength <= 1.5 AND

appf3 == 64.346717 AND detf8 = 5656854 AND appf2 = 35355330
complex32

a. Few elements of decision list generated by PART on CORUM benchmark dataset

Rule generated by NNGE for complex350
403740582 <=entropy<=4.153535144)
{

¥
Rule generated by NNGE for complex348

IClass Complex 348}

IF ( size=13.0 && AverageShortestPathl.ength=2 33333333 & & BetweennessCentrality=00__. ... .. ...
detfO==0 800404037 && -2.121320344==detf10==16.26345597 && 622 .0==length==1217.0 &&

Class complex350

IF (size=9.0 && 1 B75<=AverageShortestPathLength<=3 75 && 0.0==BetweennessCentrality<=0 67857143

& & 0.26666667<=Clozeness Centrality<=0.53333333 &&
395 0==length==3850.0 && 3 98843068 5<=entropy<=4.102639076 )

.............................. detflQ==30_50707075 &&

b. Few rules generated by NNGE on CORUM benchmark dataset

FIGURE 3. a. Few elements of decision list generated by PART on CORUM benchmark dataset. b. Few rules generated by NNGE on CORUM benchmark

dataset.

IIl. EXPERIMENTS AND RESULTS

A. REFERENCE DATASETS

True human protein complexes are provided by the CORUM
database —Comprehensive Resource of Mammalian protein
complexes [36], where as the binary protein interactions
are provided by the Human Protein Reference Database
(HPRD) [37]. The repeating and self-connected interactions
are removed from proteins. After preprocessing, the final
dataset contains 500 complexes with 2973 instances. The
amino acid sequences of human proteins are taken from
Uniprot [38]. The dataset statistics are provided in Table 3.
Figure 2 presents the few elements of PPI network of human
protein complexes constructed from HPRD binary protein
interactions. The size of each complex in the final dataset is
restricted to be equal to or more than three.

B. PERFORMANCE MEASURES

Generally, in the literature, to evaluate the model perfor-
mance precision, recall and F-measure parameters are uti-
lized. These parameters are also utilized in the proposed study
to evaluate the model. Precision is a fraction of the pre-
dicted known protein complexes to all identified complexes.
Whereas, recall is the fraction of predicted protein complexes
to all known protein complexes, where the harmonic mean of
precision and recall is F-measure [39]. Mathematically,

True positive

Precision = — — (@)
False positive 4+ True positive
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True Positive
Recall = 5 — (6)
False Negative + True Positive

Recall x Precision
F — measure = 2 x — @)
Recall + Precision

where True positive is the protein complexes predicted as
complexes, False Positive is the non-protein complexes pre-
dicted as complexes, False Negative is protein complexes
predicted as non-protein complexes [40]. In the statistical
prediction, independent data set test, K-fold cross validation
test, and jackknife cross-validation are usually used to assess
the prediction capability of the model. As it is clear from
equations 28-32 in [41] and revealed in a series of stud-
ies [42]-[45], that jackknife cross-validation is most effective
one among the three methods, and can give in a unique
result. But, to save computational time, the proposed models
are evaluated by using the 10-fold cross-validation method,
where in the 10-fold cross validation, the data set is divided
into 10 equal subsets, each time nine subsets are used for
training and one subset for testing.

C. RESULTS AND DISCUSSION

In order to show the effectiveness of rule based identi-
fication of protein complexes, it is compared with other
state-of-the-art techniques in the HPRD network with the
CORUM dataset. Table 4 shows the comprehensive com-
parison results with Probabilistic Bayesian Network and
Random forest. This table also shows that the association
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FIGURE 4. a. Example of different topological structures (a) Hybrid of Clique and Ring (b) Clique with Tail (c) Star with Tail (d) Hybrid of Clique, Star, and

Ring (e) Hybrid of Ring and Star (f) Hybrid of clique and star.

rule based approaches, such as NNGE and PART, outper-
form Probabilistic Bayesian Network and Random forest.
The PART gives the highest precision, recall and F-measure
in contrast with all other methods. It shows that the asso-
ciation rule based approaches can achieve better perfor-
mance than the Probabilistic Bayesian Network and Random
forest.

1) ROBUSTNESS OF METHOD

In order to show the proposed method’s robustness, the true
positive rate (TP) of PART and NNGE is compared with those
of the Random Forest and Probabilistic Bayesian Network on
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the basis of different threshold (i.e., r = 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 values), as shown in Figure 5. It is elucidated from
Figure 5 that at = 0.2, 0.4, and 0.7, the PART outperforms
the other methods, while at t = 0.3 and 0.8, the NNGE sur-
passes the other methods. Overall, the association rule based
learners excel Random Forest and Probabilistic Bayesian
Network.

2) INFLUENCE OF BIOLOGICAL FEATURES

To measure the effectiveness of biological features in improv-
ing the performance of different methods, we have conducted
the same experiments by using the Probabilistic Bayesian
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FIGURE 4. (Continued). b. Example of different topological structures (a) Clique (b) Star (c) Linear (d) Ring (e) Hybrid of clique and clique.

TABLE 3. Dataset statistics.

Hybrid of Clique and Ring 79
Clique with Tail 5
Star with Tail 15
Hybrid of Clique, Star and Ring 25
Hybrid of Ring and Star 36
Hybrid of clique and star 3
Linear 122
Star 14
Ring 96
Clique 39
Hybrid of clique and clique 4
Total No. of complexes 1925
No. of complexes with no interactions found in HPRD 1205
No. of complexes with more than three interactions 500
No. of Instances 2973
No. of Interactions 4395
No. of Proteins 2524
No. of Sequences 2524
TABLE 4. Comparison on CORUM benchmark dataset.
Methods CORUM (Complexes 500)
Precision | Recall | Fmeasure
Probablistic Baysein Network | 0.45 0.46 0.46
Random Forest 0.50 0.50 0.50
NNGE 0.47 0.47 0.47
PART 0.52 0.53 0.51

Network, Random forest, NNGE, and PART on a benchmark
dataset in two scenarios, i.e., (i) only considering topolog-
ical features, and (ii) integrating topological and biological
features of complexes. Table 5 shows precision, recall, and
F-measure rates of the Probabilistic Bayesian Network, Ran-
dom Forest, NNGE, and PART on CORUM dataset by using
only topological features, whereas Table 6 exhibits precision,
recall, and F-measure rates of the Probabilistic Bayesian
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FIGURE 5. Robustness of proposed method.

Network, Random Forest, NNGE, and PART on CORUM
dataset using integrated features.

The results indicate that in case of Probabilistic Bayesian
Network and NNGE, using only topological features and
then integrated features, no difference was observed in the
precision, recall, and F-measure. While in case of Random
forest and PART, topological features alone gave low preci-
sion, recall, and F-measure rates. However, when topological
features were combined with biological features, a signifi-
cant difference was observed. By the addition of more fea-
tures, computational cost was increased on one hand but
the number of correctly identified protein complexes was
also increased, as shown in Table 5(b). However, the correct
identification is more critical for different applications of
complex detection like in the diagnosis of different diseases.
Thus, the integrated feature vector is important and useful
in increasing the performance efficiency. It is evident from
Table 5(b) that PART outperforms the existing prediction
methods.
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TABLE 5. a. Precision, Recall, and F-measure by considering only
topological features. b. Precision, Recall, and F-measure by considering
biological and topological features.

a. Precision, Recall, and F-measure by considering only topological

features.

CORUM Topological

Features
Methods Precision | Recall | F-measure
Probabilistic
Bayesian Network 0.45 0.46 0.46
Random Forest 0.45 0.45 0.45
NNGE 0.47 0.47 0.47
PART 0.47 0.48 0.47

b. Precision, Recall, and F-measure by considering biological and
topological features.

CORUM Integrated Features

(Topological, Biological)
Methods Precision | Recall | F-measure
Probabilistic
Bayesian Network 0.45 0.46 0.46
Random Forest 0.50 0.50 0.50
NNGE 0.47 0.47 0.47
PART 0.52 0.53 0.51

3) COMPUTATIONAL COST

The computational cost of proposed methods is also ana-
lyzed mathematically and empirically, which give compara-
tive results with regards to Random Forest on the CORUM
Benchmark dataset. Mathematically, the computational cost
with respect to Big(O) for Random Forest is O(mtree x
ntree x nlogn), where mtree is the number of trees and ntree
is the number of attributes that have to be sampled at each
node. Similarly, O(a x nlogn) is a time complexity for PART,
where a is the number of attributes and n is the number
of instances. Moreover, for NNGE, the time complexity is
O(d x n), where n is the number of instances and d is the
time to compute distance or similarity between an instance
and a hyper-rectangle. Analytically, it is proven that NNGE
and PART have the lowest time complexity as compared to
Random Forest.

Furthermore, the empirical analysis also shows that NNGE
has the lowest computational cost with respect to execution
time, as exhibited in Table 7. The machine specifications are
also provided in Table 6 on which the empirical analysis has
done.

The results indicate that NNGE achieved better perfor-
mance than Random Forest and Probabilistic Bayesian Net-
work in computational cost for predicting protein complexes,
whereas PART has more computational cost than Random
Forest. However, it is evident from the analysis that as the
sample size increases, the time complexity of Random Forest
may increase due to the number of instances, number of trees,
and number of attributes. Where the time complexity of PART
may decrease because of the number of instances and number
of attributes. Secondly, Random Forest needs more memory
or heap size to perform its computations as compared to
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TABLE 6. Empirical comparison of computational cost for random forest,
NNGE and Part on CORUM benchmark dataset with integrated features.

Correctly | InCorrectly | Computa- Machine
Methods | Classified | Classified tional Specification
Instances | Instances Cost(sec) peciiications
Processor:
intel®
core’M ;3 —
4005u
CPU@
NNGE 1389 1584 9.72 | 7GHz
RAM:
4.00GB
System
Type: 64 bit
Random |, o) 1481 23.72
Forest
PART 1581 1392 29.65
PART and NNGE.

Hence, it is concluded that NNGE and PART outperform
Random Forest in terms of computational requirements such
as space and time complexity. While the NNGE and PART
excel Random Forest in terms of time complexity and accu-
racy, respectively, as exhibited in Table 6. Therefore, for the
identification of protein complexes in the PPIN, association
rule learners can achieve better results with respect to accu-
racy and computational cost.

4) THE EFFECT OF DIFFERENT FEATURES ON

ACCURACY AND COMPUTATIONAL COST

The same experiments were further applied for the identifica-
tion of complexes by dividing the features set into two groups,
i.e., baseline and advanced feature sets, in order to check dif-
ferent features’ effects on accuracy and computational cost.
The baseline features incorporate those features that are com-
monly used in the literature for the detection of complexes,
while the advanced feature set encapsulates those features
that were introduced in this study. The baseline features
comprise size, betweenness centrality, average shortest path
length, closeness centrality, clustering coefficient, density,
and degree. The advanced feature set include eccentricity,
neighborhood connectivity, radiality, stress, topological coef-
ficient, discrete wavelet coefficients, length, and entropy. The
Random Forest, PART, and NNGE were compared, where
PART and NNGE achieved better results than the Random
Forest in terms of accuracy and time complexity, as presented
in Table 8.

Table 7 presents the overall results of baseline features,
advanced features, and the integration of both baseline and
advanced, where the integrated features gave better prediction
performance.

After performing the same experiment with differ-
ent angles, it is concluded that NNGE surpasses other
schemes with regard to computational cost. In addition,
PART achieved superior accuracy as compared to other
schemes.
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TABLE 7. The effect of different features on accuracy and computational cost using CORUM benchmark dataset.

CORUM Baseline Features CORUM Advanced Features CORUM Baseline +Advance Feature
Correctly Incorrectly Computa- | Correctly Incorrectly Computa- | Correctly Incorrectly Computa-
Methods | Classified Classified tional Classified Classified tional Classified Classified tional
Instances(TP) | Instances(FP) | Cost(sec) Instances(TP) | Instances(FP) | Cost Instances(TP) | Instances(FP) | Cost
g::::?m 1342 1631 945 456 2517 24.04 1492 1481 23.72
NNGE 1445 1528 3.48 414 2559 5.88 1389 1584 9.72
PART 1462 1511 2.78 492 2481 48.78 1581 1392 29.65
IV. CONCLUSION AND FUTURE WORK [10] M. Banerjee, J. Lee, and K.-K.-R. Choo, “A blockchain future for Internet

To examine the principal mechanism of various cellular
functions and to elucidate the functionality of different
un-annotated proteins, the correct prediction of protein com-
plexes plays an important role. Several complex detection
algorithms have been proposed, which utilize only basic
topological properties of protein rather than using advance
topological and biological properties. The association rule
learners such as PART and NNGE were proposed with
advance topological and biological feature sets to detect com-
plexes from PPIN. The results indicate that the association
rule learners can supersede the existing schemes for achieving
better accuracy and low computational cost.

In the future, some other computational methods can be
developed that can help incorporating the benefits of vari-
ous computational methods such as combining Bayes with
rules. Moreover, some other important biological properties,
e.g., ionization, polarization or hydrophobicity of proteins,
and topological properties, e.g., weighted features, may be
integrated in the feature set to achieve a remarkable accuracy.
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