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ABSTRACT This paper considers the problem of spectrum sensing in multi-antenna cognitive radio
networks. Energy detection (ED)method for spectrum sensing does not require any information of the source
signal and channel, as well as it is suitable for detecting independent identically distributed signals. Since
covariance matrix catches the signal correlations well, the maximum eigenvalue detection (MED) method
is more competitive than the ED method for correlated signals. Under the framework of random matrix
theory, this paper firstly proposes two enhanced detection algorithms based on the maximum eigenvalue
and energy of the signal to achieve performance improvement while preserving the advantages of the two
algorithms. The proposed algorithms are a generalization of the ED and MED methods. To render the
proposed algorithms more practical, we propose two other new blind spectrum sensing algorithms based on
the maximum likelihood estimate of unknown noise variance. Using random matrix theory, the theoretical
analysis on detection probability, false alarm probability and threshold are given. Finally, simulation results
show the effectiveness and robustness of the proposed algorithms.

INDEX TERMS Cognitive radio, spectrum sensing, random matrix theory.

I. INTRODUCTION
With the rapid development of mobile internet and Internet
of Things, the fifth generation (5G) communications system
will face new requirements and challenges in wider-coverage,
massive-capacity, massive-connectivity and low-latency [1].
The main limitation in meeting these requirements comes
from the low utilization of available spectrum resources
caused by spectrum fragmentation and the current fixed
allocation policy, and thus it necessitates a new communi-
cation paradigm to exploit the available wireless spectrum
opportunistically. One of the promising solutions to address
the problem of spectrum scarcity is enhancing the utiliza-
tion of available frequency bands with dynamic spectrum
sharing (DSS) mechanisms, which is also widely known
as cognitive radio (CR) technology [2]–[4]. CR aims to
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dynamically enhance spectrum utilization through oppor-
tunistic spectrum access or spectrum sharing based on inter-
ference avoidance [5].

The accurate detection process for primary user (PU)
presence is a key functional component of CR, which has
attracted wide attention over recent years. A great deal of
research has focused on designing accurate and efficient spec-
trum sensing methods. Various detection methods have dif-
ferent requirements for implementation. The most favorable
sensing method is energy detection (ED) algorithm, which
requires simple hardware implementation and low compu-
tational complexity [6]. Moreover, the ED method does not
require knowledge about the characteristics of the licensed
user signal. The ED method achieves optimal detection
performance for independent identically distributed signals,
while its detection performance is poor for correlated signals.
In addition to the ED algorithm, some typical algorithms
were proposed with different implementation requirements,
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such as matched filter detector, cyclostationary feature
detector [7].

What’s more, some spectrum sensing algorithms were
designed using the eigenvalues of the received signal covari-
ance matrix. They achieve superior performance and robust-
ness because the eigenvalues capture the signal correlations
well. These algorithms mostly consider the statistical dis-
tribution of the eigenvalues by exploiting the recent results
from random matrix theory (RMT). For simplicity, they are
collectively called eigenvalue-based detectors (EBD), which
rely on the utilization of RMT and different eigenvalue prop-
erties of the sample covariance matrix in decision-making
process [8]. These EBD techniques can be categorized into
the maximum eigenvalue detector (MED) [9]–[14], the max-
imum eigenvalue to trace (MET) (also called as scaled largest
eigenvalue detector) [15]–[20], and the maximum-minimum
eigenvalue detector (MME) (also called standard condition
number detector ) [12], [14], [21], [22]. The EBD is appro-
priate for practical scenarios because it does not require
any prior information of the PU signal. The EBD outper-
forms than the ED algorithm especially in the presence of
noise power uncertainty [14]. In addition, exploiting the
properties of the eigenvalues of random Wishart matrices,
several detectors based on standard condition number were
designed [12], [14], [23], [24], such as asymptotic, semi-
asymptotic, and ratio based techniques. More specifically,
the Marcenko-Pastur law is used to test a binary hypothe-
sis under the presence of white noise [12]; [14] provided
the semi-asymptotic maximum-minimum eigenvalues and
energy-minimum eigenvalue algorithms from the consider-
ation of the combination of the Marcenko-Pastur law and
Tracy-Widom (TW) distribution; Tracy-Widom Curtiss dis-
tribution is exploited to propose ratio based technique [23].

In addition, some combinational algorithmswere provided.
For example, a combined two-stage detector with the com-
plexity that lies in between the two individual complexities
was proposed to achieve better sensing accuracy than the two
individual detectors [25]. Ejaz et al proposed a two-stage local
spectrum sensing approach. In the first stage, each secondary
user (SU) performs existing spectrum sensing algorithms,
i.e., energy detection, matched filter detection, and cyclosta-
tionary detection. In the second stage, the fuzzy logic that
combined the output of each algorithm is used to deduce the
presence or absence of a PU [26]. The main motivation for
giving a multistage detector is to make use of the advantages
of each detector.

Motivated by this, in this paper, a kind of combinational
method of energy and maximum eigenvalue of the signal
is proposed to take the advantages of the two algorithms
and achieves detection performance improvement. In con-
trast to what has been done in multistage spectrum sensing
with fusion, this paper contributes by addressing new fusion
methods that have not been studied before to the best of the
authors’ knowledge. The new fusion methods rely on test
statistics, which are different from thewell-known data fusion
and decision fusion methods. In the proposed methods, two

fusion test statistics are given; one is the weighted arithmetic
mean of maximum eigenvalue and energy, the another is
the weighted geometric mean of maximum eigenvalue and
energy. The proposed methods are a generalization of the
ED and MED methods, which take the ED and MED algo-
rithms as special cases. However, just as the ED and MED
algorithms, the proposed algorithms also require known noise
variance as the premise for detection. In practical scenario,
the noise variance is unknown and noise changes with time
will lead to the existence of the signal-to-noise ratio (SNR)
wall phenomenon and the increase of false alarm probability.
Thus it is desirable to design a more robust detector whose
threshold is independent on noise variance. To this end, some
algorithms are proposed in the open literatures including the
MME algorithm [14] and energy with LogDet of received
samples covariance matrix algorithm [27]. In addition, some
previous work considered the problem of noise variance esti-
mation from the framework of maximum likelihood (ML)
estimate [11], [15], [19], [28]. The generalized likelihood
ratio (GLR) detector is derived under the assumption that
the noise variance is unknown [11], [15], [19]. In a similar
vein, this paper considers two new test statistics using theML
estimate of unknown noise variance to overcome the noise
uncertainty problem. In summary, the contributions of this
paper are as follows:
• This paper proposes two new semi-blind spectrum sens-
ing algorithms based on the weighted arithmetic mean
of maximum eigenvalue and energy (WAM-MEE) and
the weighted geometric mean of maximum eigenvalue
and energy (WGM-MEE). Under the framework of ran-
dom matrix theory, the theoretical analysis on detection
probability, false alarm probability and thresholds are
given. Simulation results show the effectiveness of the
proposed algorithms.

• To render the sensing algorithms more practical, this
paper proposes two other new totally blind spec-
trum sensing algorithms based on the ML estimate
of unknown noise variance; one is the ratio of the
WAM-MEE to the mean of the smallest M − 1 eigen-
values (WAM-MEE-Ev); another is the ratio of the
WGM-MEE to the mean of the smallest M − 1
eigenvalues (WGM- MEE-Ev). The WAM-MEE-Ev
and WGM-MEE-Ev algorithms take the GLR detec-
tor as special case. The proposed algorithms do not
require the priori knowledge of noise variance, therefore,
the WAM-MEE-Ev and WGM-MEE-Ev detectors are
more versatile and robust to noise uncertainty than the
WAM-MEE and WGM-MEE detectors. The probability
of false alarm, decision thresholds, and detection prob-
ability are also derived by using the RMT. Simulation
results show the WGM-MEE-Ev method performs bet-
ter than the GLR detector.

The rest of this paper is structured as follows. In Section II,
the system model and some existing detection algorithms
are introduced. Section III proposes several new detection
algorithms based on the maximum eigenvalue and energy.
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Using the random matrix theory, the related theoretical anal-
ysis of the proposed algorithms is provided in Section IV.
In Section V, some simulation experiments are performed
to verify the effectiveness of the proposed algorithms. Some
conclusions are given in Section VI.

II. SYSTEM MODEL AND TYPICAL
SENSING ALGORITHMS
In this section, the systemmodel for multi-antenna scenario is
introduced, and then some existing detection algorithms are
reviewed.

A. SYSTEM MODEL
Fig. 1 shows a typical multi-antenna scenario for cogni-
tive radio network in which spectrum sensing is carried out
by a SU.

FIGURE 1. Typical spectrum sensing scenario for multi-antenna cognitive
radio network.

In this scenario, the SUwithmultiple antennas periodically
senses whether the PU is transmitting signal or not. If the
PU is not transmitting signal, then the SU starts to commu-
nicate on this frequency band; otherwise it stops communi-
cating or jumps to another vacant frequency band as long
as the PU reuses this frequency band. Assume that there are
P primary users amd the SU is equipped with M receiving
antennas. The received signal at ith receiving antenna is
denoted as yi(n). Without loss of generality, the spectrum
sensing can be formalized as the following binary hypothesis
testing problem,

H0 : yi(n) = ηi(n), n = 0, 1, · · · ,N − 1

H1 : yi(n) =
P∑
j=1

Cij∑
k=0

hijsj(n− k)+ ηi(n), (1)

where n represents the time index of received signal, N is
the number of samples, ηi(n) ∼ CN (0, σ 2

η ) is the additive
noise followed complex circular Gaussian distribution with
zero mean and σ 2

η -variance, and sj(n) is the jth PU signal. hij
is the channel response between the jth PU and ith receiving
antenna, Cij is the multi-path channel order.
Stacking the samples at the same time, the receiving vector

of antenna array is expressed as follows

Y (n) = [y1(n), y2(n), · · · , yM (n)]T ,

hj(n) = [h1j(n), h2j(n), · · · , hMj(n)]T ,

η(n) = [η1(n), η2(n), · · · , ηM (n)]T . (2)

Under H1, the received signal can be rewritten in vector form

Y (n) =
P∑
j=1

Cj∑
k=0

hjsj(n− k)+ η(n), (3)

where Cj = max
i
(Cij).

For simplicity, let

ŝ(n) = [s1(n), s1(n− 1), . . . , s1(n− C1), . . . ,

sP(n), sP(n− 1), . . . , sP(n− CP)]T , (4)

and

Ĥ = [h1(0), . . . , h1(C1), . . . , hP(0), . . . , hP(CP)], (5)

where Ĥ is a M × (C + P) matrix, C =
P∑
j=1

Cj.

Then the received signal is expressed as follows

Y (n) = Ĥ ŝ(n)+ η(n). (6)

The sample covariance matrix is defined as follows

Ry(N ) =
1
N

N−1∑
n=0

Y (n)YH (n). (7)

When there is no signal (H0), the entries of Y follow com-
plex Gaussian distribution with zero mean and σ 2

η -variance,
then the sample covariance matrix Ry(N ) of the received data
is aWishart matrix according to randommatrix theory. Under
H0, the sample covariance matrix follows Wishart distribu-
tion with N degrees of freedom and a statistical covariance
matrix 6 = 1

N σ
2
η IM , which is denoted as CWM (N , 1

N σ
2
η IM ).

Compared with the null hypothesis, the presence of a PU can
lead to changes in the covariance structure of the received
signal. What’s more, the sample covariance matrix of the
received signal can catch the correlations among the signal
samples well. Fully exploiting such changes to distinguish
signal component from background noise is central to the
construction of a powerful detector for spectrum sensing.

Under H0, the maximum eigenvalue of Wishart matrix
approximately follows the TW distribution, which is given
in Theorem 1 [29], [30].
Theorem 1: For complex noise, let A(N ) = N

σ 2η
R̂η(N ),

λmax(A(N )) be the maximum eigenvalue of A(N ). If 0 <

lim
N→∞

(M/N ) < 1, then λmax (A(N ))−µ
v converges to the

Tracy-Widom distribution of order 2 with probability one,
where µ = (

√
N − 1+

√
M )2 and v = (

√
N − 1 +

√
M )( 1

√
N−1
+

1
√
M
)1/3 are the mean and scale parameter of

A(N ), respectively.
Let FTW be the cumulative distribution function (CDF) of

the Tracy-Widom distribution of order 2. There is no closed
form expression for FTW , which can be calculated by lookup
table.

The EBD techniques mostly consider the statistics of max-
imum eigenvalue of the received signal covariance matrix
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using the results from Theorem 1. In this paper, we also ana-
lyze and derive the false alarm probability, decision thresh-
olds and detection probability of various detection algorithms
based on the TW distribution given by Theorem 1.

B. TYPICAL SENSING ALGORITHMS
Many spectrum sensing methods are proposed to the problem
of detecting spectrum ’hole’ for cognitive radio networks.
However, the implementation of these detection mechanisms
needs to meet different conditions and requirements. This
section reviews several typical spectrum sensing detectors,
including the ED, MED and GLR detectors.
• Energy Detector
Energy Detection is a popular choice for spectrum sens-
ing, and the test statistic is given as follows

TED =
1
NM

N∑
n=1

‖Y (n)‖2, (8)

where ‖ · ‖2 represents the vector 2-norm.
Intuitively, the ED algorithm makes a decision by com-
paring the energy of the received signal with threshold;
if the primary signal exists, then the energy is increased.
In fact, the statistic of the ED is an estimation of the
received signal variance. If there is no PU signal, then
TED = σ 2

η ; otherwise, TED > σ 2
η . The ED algorithm

has low computational complexity and does not require
prior knowledge of PU signal characteristics. ED is an
optimal sensing approach for detecting i.i.d signal, while
the detection performance is poor for correlated signals.
In addition, ED suffers from severe performance degra-
dation at low SNR.
The false alarm probability, threshold and detection
probability of the ED method are given as follows [6]

Pfa = Q(
γED − σ

2
η

σ 2
η /
√
MN/2

), (9)

γED =
Q−1(Pfa)σ 2

η
√
MN/2

+ σ 2
η , (10)

Pd = Q(
γED − (σ 2

s + σ
2
η )

(σ 2
s + σ

2
η )/
√
MN/2

), (11)

where σ 2
s represents signal variance, and Q(x) =

1
√
2π

∞∫
x
exp(−t2/2)dt.

• Maximum Eigenvalue Detector
The detectionmethod based on themaximum eigenvalue
is proposed to overcome above shortcomings of the
ED method. The test statistic of the MED method is
expressed as follows

TMED = λmax(Ry(N )). (12)

Compared with the ED method, the MED method
achieves better detection performance for correlated sig-
nal. The false alarm probability, threshold and detection

probability are considered in the RMTparadigm [9]. The
false alarm probability of the MED method is obtained
using Theorem 1,

Pfa = 1− FTW

γMED N
σ 2η
− µ

v

 , (13)

where µ and v are given in Theorem 1. The threshold is
derived from (13),

γMED =
F−1TW

(
1− Pfa

)
v+ µ

N
σ 2
η , (14)

where F−1TW is the inverse function of the FTW .
The ED and MED algorithms all require known noise
power as the premise for detection.

• Generalized Likelihood Ratio(GLR) Detector
In practical scenario, the noise power is unknown and
the noise changes with time will lead to the existence
of the SNR wall phenomenon and the increase of false
alarm probability. Thus it is desirable to design a more
robust detector whose threshold is independent on noise
variance. Some previous work considered the problem
of noise variance estimation from the framework of
ML estimate [11], [15], [19], [28]. Let λ1, λ2, . . . , λM
denote the eigenvalues of received signal matrix with
descend order. The noise variance estimation is the mean
of the (M − 1) smallest eigenvalues and is expressed as

σ̂η =
1

M − 1

M∑
i=2

λi. (15)

The GLR is given by [11]

TGLR =
λ1

1
M−1

M∑
i=2
λi

. (16)

Unlike the ED and MED algorithms, the GLR detec-
tor requires neither noise information, nor transmission
signal and channel information. The GLR detector is
robust to the noise uncertainty problem. Such method
is called blind detection method. The related false alarm
probability and threshold are listed as follows [11],

Pfa ≈ 1− FTW

(
γGLRN − µ

v

)
, (17)

γGLR =
F−1TW

(
1− Pfa

)
v+ µ

N
. (18)

III. ALGORITHM DESIGN
The spectrum sensing methods introduced in the previous
section have their own advantages and disadvantages. Fusion
is a commonly used method to enhance performance, and
the known methods include data fusion and decision fusion.
In contrast to these two fusion method, this paper considers
another fusion method based on test statistics of different
algorithms. Given the simplicity and validity of the ED and
MED algorithms, the fusion of statistics based on energy and
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maximum eigenvalue is considered to take the advantages of
the ED and MED methods. Several new detection algorithms
combining energy and maximum eigenvalue are proposed,
which achieve better detection performance for both i.i.d
signals and correlated signals.

A. WEIGHTED ARITHMETIC MEAN OF MAXIMUM
EIGENVALUE AND ENERGY DETECTOR
The commonly used data fusion method is the weighted sum
of data, in a similar vein, we firstly consider the weighted
average of the MED statistic in (8) and ED statistic in (12),
which is expressed as bellow

TWAM−MEE = αTMED + (1− α)TED
= αλmax(Ry(N ))+ (1− α)EN , (19)

where λmax(Ry(N )) is the maximum eigenvalue of sample
covariance matrix, EN represents the energy of the received
signal, α is a positive constant and α ∈ (0, 1]. For sim-
plicity, the proposed algorithm based on the weighted arith-
metic mean of maximum eigenvalue and energy is denoted
as WAM-MEE. As seen from formula (19), the proposed
WAM-MEE detector is a generalization of the ED and MED
methods, and it takes the ED and MED as its special cases.
It is noted that in addition to the weighted arithmetic mean,
there is other mean such as weighted geometric mean. Thus
this paper also considers the weighted geometric mean of
maximum eigenvalue and energy as test statistic for spectrum
sensing in the following subsection.

B. WEIGHTED GEOMETRIC MEAN OF MAXIMUM
EIGENVALUE AND ENERGY DETECTOR
The test statistic is based on the weighted geometric mean of
the statistics of theMED and ED, i.e., the weighted geometric
mean of maximum eigenvalue and energy (WGM-MEE) is
expressed as follows

TWGM−MEE = T αMEDT
1−α
ED

= λαmax(Ry(N ))E1−α
N . (20)

For simplicity, the proposed algorithm based on the
weighted geometric mean of maximum eigenvalue and
energy is denoted asWGM-MEE. As seen from formula (20),
the proposed WGM-MEE detector is also a generalization
of the ED and MED methods, and it also takes the ED and
MED as its special cases. As ED and MED methods, the
WAM-MEE and WGM-MEE algorithms also have the noise
uncertainty problem, i.e., the thresholds of WAM-MEE and
WGM-MEE depend on the noise variance, which is discussed
in the next subsection.

C. THE WAM-MEE WITH THE ESTIMATION OF
NOISE VARIANCE DETECTOR
This subsection considers two new test statistics using theML
estimate of unknown noise variance given in (15) to overcome
the noise uncertainty problem. The first new blind spectrum
sensing method can be obtained by dividing the test statistic

of the WAM-MEE with the mean of the (M − 1) smallest
eigenvalues.

TWAM−MEE−Ev =
TWAM−MEE

σ̂ 2
η

=
αλmax(Ry(N ))+ (1− α)EN

1
M−1

M∑
i=2
λi

, (21)

where λi is the eigenvalue of sample covariance matrix, α is a
positive constant and α ∈ (0, 1]. For simplicity, the proposed
method based on (21) is denoted asWAM-MEE-Ev, where Ev
stands for estimated noise variance. It is noted that formula
(21) can be rewritten as follows

TWAM−MEE−Ev = α
λmax(Ry(N ))

1
M−1

M∑
i=2
λi

+ (1− α)
EN

1
M−1

M∑
i=2
λi

= αTGLR + (1− α)TEEv. (22)

The first term in (22) is α times the test statistic of the GLR
detector. The second term in (22) is 1−α times a test statistic
of TEEv. TEEv has not been considered in the open literatures,
we call it energy with the estimated noise variance (EEv)
detector. Thus both GLR and EEv detectors are special cases
of the WAM-MEE-Ev method.

D. THE WGM-MEE WITH THE ESTIMATION OF
NOISE VARIANCE DETECTOR
In similar way to the WAM-MEE-Ev detector, the fourth
test statistic is obtained by dividing the test statistic of the
WGM-MEE detector by the mean of the M − 1 smallest
eigenvalues, which is given as follows

TWGM−MEE−Ev =
λαmax(Ry(N ))E1−α

N

1
M−1

M∑
i=2
λi

. (23)

For simplicity, this algorithm is denoted as
WGM-MEE-Ev. The formula (23) can be rewritten as follows

TWGM−MEE−Ev =

λmax(Ry(N ))

1
M−1

M∑
i=2
λi


α EN

1
M−1

M∑
i=2
λi


1−α

= T αGLRT
1−α
EEv . (24)

Thus the statistic of the WGM-MEE-Ev detector is the geo-
metric mean of the statistics of the GLR and EEv detectors.

IV. PERFORMANCE ANALYSIS
Random matrix theory, working as a sharp tool, has widely
been used in many disciplines including signal processing
and wireless communications. In particular, many spectrum
sensing algorithms have been proposed and analyzed based
on RMT paradigm. The proposed algorithms are closely
related to the eigenvalues of the covariance matrix of the
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received signal. Using the recent results from the RMT,
we give the theoretical analysis of the false alarm probability,
thresholds and detection probability of the proposedmethods.

As shown in Appendix, the false alarm probability and
detection probability of the WAM-MEE method are firstly
derived using the theorem 1. The false alarm probability is
expressed as follows:

Pfa = 1− FTW

 γ1
α
·
N
σ 2η
−

(1−α)
α

N − µ

ν

 , (25)

where µ = (
√
N − 1+

√
ML)2 and ν = (

√
N − 1 +

√
ML)( 1

√
N−1
+

1
√
ML

)
1
3 .

The analytic expression of threshold γ1 can be further
derived from (25),

γ1 =
α
(
F−1TW (1− Pfa)ν + µ

)
σ 2
η

N
+ (1− α) σ 2

η , (26)

where F−1TW is the inverse distribution of Tracy-Widom distri-
bution of order 2.

As observed from (25) and (26), for α = 1, we can get
the theoretical expressions of the false alarm probability and
threshold of the WAM-MEE detector coincide with that of
the MED detector.

In addition, the detection probability is given by

Pd = 1− FTW


N
σ2η

(
γ1−(1−α)

Tr(Ry(N ))
M

α
−ρ1

)
−µ

ν

, (27)

where ρ1 is the maximum eigenvalue of matrix ĤRsĤH .
The derivations of detection probability and false alarm

probability of the WGM-MEE detector are similar to the
WAM-MEE detector. The final results are summarized as
follows

Pfa = 1− FTW


γ

1
α

2
N

1−α
α

σ
2
α
η

− µ

ν

 . (28)

The threshold is obtained

γ2 =

(
F−1TW (1− Pfa)ν + µ

)α
σ 2
η

Nα
. (29)

In addition, the detection probability is derived

Pd = 1− FTW


N
σ 2η

 γ
1
α
2(

Tr(Ry(N ))
M

) 1−α
α

− ρ1

− µ
ν

 . (30)

As observed from the (26) and (29), we can get that the
thresholds of the WAM-MEE and WGM-MEE detectors are

dependent on the the noise variance, which further indicates
that theWAM-MEE andWGM-MEEdetectors have the noise
uncertainty problem.

In what follows, the false alarm probability and threshold
of the WAM-MEE-Ev detector are given in similar way to
above two methods,

Pfa = 1− FTW

(
(γ3 − (1− α))N − µ

ν

)
, (31)

γ3 =

(
F−1TW (1− Pfa)ν + µ

)
N

+ (1− α) . (32)

Under H1, the noise variance estimation is given by the
averaged summation of eigenvalues except the largest one,
which is equivalent to the difference of the trace of covariance
matrix and the maximum eigenvalue.

σ̂η =
1

M − 1
(Tr(Ry(N ))− λmax(Ry(N ))). (33)

Thus the detection probability is derived using the RMT,

Pd = Pr

αλmax(Ry(N ))+ (1− α)EN

1
M−1

M∑
i=2
λi

> γ3 |H1


= Pr

(
αλmax(Ry(N ))+ (1− α)EN
1

M−1 (Tr(Ry(N ))− λmax(Ry(N )))
> γ3

)

= Pr

λmax(Ry(N ))>

(
γ3

M−1−
1−α
M

)
α +

γ3
M−1

Tr(Ry(N )

, (34)

substitute (33) into (34), then the detection probability is
obtained by Theorem 1,

Pd = Pr

λmax(Rη) >

(
γ3

M−1 −
1−α
M

)
α +

γ3
M−1

Tr(Ry(N )− ρ1



≈ 1− FTW


(

γ3
M−1−

1−α
M

)
α+

γ3
M−1

Tr(Ry(N )− ρ1 − µ

ν

. (35)

The false alarm probability, threshold and detection proba-
bility of theWGM-MEE-Ev detector are obtained in a similar
way to theWAM-MEE-Ev detector. The details are as follows

Pfa = 1− FTW

γ 1
α

4 N − µ

ν

 , (36)

γ4 =

(
F−1TW (1− Pfa)ν + µ

)α
Nα

, (37)
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Pd = 1− FTW



γ
1
α
4

(
1− 1+SNR

NSNR σ
2
w

) 1
α

(
Tr(Ry(N ))

M

) 1−α
α

− ρ1 − µ

ν


. (38)

V. SIMULATION AND DISCUSSION
In order to verify the performance of the proposed algorithms,
this paper considers the scenario with multiple antenna
and multiple primary users. The ED algorithm shows good
detection performance for weakly correlated signals, while
the MED algorithm achieves good detection performance
for strongly correlated signals. For comparison, this paper
focuses on the detection of weakly correlated signals and
strongly correlated signals. Assume that the PU signal ismod-
eled as correlated Gaussian random vector, whose statistical
covariance matrix is exponential correlation model and given
in the form 6 (i, j) = ρ|i−j|, and the correlation coefficient
ρ is used to control the degree of correlation. This paper
takes into account two extreme cases where the correlation
coefficient is set to 0.1 and 0.9, respectively. A frequency non-
selective fading channel is considered, and each component
of channel obeys i.i.d complex circular Gaussian distribution
with zero mean and variance of 1, the additive noise also
follows the i.i.d Gaussian distribution with zero mean and
1-variance. Assume that there are P = 3 primary users, one
SU with M = 4 antenna. The false alarm probability is set
to 0.01, and the number of Monte Carlo simulation is 2000.
The theoretical analysis of the optimal α that corresponding
to the superior performance is intractable owing to the com-
plicated detection probability, thus the detection performance
of various algorithms with different α is analysed by perform-
ing some simulation experiments. α is set to (0, 1] with an
interval of 0.1.

A. DETECTION PERFORMANCE OF THE WAM-MEE
AND WGM-MEE DETECTORS
For comparison, the ED and MED algorithms are consid-
ered in this subsection. Fig. 2 shows the detection probabil-
ity and false alarm probability of the WAM-MEE, ED and
MED algorithms for weakly correlated signals. As depicted
in Fig. 2, simulation results show that the detection probabil-
ity of the proposed algorithm decreases with the increase of
the α, as well as the false alarm probability of the proposed
algorithm decreases with the increase of the α. As observed
from Fig. 2, the false alarm probability of the WAM-MEE
algorithm does not meet the false alarm probability require-
ment of 0.01 when α ≤ 0.4. The best detection performance
is achieved at α = 0.5, in this case, the algorithm is exactly
equivalent to test statistic based on the average of the maxi-
mum eigenvalue and energy of the received signal. It is also
noted that the ED algorithm has better detection performance
than the MED algorithm when PU transmits weakly corre-
lated signals. The proposed algorithm with α = 0.5, 0.6, 0.7
obtain higher detection probability than the ED algorithm,

FIGURE 2. Detection performance of the WAM-MEE algorithm with
different α, ED and MED for weakly correlated signals (α = 0.1).

FIGURE 3. Detection performance of the WAM-MEE algorithm with
different α, ED and MED for strongly correlated signals (α = 0.9).

and the WAM-MEE algorithm has almost same performance
as the ED algorithm for α = 0.8, while the WAM-MEE
algorithm has inferior performance than the ED algorithm for
α = 0.9. However, the proposed algorithm achieves better
detection performance than the MED algorithm for α ≥ 0.5.
Fig. 3 shows the comparison results for another scenario

where the PU transmits strongly correlated signals (ρ = 0.9).
The detection performance of the MED algorithm is better
than that of the ED algorithm. In this case, the WAM-MEE
algorithm has better detection performance than theMED and
ED algorithms, and the WAM-MEE algorithm achieves the
best detection performance for α = 0.5. It is worth pointing
out that the combination of the energy and maximum eigen-
value is not a compromise in performance, but a performance
improvement.

Fig. 4 and Fig. 5 plot the curves of the detection proba-
bility versus SNR of the WGM-MEE algorithm for weakly
correlated and strongly correlated signals. As observed from
Fig. 4 and Fig. 5, the best detection performance of theWGM-
MEE algorithm is obtained in the case of α = 0.5 under
the given false alarm probability. What’s more, simulation
results indicate that theWGM-MEE algorithm achieve detec-
tion performance improvement over both the ED and MED
methods for the case of weakly correlated and strongly cor-
related signals.

VOLUME 8, 2020 9463



W. Zhao et al.: Enhanced Detection Algorithms Based on Eigenvalues and Energy

FIGURE 4. Detection performance of the WGM-MEE algorithm with
different α, ED and MED for weakly correlated signals (α = 0.1).

FIGURE 5. Detection performance of the WGM-MEE algorithm with
different α, ED and MED for strongly correlated signals (α = 0.9).

FIGURE 6. Detection performance of the WAM-MEE, WGM-MEE, ED and
MED algorithms under different number of samples for weakly correlated
signals (α = 0.1).

As shown in Section IV, the decision thresholds of all
the algorithms rely on the number of the samples. In what
follows, the influence of the number of samples N on the
detection performance of the algorithm is discussed. For dif-
ferent number of samples, Fig. 6 and Fig. 7 show the detection
performance of the proposed WAM-MEE and WGM-MEE
algorithms with α = 0.5, ED and MED algorithm for weakly
correlated signals and strongly correlated signals, respec-
tively. All algorithms have better detection performance with

FIGURE 7. Detection performance of the WAM-MEE, WGM-MEE, ED and
MED algorithms under different number of samples for strongly
correlated signals (α = 0.9).

the increase of N , and the proposed algorithm has supe-
rior performance than the ED and MED algorithms for all
the cases. For weakly correlated signals, the ED algorithm
is better than the MED algorithm, while the MED algo-
rithm is superior to the ED algorithm for strongly corre-
lated signals. In addition, the performance gap between the
WAM-MEE and WGM-MEE algorithms is narrowed with
the increase of N . Especially for highly correlated signals,
the detection performance of these two methods is almost
overlapped.

B. DETECTION PERFORMANCE OF THE WAM-MEE-EV
AND WGM-MEE-EV DETECTORS
In addition to the above mentioned GLR detector, the algo-
rithm using the ratio of maximum eigenvalue to the minimum
eigenvalue is a typical algorithm to overcome the noise uncer-
tainty problem. For comparison, the GLR andMMEdetectors
are considered in the following simulation experiments.

FIGURE 8. Detection performance of the WAM-MEE-Ev algorithm with
different α, MME and GLR for weakly correlated signals (α = 0.1).

Fig. 8 and Fig. 9 show the detection probability and false
alarm probability of the WAM-MEE-Ev, GLR, and MME
algorithms for weakly correlated signals and highly corre-
lated signals, respectively. Simulation results indicate that the
actual false alarm probability of all the algorithms satisfies
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FIGURE 9. Detection performance of the WAM-MEE-Ev algorithm with
different α, MME and GLR for strongly correlated signals (α = 0.9).

the preset false alarm probability. In addition, the results also
show that the detection probability of the WAM-MEE-Ev
algorithm is improved with the increase of α. It is noticed
that the best detection performance of the WAM-MEE-Ev
detector is achieved at α = 1, in this case, the algorithm is just
equivalent to the GLR detector. The detection performance of
theWAM-MEE-Ev detector is inferior to that of the GLR and
MME algorithms for α ≤ 0.9.

FIGURE 10. Detection performance of the WGM-MEE-Ev algorithm with
different α, MME and GLR for weakly correlated signals (α = 0.1).

In the following, we compare the detection performance
of the WGM-MEE-Ev, MME and GLR detectors for weakly
correlated signals and strongly correlated signals, which
are shown in Fig. 10 and Fig. 11, respectively. The zoom
in Fig. 10 and Fig. 11 indicate that the actual false alarm
probability of the WGM-MEE-Ev almost meets the preset
false alarm probability in the case of α ≥ 0.9. The detec-
tion performance of the WGM-MEE-Ev algorithm is slightly
better than the GLR detector for α = 0.9, and it obviously
outperforms than the MME detector.

Fig. 12 and Fig. 13 make performance comparison
among the WAM-MEE-Ev, WGM-MEE-Ev, GLR and MME
methods under different number of samples for weakly cor-
related signals and strongly correlated signals. Detection per-
formance of all the methods is improved with the number

FIGURE 11. Detection performance of the WGM-MEE-Ev algorithm with
different α, MME and GLR for highly correlated signals (α = 0.9).

FIGURE 12. Detection performance of the WAM-MEE-Ev, WGM-MEE-Ev,
GLR and MME methods under different number of samples for weakly
correlated signals (α = 0.1).

FIGURE 13. Detection performance of the WAM-MEE-Ev, WGM-MEE-Ev,
GLR and MME methods under different number of samples for strongly
correlated signals (α = 0.9).

of samples. The WGM-MEE-Ev method achieves the per-
formance improvement over the WAM-MEE-Ev, GLR and
MME methods under different cases of sample number.

To further evaluate the detection performance of the pro-
posed methods, we compare the Receiver Operating Char-
acteristic (ROC) curves of the WAM-MEE(α = 0.5),
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FIGURE 14. ROC curves of the WAM-MEE, WGM-MEE, WAM-MEE-Ev,
WGM-MEE-Ev, ED, MED, GLR and MME methods for weakly correlated
signals (α = 0.1).

FIGURE 15. ROC curves of the WAM-MEE, WGM-MEE, WAM-MEE-Ev,
WGM-MEE-Ev, ED, MED, GLR and MME methods for strongly correlated
signals (α = 0.9).

WGM-MEE(α = 0.5), WAM-MEE-Ev(α = 0.9), WGM-
MEE-Ev(α = 0.9), ED, MED, GLR and MME methods for
the given SNR of −18dB. Here, the WAM-MEE(α = 0.5)
and WGM-MEE(α = 0.5) mean α is set to 0.5 that repre-
senting the best WAM-MEE and WGM-MEE algorithms for
different α, so are the WAM-MEE-Ev(α = 0.9) and WGM-
MEE-Ev(α = 0.9) methods. Fig. 14 and Fig. 15 show the
results for weakly correlated signals and strongly correlated
signals, respectively. As observed from these two figures,
we can obtain that the WAM-MEE andWGM-MEE methods
outperform than the above mentioned methods for different
false alarm probability; the WGM-MEE-Ev method achieve
performance improvement over the GLR andMMEmethods.

The WAM-MEE, WGM-MEE, ED and MED algorithms
all require known noise power as the premise for detection.
However, in the actual system, the noise changes with time
will lead to the existence of the SNR wall phenomenon and
the increase of false alarm probability. Thus, in order to inves-
tigate the influence of noise uncertainty on algorithm perfor-
mance, we discuss the sensitivity of algorithm performance
to noise uncertainty through simulation experiments, which
are shown in Fig. 16 and Fig. 17. The noise uncertainty
bound (in dB) is defined as B = sup

{
10log10β

}
, where β

FIGURE 16. Detection performance comparisons among the WAM-MEE,
WGM-MEE, ED, MED, GLR, MME, WAM-MEE-Ev and WGM-MEE-Ev under
noise uncertainty with 2dB and weakly correlated signals with α = 0.1.

FIGURE 17. Detection performance comparisons among the WAM-MEE,
WGM-MEE, ED, MED, GLR, MME, WAM-MEE-Ev and WGM-MEE-Ev under
noise uncertainty with 2dB and highly correlated signals with α = 0.9.

is called the noise uncertainty factor, and it is assumed that
β is evenly distributed in an interval [−B,B]. In practice,
the noise uncertainty bound of receiving device is normally
1 to 2 dB [31], and this paper considers the case of 2 dB. For
simplicity, "NUxdB" denotes that the noise uncertainty bound
is x-dB. It can be seen from simulation results that the ED,
MED, WAM-MEE, and WGM-MEE algorithms have noise
uncertainty problem. In comparison, the WAM-MEE and
WGM-MEE algorithms have less sensitivity to noise uncer-
tainty than the ED algorithm. While the WAM-MEE-Ev and
WGM-MEE-Ev algorithms overcome the noise uncertainty
problem.What’s more, theWGM-MEE-Ev algorithm outper-
forms than the GLR detector, and it provides 2dB gain than
the MME algorithm. Especially for highly correlated signal,
the detection performance of the WGM-MEE-Ev algorithm
is almost same as that of the MED-NU0dB algorithm.

VI. CONCLUSION
This paper studies the spectrum sensing algorithms based on
the test statistics fusion of the ED and MED algorithms in
RMT paradigm. The proposed algorithms take the advantages
of the two algorithms and achieve detection performance
improvement. The proposed methods are a generalization of
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the ED and MED methods, the effective combinations obvi-
ously improve detection performance of the original algo-
rithms. The highly correlated signals and weakly correlated
signals are considered in simulation experiments, and simu-
lation results verify the effectiveness of the proposed algo-
rithms. Just like the ED and MED algorithms, the proposed
algorithms also have noise uncertainty problem, while the
proposed algorithms have less sensitivity to noise uncertainty
than the ED algorithm. To further overcome noise uncertainty
problem, the WAM-MEE-Ev and WGM-MEE-Ev detec-
tors are proposed using the ML estimate of noise variance.
Simulation results indicate the WGM-MEE-Ev detector is
more robust and versatile than theGLR andMME algorithms.
The methods in this paper have universality and can be
applied to the combination of other algorithms for spectrum
sensing.

APPENDIX
The false alarm probability of the WAM-MEE detector is
derived using theorem 1. Without loss of generality, the false
alarm probability is defined as follows

Pfa = Pr (TWAM−MEE > γ1 | H0) (39)

where TWAM−MEE is the test statistic of the WAM-MEE
algorithm, and γ1 is the decision threshold.
Substitute the test statistic of WAM-MEE in (19) into (39),

the false alarm probability is expressed as follows

Pfa = Pr (αλmax + (1− α)EN > γ1)

= Pr (αλmax > γ1 − (1− α)EN )

= Pr

(
λmax >

γ1 − (1− α)EN
α

)
. (40)

Under the null hypothesis, the energy of the received signal
approximately satisfies the following relationship,

TN =
Tr(Ry)
M
≈ σ 2

η . (41)

The false alarm probability is converted into

Pfa = Pr

(
λmax >

γ1 − (1− α) σ 2
η

α

)
. (42)

Since A(N ) = N
σ 2η
Rη(N ), then

Pfa = Pr

(
σ 2
η

N
λmax(A(N )) >

γ1 − (1− α) σ 2
η

α

)

= Pr

(
λmax(A(N )) >

γ1

α
·
N
σ 2
η

−
(1− α)
α

N

)
. (43)

As seen from theorem 1, λmax(A(N ))−µ
ν

follows the Tracy-
Widom distribution of order 2 when the number of samples
N is sufficiently large. The formula (43) is transformed into
the following form:

Pfa = 1− FTW

 γ1
α
·
N
σ 2η
−

(1−α)
α

N − µ

ν

 . (44)

In what follows, we give the analytic expression of detec-
tion probability. In general, the detection probability is
defined in the form:

Pd = Pr (αλmax + (1− α)EN > γ1)

= Pr

(
λmax >

γ1 − (1− α)EN
α

)
. (45)

Under H1, when the number of samples N is very large,
the sample covariancematrix can be approximated as follows:

R̂y(N ) ≈ ĤRsĤH
+ Rη(N ). (46)

Then the eigenvalues of R̂y(N ) approximately satisfy

λi(R̂y(N )) ≈ ρi + λi(Rη(N )), (47)

where ρi, i ∈ {1, . . . ,M} are the eigenvalues of matrix
ĤRsĤH and meet ρ1 ≥ ρ2 ≥ . . . ≥ ρM . The detection
probability is approximately obtained using Theorem 1,

Pd ≈ Pr

(
λmax(Rη) >

γ1 − (1− α)EN
α

− ρ1

)

= 1− FTW


N
σ 2η

(
γ1−(1−α)

Tr(Ry(N ))
M

α
− ρ1

)
− µ

ν

. (48)
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