
Received December 15, 2019, accepted December 23, 2019, date of publication January 3, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963782

Group Key Management Protocol for File
Sharing on Cloud Storage
SHOUYI ZHANG 1, SI HAN 2, BAOKUN ZHENG 2, KE HAN 3, AND ENTONG PANG 4,
1School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2Department of Science and Technology, China University of Political Science and Law, Beijing 102249, China
3School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100083, China
4Aerospace Hongka Intelligent Technology (Beijing) Company, Ltd, Beijing 100012, China

Corresponding author: Si Han (hansi@cupl.edu.cn)

This work was supported in part by the School Youth Fund Project of the China University of Political Science and Law under Grant
10818435, and in part by the Fundamental Research Funds for the Central Universities under Grant 2019PTB-016.

ABSTRACT The large-scale sharing needs of many enterprises promote the development of cloud storage.
While the cloud computing stores the shared files outside the trust domain of the owner, the demands and
concerns for file security is arising. In this paper, a Group Key Management Protocol for file sharing on
cloud storage (GKMP) is proposed. Faced with network attacks from public channel, a group key generation
scheme based on mixed encryption technology is proposed. And a verification scheme is used to prevent
shared files from being attacked by the collusion attack of cloud providers’ and group members’. Security
and performance analyses indicate that the proposed protocol is both secure and efficient for data sharing in
cloud computing.

INDEX TERMS Cloud storage, group key, file sharing, key distribution.

I. INTRODUCTION
Faced with today’s innovative blow-up of cloud technologies,
rebuilding services in terms of cloud have become more
popular. In a shared-tenancy cloud computing environment,
data from different clients which can be hosted on separate
virtual machines may reside on a single physical machine [1].
Under this paradigm, the data storage and management is
under full control of the cloud provider, so data owners are
left vulnerable and have to solely rely on the cloud provider
to protect their data. Recent news shows that Google provided
the FBI all the documents of one of its users after receiving
a search warrant, but the users have not been aware of the
search until they are arrested.Because cloud provider has the
full access to the data, the privacy of data could be violated if
user’s data is intercepted or modified by the cloud provider.

A common way to guarantee privacy is encrypting and
authenticating the shared files [2]. There is a series of cryp-
tographic schemes [3] under such circumstance that a third
party auditor is able to check the availability of files while
nothing about the file leaks. Likewise, cloud users probably
will not hold the strong belief that the cloud server is doing
a good job in terms of confidentiality. The cloud users are

The associate editor coordinating the review of this manuscript and
approving it for publication was Shagufta Henna.

motivated to encrypt their files with their own keys before
uploading them to the cloud server. The remaining challenge
is how to share and manage the cryptographic keys among
valid users without the participant of the cloud provider.

Theoretically, access control [4] and group key manage-
ment [5], [6] can be used for key management on file sharing.
However, some unique features of cloud storage introduce
new problems that have not been fully considered [7], [8].
Firstly, shared files are transmitted via the network and the
files may be intercepted by various network monitoring. Just
using access control on the cloud storage cannot fully address
this problem. Secondly, group key management depends
on the cloud provider to manage the encryption key. That
can prevent the shared files from intercepting by the net-
work, while the shared files can be intercepted by the cloud
provider.

In this paper, we proposed a secure group key management
protocol on cloud storage over unreliable channels, aiming
at protecting the shared files on the cloud storage. Mixed
encrypiton techonology is used to generate and distribute
group keys, which resistance attacks from network monitor.
In addition, we propose a verified protocol that against the
attacks from the file sharers or the cloud provider.

The rest of the paper is organized as follow. Section 2 dis-
cusses the related work. In section 3, we present our protocol

123614 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1951-2244
https://orcid.org/0000-0001-6798-0195
https://orcid.org/0000-0003-3333-9281
https://orcid.org/0000-0001-8175-7651
https://orcid.org/0000-0002-2333-1406

S. Zhang et al.: Group Key Management Protocol for File Sharing on Cloud Storage

as well as notations to be used in this paper. Section 4 gives
the details of our protocol. Section5, we address some secu-
rity issues of our method and Section6 describes our proto-
type implementation on commodity hardware and software.
Finally, the paper draws the conclusion in Section 7.

II. RELATED WORKS
The security of storage systems has always been an area
of active research. There are many actual systems, such as
CFS [9] and NASD [10]. CFS is tailored towards single-user
workstations and relied on user-supplied passwords for data
encryption. NASD proposes a distributed system comprising
intelligent disks and users supplied keys as proofs of autho-
rization. Approaches such as NASD and SNAD [11] focus
mainly on securing network traffic and preventing out-side
attacks.

Rao [12] proposed a secure sharing schemes of personal
health records in cloud computing based on ciphertext-policy
attributed-based(CP-ABE) signcryption [13]. It focus on
restricting unauthorized users on access to the confidential
data. Liu et al. [14] proposed an access control policy based
on CP-ABE for personal records in cloud computing as
well. In [12] and [14],only one fully trusted central authority
in the system is responsible for key management and key
generation.

Huang et al. [15] introduced a novel public key encryption
with authorized equality warrants on all of its ciphertext or a
specified ciphertext. To strengthen the securing requirement,
Wu et al. [16] proposed an efficient and secure identity-based
encryption scheme with equality test in cloud computing.
Xu et al. [17] proposed a CP-ABE using bilinear pairing
to provide users with searching capability on ciphertext
and fine-grained access control. He et al. [18] proposed a
scheme named ACPC aimed at providing secure, efficient
and fine-grained data access control in P2P storage cloud.
Recently, Xue et al. [19] proposed a new framework, named
RAAC, to eliminate the single-point performance bottleneck
of the exiting CP-ABE based access control schemes for pub-
lic cloud storage. While these schemes use identity privacy
by using attribute-based techniques which fail to protect user
attribute privacy.

The most recent work addressing the privacy issues in
a cloud-based storage is carried out by Pervez et al. [20],
who proposed a privacy aware data sharing scheme SAPDS.
It combines the attribute based encryption along with proxy
re-encryption and secret key updating capability without rely-
ing on any trusted third party. But the storage and communi-
cation overhead of SAPDS is decided by attribute encryption
scheme.

The above systems give an identical data access permission
to groups of users, and any user who can access the shared
files based on the access permission. These group permis-
sions are typically used to secure the keys of data encryption.
We can observe that how to securely share data files in a
multiple-owner manner for groups while preserving identity

privacy from a distrust cloud remains to be a challenging
issue.

III. PROTOCOL MODEL AND DEFINITIONS
A. PROTOCOL MODEL
1) GOALS
Our general goal is to develop an efficient group key manage-
ment protocol for file sharing on cloud storage, the resulting
techniques should be able to confront two main problems.
One is ensuring that the content of the shared files cannot
be learned by the unauthorized peoples. The other is protect-
ing the files against misoperation by the cloud provider and
interception by the network.

2) SHARE MODEL
Users who want to share files constitute a sharing group,
each sharing group is managed by the cloud provider. Every
sharer in the sharing group owns a pair of key used to process
the communication message. The public key is managed
by the cloud provider, while the private key is only known
by the sharers. Whenever a sharer wants to share his file
within the group, it should generate a group key and encrypt
the file with the group key before transmitting the file to the
cloud. Then he uses a key distribution scheme to distribute the
group key to the other group sharers without the participation
of the cloud provider. Recovering the group key needs the
collaboration of all the group members. Our share model is
shown as Fig.1.

3) COMMUNICATION MODEL
To focus on the group keymanagement, we adopt a simplified
group communication model. Assuming that all file sharers
use common network to broadcast message, the file sharers
may broadcast a message to the other group sharers directly.

4) THREAT MODEL
Three kinds of adversary may threaten our protocol. The first
is the cloud provider or passive adversary who only gathers
information but does not affect the behavior of the group
members in the communication. The second is the positive
adversary who could alter the output information as a file
sharer. The last is adaptive adversary who could compromise
one or more group sharers and with the ability of gathering
and alter the compromised ones’ output information. Our
goal is that once passive adversary or positive adversary is
detected, our protocol will be terminated while the adaptive
adversary has to compromise n group members to defeat our
protocol, where n is the quantity of the group members.

5) ALGORITHM MODEL
Consider a sharing group G and every group mem Pi with a
broadcast message B.
D is a personal key share protocol if:
(a) for any group member Ui, is determined by K

and B.

VOLUME 8, 2020 123615

S. Zhang et al.: Group Key Management Protocol for File Sharing on Cloud Storage

FIGURE 1. Sharing model of GKMP.

FIGURE 2. The process of GKMP.

(b) all members in the sharing group are not able to learn
anything about K .

(c) no information of mi is learned from either the broad-
cast message or the secret key K alone.
Definition 2: Group key management protocol guarantees

equity and availability if any set P ⊂ U1,U2, . . . ,Un where
the size of P < n, the members in P together cannot get any
information aboutK . And after interactive operation of all the
group members, K would be reconstruction.
Definition 3: Group key management protocol resists pas-

sive attack if any people Pi 6∈ U1,U2, . . . ,Un cannot get
any information about K , even with the knowledge of all the
interactive message.
Definition 4: Group key management protocol resists

active attack if any people with the ability to tam-
per the output information cannot get any information
about K.

IV. GKMP
In this section, we present our techniques for group key
distribution. Themotivation of the protocol is distribute group
key without the cloud provider’s participation. A key share
protocol is proposed for the file owner to distribute the group

keys. To detect whether there are adversaries among the key
share protocol, a verification protocol is proposed as well.

The processing of GKMP is shown as Fig2.

A. KEY SHARE PROTOCOL
The purpose of key share protocol is to distribute a group
key to group members, and the other members cannot get
any information of the key. In our approach, the file owner
broadcasts a message, and all the group members can derive
the key from the message. We propose an approach with
the combination of AES and RSA [22], AES is used to
encrypt the shared file and RSA is used to encrypt the broad-
cast message. Suppose that U1 wishes to share a file F to
U2,U3, ...Un. Our key distribution protocol can be shown as
Fig3 and summarized as follows:

1) INITILIZATION
The cloud provider creates a sharing group G containing
U1,U2, . . . ,Un. EachUi generates a pair of key (Pi, Si0) and
Ui sends Pi to the cloud provider via the public channel. The
cloud provider transmits the public keys of the members to
the file owner U1. U1 produces a group key K secretly and
it encrypts F using Equation1. Specifically, cipher(F) is sent

123616 VOLUME 8, 2020

S. Zhang et al.: Group Key Management Protocol for File Sharing on Cloud Storage

FIGURE 3. Initialization and key generation.

and stored on the cloud storage.

cipher(F) = ENC(AES,F,K). (1)

2) ENCRYPITON KEY GENERATION
U1 uses the public keys P2,P3, . . . ,Pn of U2,U3, . . . ,Un
which have been received from the cloud provider to gen-
erate the broadcast message SK . Firstly, U1 calculates m =
fracsize(K)(n− 1) and generates a random value p, taking m
bits of K (record as Kmod) from the (p + 1) bit to (p + m)
bit secretly and splits the rest bites of K(record as Ksub) into
(n− 1) piece k2, k3, . . . , kn equally. Then Ui encrypts each ki
with Pi using RSA. Finally, Ui encapsulates all the encrypted
ki to SK and broadcast SK on the public channel.

Ksub = K (0, p)K (p+ m+ 1, size(k)− 1). (2)

ki=Ksub(
size(Ksub×(i− 2))

n− 1
,
size(Ksub×(i− 1)

n− 1
).

(3)

cipher(ki) = ENC(RSA, ki,Pi). (4)

SK = cipher(k2)cipher(k3)...cipher(kn). (5)

step 2 to n-1) At step j, j = 2, 3, . . . ,n-1 Ui gets Ki,j−1 which
has been received from Ui−1 (U2 gets it from Un) and does
the calculation steps shown as follow.

cipher(ki) = ENC(RSA, ki,Pi). (6)

3) USER SUBSCRIPTION AND DECRYPTION
All themembers of the sharing groupGmay get the broadcast
message from the public channel which contains SK .The next
task for the group members is reconstructing the group key
from SK . The steps of reconstruct algorithm are shown as
Fig4. .
Step 0) Ui, i = 2...n gets the information from U1 via the

public channel and the encryption part cipher(ki) from SK

and decrypts it using his private key Si.

cipher(ki)=SK (
size(SK)×(i− 2)

n−1
,
size(SK)×(i− 1)

n− 1
−1).

(7)

Step 1) Ui decrypts cipher(Ki) using his private key Si.
Then encryption Ki with the public key of Ui+1. Gen-
erate Ki,1 by replacing cipher(ki+1) with the encrypted
ENC(RSA, ki,Pi) in SK and send Ki,1 to Ui+1(Un transmit
it to U2).

ki = DEC(RSA, cipher(Ki), Si). (8)

Ki,1 = cipher(K2)...cipher(ki)ENC(RSA, ki,Pi+1)

× cipher(Ki+2)...cipher(Kn)). (9)

step 2to n-1) At step j, j = 2, 3, . . . ,n-1 Ui gets Ki,j−1
which has been received from Ui−1(U2 gets it from Un) and
does the calculation steps shown as follow.

k =

{
i− j+ 1 i− j > 0
n+ i− j i− j <= 0

(10)

cipher(kk) = Ki,j−1(
size(SK)× (i− 2)

n− 1
,

size(SK)× (i− 1)
n− 1

− 1). (11)

kk = DEC(RSA, cipher(kk), Sk). (12)

Ki,j = cipher(K2)...cipher(ki)ENC(RSA, kk ,Pi+1)

× cipher(Ki+2)...cipher(Kn)). (13)

Then Ui sends Ki,j to Ui+1 (Un send it to U2). Finally, after
n−1 steps, every groupmembers computes ki, i = 1, 2, . . . , n
and gets a copy of Kmod ,Ki = k2K3...kn. The intermediate
information Ui has sent and received show as table 1 and
table 2.

B. VERIFICATION PROTOCOL
Key share protocol is an efficient protocol to distribute group
key to group members. Here we further extend it to enable the
group members to verify their own intermediate information.
And the process is shown as Figure.5. During the key distri-
bution, every group memberUi receives the information from
the public channel and computes a copy of Ksub. Verification
protocols consists of four steps in order to check Ki.

1) INITIALIZATION
Our approach chooses a one way hash function HASH () to
calculate the hash value of Ksub. U1 broadcasts HASH (Ksub)
through the public channel.

2) CALCULATE VERIFY VALUE OF KI
Each Ui computes the hash value Ki and broadcasts their
verification value Vi on the public channel.

Vi = ENC(RSA,HASH (Ki))

= HASH (Ksub. U1 : 0,P1)). (14)

VOLUME 8, 2020 123617

S. Zhang et al.: Group Key Management Protocol for File Sharing on Cloud Storage

FIGURE 4. Reconstruct algorithm of GKMP.

TABLE 1. Received data by Ui .

TABLE 2. Send data by Ui .

3) VERIFICATION
U1 computes the summarize of Vi, s =

∑n
i=2 Vi and broad-

casts the result according to following steps:
1) If(S 6= n − 1), U1 announces key distribution fails and

the protocol terminates.
2) If(S = n − 1), U1 announces that key share succeeds

and it publishes Kmod , m.
In verification protocol, if a group member sends wrong

intermediate information to our group members, it may
detected by U1.

Key share protocol is used to distribute group key to
members of the sharing group without the participation of
the cloud provider. Verification Protocol is used to judge
whether there is any cheating exists in key share protocol
and provide the security of key sharing. By executing these
protocols stepwise, the group key is distributed to the group
memberships secretly though public channels.

V. SECURITY ANALYSIS
In this section we address some security issues of GKMP.
We start by analyzing security issue of GKMP and then
giving a simple comparison between GKMP, Local Key
Hierarchy (LKH) protocols presented by Wong et al and

Wallner [22] and SAPDS [20] a self-healing attribute-based
privacy aware date sharing in cloud.

A. SECURITY ANALYSIS OF GKMP
In the next section, we prove the security of GKMP in
terms of equity, availability and resistance that are defined
in Section3.2.
Theorem 1:Key share protocol is an equity secure personal

key share protocol.
Proof 1: In order to prove that our protocol is an equity

secure personal key share protocol, according to definition2,
we need to prove that theW available participants cannot get
any information about when W < N . Where noted the size
of the sharing group is W and the available online members
are N .
Attack Game1: The available members Uk ∈ Gm, |Gm| =

M and each Uk with the knowledge of his owner id k . They
conclude to reconstruct the decryption key.
Firstly they resort their turn according their ids. Then they

does the sharing protocol to reconstruct the K. As the key
share protocol describes, at each turns j,Uk decryptsKk−1,j−1
and calculates Kk,j. It sends Kk,j to Uk+1, the protocol works
well with the condition that Uk−1,Uk ∈ Gm. Conducting

123618 VOLUME 8, 2020

S. Zhang et al.: Group Key Management Protocol for File Sharing on Cloud Storage

FIGURE 5. The propess of verification protocol.

M steps, every online participants gets M parts of the sub
keys kmin, kmin+1,...km , where m is the minimum ID of Gm.
As there are m parts of keys is concluded, there are

still size(K)−Size(Kmod)
size(K) ×

n−m
n percent of the group key

are secret. The probability of Umin guesses the key is
P1 = (2

(size(K)−size(Kmod))×(n−m)
m)−1).

Otherwise, the game is based on the assumption that the
ids of the online users is continuous. The propobility of the
assumption is P1 = n

Cmn
TheM Group Members can guess key with the probability

P = P1 × P2 = n

Ckn (2
(size(K)−size(Kmod))×(n−m)

m)−1)
.which can be

ignored.
Theorem 2: GKMP is an equity secure personal key share

protocol with the ability to resist passive and active attack.
Proof 2: In order to prove that our protocol has the ability

to resist passive adversary. We need to show that an adversary
A with the ability of gather information on the public channel
can’t get any information of the group key. Even if it cloud
corrupt some additional users and publishes the wrong value
of intermediate information can’t get any information of the
group key as well.
Attack Game2: Suppose that there is a passive attacker

A on the public channel and A receives all the intermediate
information on the public channel. The first step A takes is to
decode the intermediate information with K included. As all
the intermediate information is encrypted by the public keys
of the group members in order, A should get the private keys
of all the members. The probability of A gets all the private
keys is P1 = (1

2size(SK)
n−1

).And the intermediate information
is encrypted by the public keys in order, the probability of get
the right group key is (1

2size(SK)
n−1

)× 1
(n−1)! . Thus there is more

advantage than disadvantage for the attacker to crack the key.
Ui decides to corrupt some additional users U ′ and pub-

lishes the wrong value of intermediate information. At the
end of the protocol, every uncorrupted user in U ′′ = U −U ′

outputs Kj which is not equal with HASH (Ksub). The file
owner would not publish Kmod and the protocol would be
abandoned as well.

By the analysis above, we conclude that the proposed pro-
tocol achieve the security goals including equity, availability
as well as resistance.
Theorem 3: GKMP is an equity secure personal key share

protocol with the ability to resist cloud provider attack.

TABLE 3. Security comparison.

Proof 3: In order to prove that our protocol resist cloud
provider, we must make sure that the shared data cloud
not be decrypted by cloud provider. As proved in proof2,
cloud provider couldn’t get the decryption key by gathering
information or correpting a group members. The shared data
stored on the cloud is encrypted using AES algorithm. As the
security performance of AES is excellent and unknown attack
methods can attack non-linear components, we conclude that
shared data could not be decrypted by cloud provider.

B. SECURITY COMPARISON
Table 3 summarized the comparison between LKH, SAPDS
and GKMP. One of the major differences between GKMP,
SAPDS and LKH is the roles of keymanager. In the group key
approach, the key manager is the cloud provider, whereas in
GKMP and SAPDS, the group key is determined by the group
members and shared without the participant of the cloud
provider. Even more, in group key approach and SAPDS,
a safety transmission channel must be exist to protect the
master key from being stolen by attackers. While in GKMP,
the group key is encrypted using each group members’ public
key and only public transmission is needed to distribute the
group key.

Another important distinction among these three appro-
aches is the security level of shared file. As the files are
stored in an open environment, the security of files became
more important. In LKH, master key is just used to control
the access and the files are stored on the cloud without
encryption. While in GKMP and SAPDS the group key is
used to encrypt shared files as well. As the cloud provider
just manages the encrypted shared files and public keys of
group members, the shared files have become more safety
than before. Obviously, GKMP and SAPDS are more suitable
to the cloud storage. But SAPDS assumed that group mem-
bers behave honestly, by which they mean that only passive
attackers are defend.

VI. RESULTS AND EVALUATION
In this section, we provide the performance assessment of the
proposed scheme. Particularly, our assessment focuses on the
storage and computational overhead of GKMP.

A. PERFORMANCE
A series of experiments are designed to analysis the efficiency
of GKMP. A server with Intel core 8 Duo 2.93GH processer
and 8GB RAM is used to store the shared files as cloud

VOLUME 8, 2020 123619

S. Zhang et al.: Group Key Management Protocol for File Sharing on Cloud Storage

TABLE 4. Computing complexity.

storage does. And varying numbers of threads running on a
personal computer with Intel core 2 Duo 2.93GH processer
and 2GB RAM as participants.

B. STORAGE OVERHEAD
In this section, the storage overhead of SAPDS and GKMP
are tested. As CP-ABE [12], [14] used by the SAPDS to
distribute the key, ciphertext size, public and private key size
between the latest CP-ABE scheme [14] and GKMP were
counted. In our paper, we assume that the quantity group
numbers was n and the size of key is. The efficiency of GKMP
is measured in the following item. Ciphertext Size Implied
the communication cost that the file owner needed to send
to the cloud(SAPDS) or the data owner needed to send to
group members(GKMP). In SAPDS and GKMP, the shared
files and encrypted key were sent by the file owner to the
cloud.

NUMc(SAPDS) = NUMc(GKMP)

= size(EncryptedFile)

+ size(EncryptedKey). (15)

Private Key Size Represented the storage cost of the group
members’ private keys in the scheme.

In SAPDS, every group member needs to store a pair
of private-public keys and a number of access key tree’s
attribute,We consider the number of attributes is r, r < log2n
and the size of attributes is L ′bits. The total size of keys stored
by a group member is 2× L + r × L ′)bits. (2× L bits are the
size of a pair of asymmetric key and (r × L ′)bits stands for
the size of attribute keys.

NUMp(SAPDS) = (2× L + r × L ′)bits. (16)

In GKMP, the group members only need a pair of
private-public keys.

NUMp(GKMP) = (2× L)bits. (17)

r×L ′bits of private key size was need by SAPDS thanGKMP.
Public Key Size Represented the storage cost for cloud to
store all members’ public keys.

In SAPDS, CP-ABE was used to distribute encryption
keys, at least 2 × Log2n access key tree attributes are stored
by the cloud provider.

NUMp(SAPDS) = (n× L + 2× Log2n× L ′)bits. (18)

In GKMP, only members’ public keys were stored by the
cloud provider.

NUMp(GKMP) = (n× L)bits. (19)

FIGURE 6. Public key size of SAPDS and GKMP.

FIGURE 7. Computation overhead with different participant number of
SAPDS and GKMP.

To simplify the computation, we assume the attribute have
the same size of the key. With the growth of the quantity of
participant members and key size, the Key size is shown as
Table4. As is shown in the Fig7, about 20 percent of key size
was saved by GKMP. Even with same quantity of ciphertext
size, (r × L ′)bits of private key and 20% of public keys are
saved by GKMP.

C. COMPUTATION OVERHEAD
The first step in SAPDS and GKMP is generating a secret key
K to encrypt the shared files and then encryption algorithm
is used to process the secret Key. The process time is tested
in our experiment with the 512bit secret key and the statistics
is shown in Fig7. The static shows that, the process of secret
key with five different group members would take maximum
14.2s by SAPDS. However, GKMP just takes at most 190ms
to process the secret key.

In SAPDS user executes CP-ABE decryption process to
the secret key K . And in GKMP share is primarily required
when user gets K for the very first time. Fig8 shows the
computation overhead of CP-ABE and GKMP decryption
process over 56-bit, 128-bit and 256-bit decryption keys.

123620 VOLUME 8, 2020

S. Zhang et al.: Group Key Management Protocol for File Sharing on Cloud Storage

FIGURE 8. Computation overhead with different encryption key of SAPDS and GKMP.

FIGURE 9. Computation overhead with different secret key of SAPDS and
GKMP.

The static shows that, the process of encryption key with
five different group members would take maximum 14.3s
by SAPDS. However GKMP just take at most 191ms and
the size of decryption keys has little influence in GKMP’s
computational overhead.

SAPDS and GKMP exhibits different decryption time for
different sizes of secret key K , encrypted under same size of
encryption key. Shown in Fig9, SAPDS tends to consume
slightly more time as compared to GKMP. Furthermore,
GKMP shows linear decryption overhead with the increase
in number of group member.

VII. CONCLUSION
In this paper, we propose a novel group key management pro-
tocol for file sharing on cloud storage. Public key are used by
GKMP to guarantee the group key distribute fairly and resist
attack from compromised vehicles or the cloud provider.
We give detailed analysis of possible security attacks and
corresponding defense,which demonstrates that GKMP is
secure under weaker assumptions. Moreover we demonstrate
the ptotocol exhibits less storage and computing complexity.

REFERENCES
[1] P.-W. Chi and C.-L. Lei, ‘‘Audit–free cloud storage via deniable attribute–

based encryption,’’ IEEE Trans. Cloud Comput., vol. 6, no. 2, pp. 414–427,
Apr. 2018.

[2] J. Zhou, H. Duan, K. Liang, Q. Yan, F. Chen, F. R. Yu, J. Wu, and J. Chen,
‘‘Securing outsourced data in the multi–authority cloud with fine–grained
access control and efficient attribute revocation,’’Comput. J., vol. 60, no. 8,
pp. 1210–1222, Aug. 2017.

[3] J. Wu, Y. Li, T. Wang, and Y. Ding, ‘‘CPDA: A confidentiality-preserving
deduplication cloud storage with public cloud auditing,’’ IEEE Access,
vol. 7, pp. 160482–160497, 2019.

[4] H. Xiong and J. Sun, ‘‘Comments on verifiable and exculpable outsourced
attribute–based encryption for access control in cloud computing,’’ IEEE
Trans. Depend. Sec. Comput., vol. 14, no. 4, pp. 461–462, Jul. 2017.

[5] J. Shao, R. Lu, and X. Lin, ‘‘Fine-grained data sharing in cloud computing
for mobile devices,’’ in Proc. IEEE Conf. Comput. Commun.(INFOCOM),
Apr. 2015, pp. 2677–2685.

[6] R. Ahuja, S. K. Mohanty, and K. Sakurai, ‘‘A scalable attribute-set-based
access control with both sharing and full-fledged delegation of access
privileges in cloud computing,’’Comput. Elect. Eng., vol. 57, pp. 241–256,
Jan. 2017.

[7] S. Roy, A. K. Das, S. Chatterjee, N. Kumar, S. Chattopadhyay, and
J. J. P. C. Rodrigues, ‘‘Provably secure fine–grained data access control
over multiple cloud servers in mobile cloud computing based healthcare
applications,’’ IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 457–468,
Jan. 2019.

[8] Z. Fu, X. Sun, S. Ji, and G. Xie, ‘‘Towards efficient content-aware search
over encrypted outsourced data in cloud,’’ in Proc. IEEE 35th Annu. IEEE
Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[9] M. Blaze, ‘‘A cryptographic file system for UNIX,’’ inProc. 1st ACMConf.
Comput. Commun. Secur. (CCS), 1993, pp. 9–15.

[10] H. Gobioff, ‘‘Security for a high performance commodity storage subsys-
tem,’’ Ph.D. dissertation, School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 1999.

[11] E. Miller, ‘‘Strong security for network-attached storage,’’ in Proc. Conf.
File Storage Tech., vol. 6, 2002, pp. 1–13.

[12] Y. S. Rao, ‘‘A secure and efficient ciphertext–policy attribute–based sign-
cryption for personal health records sharing in cloud computing,’’ Future
Gener. Comput. Syst., vol. 67, pp. 133–151, Feb. 2017.

[13] J.-S. Su, D. Cao, X.-F. Wang, Y.-P. Sun, and Q.-L. Hu, ‘‘Attribute–based
encryption schemes,’’ J. Softw., vol. 22, no. 6, pp. 1299–1315, Jun. 2011.

[14] J. Liu, X. Huang, and J. K. Liu, ‘‘Secure sharing of personal health
records in cloud computing: Ciphertext–policy attribute–based signcryp-
tion,’’ Future Gener. Comput. Syst., vol. 52, pp. 67–76, Nov. 2015.

[15] K. Huang, R. Tso, Y.-C. Chen, S. M. M. Rahman, A. Almogren, and
A. Alamri, ‘‘PKE–AET: Public key encryption with authorized equality
test,’’ Comput. J., vol. 58, no. 10, pp. 2686–2697, Oct. 2015.

[16] L.Wu, Y. Zhang, K.-K.-R. Choo, andD. He, ‘‘Efficient and secure identity-
based encryption scheme with equality test in cloud computing,’’ Future
Gener. Comput. Syst., vol. 73, pp. 22–31, Aug. 2017.

[17] Q. Xu, C. Tan, Z. Fan, W. Zhu, Y. Xiao, and F. Cheng, ‘‘Secure multi–
authority data access control scheme in cloud storage system based on
attribute–based signcryption,’’ IEEE Access, vol. 6, pp. 34051–34074,
2018.

[18] H. He, R. Li, X. Dong, and Z. Zhang, ‘‘Secure, efficient and fine–grained
data access control mechanism for P2P storage cloud,’’ IEEE Trans. Cloud
Comput., vol. 2, no. 4, pp. 471–484, Oct. 2014.

[19] K. Xue, Y. Xue, J. Hong, W. Li, H. Yue, D. S. L. Wei, and P. Hong,
‘‘RAAC: Robust and auditable access control with multiple attribute
authorities for public cloud storage,’’ IEEE Trans. Inf. Forensics Security,
vol. 12, no. 4, pp. 953–967, Apr. 2017.

VOLUME 8, 2020 123621

S. Zhang et al.: Group Key Management Protocol for File Sharing on Cloud Storage

[20] Z. Pervez, A. M. Khattak, S. Lee, and Y.-K. Lee, ‘‘SAPDS: Self-healing
attribute-based privacy aware data sharing in cloud,’’ J. Supercomput.,
vol. 62, no. 1, pp. 431–460, Oct. 2012.

[21] N. T. Courtois and G. V. Bard, ‘‘Algebraic cryptanalysis of the data encryp-
tion standard,’’ in Cryptography and Coding, vol. 4887. Berlin, Germany:
Springer, 2007, pp. 152–169.

[22] E. Fujisaki and T. Okamoto, ‘‘Secure integration of asymmetric and
symmetric encryption schemes,’’ J. Cryptol., vol. 26, no. 1, pp. 80–101,
Jan. 2013.

SHOUYI ZHANG was born in Linfen, Shanxi,
China, in 1988. He received the M.S. degree
from Beijing Jiaotong University (BJTU),
China, in 2014, where he is currently pursu-
ing the Ph.D. degree in mechanical engineering.
His research interest includes manufacturing sys-
tem optimization.

SI HAN was born in Suzhou, Anhui, China,
in 1988. She received the Ph.D. degree from the
Beijing University of Posts and Telecommunica-
tions (BUPT), China, in 2015. She is currently
a Lecturer with the China University of Political
Science and Law. Her research interests mainly
include information security, cloud computing,
and the Internet of Thing.

BAOKUN ZHENG born in Baoding, Anhui,
China, in 1978. He received the M.S. degree from
Renmin University of China. He is currently pur-
suing the Ph.D. degree with the Beijing Institute
of Technology. He is also working as an Associate
Professor with the Beijing Institute of Technology,
China University of Political Science and Law. His
research interests include security networks and
blockchain.

KE HAN was born in Heze, Shangdong, China,
in 1980. He received the Ph.D. degree from
the Beijing University of Posts and Telecom-
munications (BUPT), China, in 2008. He is
currently an Associate Professor with BUPT.
His research interest mainly includes electronic
and telecommunications.

ENTONG PANG was born in Chahaery-
ouyiqianqi, Inner Mongolia, China, in 1988.
She received the M.E.M. degree from Peking
University, China, in 2019. She is currently
an Engineer with Aerospace Hongka Intelligent
Technology (Beijing) Company, Ltd. Her research
interests mainly include information security and
industrial control security.

123622 VOLUME 8, 2020

