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ABSTRACT Focusing on the fact that the existing research on optimal maintenance decision for remaining
useful lifetime (RUL) prediction and imperfect maintenance has low accuracy of RUL prediction and
rationality of decision results, an optimal maintenance decision method based on RUL prediction for the
equipment subject to imperfect maintenance is proposed in this paper. Firstly, the nonlinear Wiener process
is used to characterize the degradation law of the equipment. Secondly, the imperfect maintenance model
that meets the upper limit of the maintenance number is established based on the nonhomogeneous Poisson
process. Then, based on the concept of the first hitting time, the probability density function (PDF) of the
RUL is derived. Finally, based on the RUL prediction results, the optimal maintenance decision model
for the equipment subject imperfect maintenance is constructed. Through the example verification and
cost parameter sensitivity analysis, the proposed method can effectively improve the accuracy of the RUL
prediction and the scientific of maintenance decision results, which has engineering application value.

INDEX TERMS Maintenance decision, imperfect maintenance, remaining useful lifetime prediction,
nonlinear Wiener process, nonhomogeneous Poisson process.

I. INTRODUCTION
Since the industrial revolution, production has improved
dramatically in terms of technology and automation levels,
and traditional manufacturing enterprises are facing more
challenges than ever. As a result, maintenance capacity is
playing an increasingly important role in enterprise com-
petitiveness [1]–[4]. To further improve enterprises’ main-
tenance capacity and ensure the economic efficiency and
safety of production processes, prognostics and health man-
agement (PHM) have gradually emerged, and numerous
researches have been achieved for this technique [5]–[9].

In essence, PHM obtains the characteristic informa-
tion of the equipment using advanced sensor technology
and then predicts the variation trend of its health state;
thus, it formulates and implements an optimal maintenance
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decision [10]. In a general sense, PHM has two core
elements, namely, prediction of the equipment RUL and
condition-based maintenance (CBM) of the equipment based
on the RUL prediction. Based on maintenance results,
CBM can be categorized into three types: perfect mainte-
nance (PM), imperfect maintenance (IM), and minimal main-
tenance (MM) [11]–[13]. PM refers to maintenance actions
that can restore the equipment to a brand-new condition.
However, equipment degradation is often irreversible. As a
result, PM is unattainable in practice during production pro-
cesses. MM refers to maintenance actions that have basically
no impact on the technical condition of the equipment. Due
to economic considerations, the application of MM is also
relatively limited in practice during production processes.
IM refers to a maintenance approach that produces a result
between those of PM and MM. IM improves the technical
condition of the equipment somewhat but does not come at an
immense cost. Consequently, IM has been extensively applied
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in industrial production processes [14]. To date, studies of
optimal maintenance decisions for the equipment subject to
IM based on RUL predictions have been relatively rarely
reported. Ge et al. [15] fitted the degradation path of the
equipment to a Gamma process and predicted the RUL of the
equipment. On this basis, they constructed an optimal main-
tenance decision model that accounts for IM and determined
an optimal inspection cycle length and an optimal number
of IM actions. Owing to its strict monotony, it is difficult
to apply a Gamma process to the prevalent nonmonotonic
degradation behavior in production activities. As a conse-
quence, Ge et al.’s model has a limited scope of application.
In view of the deficiencies in Gamma models, Guo et al. [16]
noted that after IM to improve the equipment status, residual
degradation remained. They proposed to introduce residual
degradation into a Wiener process model. On this basis,
they derived a probability density function (PDF) for the
equipment RUL that accounts for residual degradation. Fur-
thermore, they constructed an optimal maintenance decision
model based on RUL predictions and determined an optimal
preventive maintenance (PvM) threshold for the equipment.
On the other hand, Zhang et al. [17] noted that IM affects
the equipment degradation rate. They constructed an optimal
maintenance decisionmodel by introducing a drift coefficient
improvement factor to aWiener degradation model and deter-
mined an optimal maintenance decision for airborne gyro-
scopes. The above two methods take into consideration only
the effect of IM on the extent and rate of degradation of the
equipment. Thus, Pei et al. [18] proposed an optimal main-
tenance decision model for the equipment subject to IM that
comprehensively accounts for the extent and rate of degra-
dation and determined an optimal inspection interval and an
optimal PvM threshold for the equipment. However, in degra-
dation modeling, the above RUL prediction-based optimal
maintenance decisions for the equipment subject to IM all
assume that the degradation process is linear and overlook the
nonlinear degradation prevalent in real-world environments.
This reduces RUL prediction accuracy and affects the sci-
entific basis of strategies. To further improve RUL predic-
tion accuracy for the equipment subject to IM, Hu et al. [19]
constructed a degradation model for the equipment subject
to IM actions based on a nonlinear Wiener diffusion process
and analyzed the effect of IM on both the extent and rate
of degradation. On this basis, they expanded the scope of
application of the method and improved prediction accuracy.
However, Hu et al.’s method can be used to predict the RUL of
the equipment only within a specific degradation stage but is
unable to cover the full life cycle of the equipment. Addition-
ally, themaintenance decision did not investigate in this study.
By integrating nonlinear Wiener processes at various degra-
dation stages based on the properties of the inverse Gaussian
distribution, Zheng et al. [20] predicted the RUL in full life
cycle of the equipment subject to IM. However, Zheng et al.’s
method requires a given PvM threshold, which further intro-
duces human errors and is unfavorable to the improvement
of prediction accuracy. Additionally, Zheng et al. did not

analyze system maintenance decisions. In view of the above
problems, assuming that the PvM threshold is unknown,
Wang et al. [21] modeled the cumulative effect of IM actions
using a nonlinearWiener process and a homogeneous Poisson
process and thus improved RUL prediction accuracy. Simi-
larly, this method did not study the maintenance decision of
the equipment. Moreover, there is also a potential unrealistic
condition in Wang et al.’s method — the number of IM
activities can be infinite. However, due to the irreversibility of
the equipment degradation process and the economic require-
ments of production activities, there is an upper limit for the
total number of IM events during the equipment’s life cycle.
As a result, Wang et al.’s method is also unable to accurately
predict the RUL of the equipment subject to IM.

In view of the problems in the available studies on optimal
maintenance decisions based on RUL predictions for the
equipment subject to IM, in this study, based on the RUL
prediction method proposed by Wang et al. [21], IM actions
are described using a nonhomogeneous Poisson process.
Additionally, by introducing an upper limit constraint for
the number of IM activities, the degradation pattern of the
equipment subject to IM is depicted accurately, and RUL pre-
diction accuracy for the equipment subject to IM is effectively
improved. On this basis, an optimal maintenance decision
model that accounts for RUL predictions is constructed using
the renewal reward theorem. By jointly optimizing the equip-
ment inspection cycle length and the PvM threshold, the aver-
age maintenance cost in the whole life of the equipment is
minimized.

II. DEGRADATION MODELING OF THE
EQUIPMENT SUBJECT TO IM
A. DEGRADATION MODEL
In this study, the randomness of the equipment degradation
process is described using a nonlinear Wiener process as
follows:

XD(t) = XD(0)+ αψ(t, β)+ σBB(t) (1)

where XD(t) is the extent of performance degradation of the
equipment at the time point t , XD(0) is the initial degradation
state (it is generally assumed that XD(0) = 0), α is the drift
coefficient (α ∼ N (µα, σ 2

α )),ψ(t, β) is a continuous function
of t (generally, ψ(t, β) = tβ ), σB is the diffusion coefficient,
and B(t) is a standard Brownian motion.

B. IM MODEL
In this study, a compound nonhomogeneous Poisson process
is used to describe the IM process to which the equipment
is subject to reflect the randomness of IM. It is assumed that
these IM actions meet the following conditions:

(1) The equipment is subject to IM. After the IM, the equip-
ment status will be between ‘‘as good as new’’ and ‘‘as bad
as old’’; i.e., the extent of recovery of the performance index
(XEk ) meets the following condition: 0 < XEk < XD(Tk ),
where XD(Tk ) is the extent of performance degradation of the
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equipment before the IM and the corresponding Tk is the time
at which the IM is performed.

(2) The duration of maintenance to which the equipment
is subject each time is far shorter than its life cycle and thus
negligible.

(3) The recovery extent of the performance index of the
equipment (XEi ) resulting from IM actions each time is inde-
pendent of those resulting from IM actions at other times and
satisfies a common random distribution: fXE (X

E
∣∣ϕ), where

ϕ is the distribution parameter.
(4) The number of occasions of IM (N (tk − tk−1)) to

which the equipment is subject within any arbitrary interval
(tk−1, tk ] within its life cycle (0,T ] satisfies a nonhomoge-
neous Poisson distribution with λ(t |η ) as its intensify func-
tion. Thus, we have

P = (N (tk − tk−1) = nk)

=
(m(tk )− m(tk−1))nk

nk !
exp (m(tk−1)− m(tk )) (2)

where m(t) =
∫ t
0 λ(δ |η )dδ, nk is the number of occasions of

IM within the interval (tk−1, tk ] (t0 = 0, tk−1 < tk ), λ(t |η )
is a function of time t (λ(t |η ) ≥ 0), and η is a parameter.

In summary, IM actions to which the equipment is subject
can be represented by the following:

XM (t) =
N (t)∑
i=0

XEi (3)

where N (t) = N (t − t0) and E0 = 0.

C. DEGRADATION MODEL FOR THE EQUIPMENT
SUBJECT TO IM
Based on the random system-degradation process, the effect
of IM on system performance degradation is taken into con-
sideration. Thus, a comprehensive system-degradation model
is constructed as follows:

X (t) = XD(t)− XM (t) (4)

where the negative sign means that IM can help to improve
the degraded state of the equipment.

III. PARAMETER ESTIMATIONS FOR THE
DEGRADATION MODEL WITH IM
It is assumed that the degradation data of N equip-
ment are available. Let X (ti,j) be the extent of perfor-
mance degradation of the ith (i = 1, 2, · · ·N ) equipment
at the jth (j = 1, 2, · · ·mi) time point. Thus, X i =

[X (ti,1),X (ti,2), · · · ,X (ti,mi )] is all the degradation data for
the ith equipment. Let Ti,k and XEi,k be the time at which
the ith equipment is subject to the kth (k = 1, 2, · · · di) IM
and the corresponding extent of recovery of the performance
index of the equipment, respectively. Thus, di is the total
number of occasions of IM to which the ith equipment is
subject.

A. ESTIMATION OF THE PARAMETER η
To ensure the safety and economic efficiency of the full
lifecycle operation of the equipment, the number of IM for the
equipment is not infinite in engineering practice but instead
has an upper limit (denoted by a). In this study, it is assumed
on this basis that the intensity of IM to which the equipment
is subject within the interval (t, t + s] is directly proportional
to the remaining number of occasions of IM (their ratio is
denoted by b). Thus, based on the above analysis, we have

lim
t→+∞

m(t) = a, t > 0

lim
t→0+

m(t) = 0, t > 0

m(t + s)− m(t)
(t + s)− t

= b (a− m(t)) , t > 0, s > 0

(5)

Let s→ 0+. Thus, we have
m′(t) = b (a− m(t))
m(0) = 0, t > 0
m(+∞) = a

(6)

By solving the differential equation in Equation (6),
we have {

m(t) = a (1− exp(−bt))
λ(t) = ab exp(−bt)

(7)

In this study, the parameter η (η = (a, b)) of the intensity
function of the nonhomogeneous Poisson distribution is esti-
mated using the maximum likelihood method.

Based on Equation (2), the likelihood function of the inten-
sity parameters a and b can be determined:

L(a, b)

=

N∏
i=1

di∏
k=1

(
a
(
exp

(
−bTi,k−1

)
− exp

(
−bTi,k

)))nk
nk !

· exp
(
−a

(
exp

(
−bTi,k−1

)
− exp

(
−bTi,k

)))
(8)

It is easy to conclude that the number of occasions of IM
within an arbitrary interval (Ti,k−1 − Ti,k ] is constant and
equals 1, i.e., nk = 1. Thus, Equation (8) is equivalent to

L(a, b)

=

N∏
i=1

di∏
k=1

a
(
exp

(
−bTi,k−1

)
− exp

(
−bTi,k

))
· exp

(
−a

(
exp

(
−bTi,k−1

)
− exp

(
−bTi,k

)))
(9)

Taking the logarithm of Equation (9), we have

ln (L(a, b))

=

N∑
i=1

di∑
k=1

ln
(
a
(
exp

(
−bTi,k−1

)
− exp

(
−bTi,k

)))
−a

N∑
i=1

(
1− exp

(
bTi,di

))
(10)
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Calculating the partial derivatives of Equation (10) with
respect to a and b, respectively, we have

∂ ln (L(a, b))
∂a

=

N∑
i=1

di
a
−

N∑
i=1

(
1− exp

(
bTi,di

))
(11)

∂ ln (L(a, b))
∂b

=

N∑
i=1

di∑
k=1

Ti,kexp
(
−bTi,k

)
− Ti,k−1exp

(
−bTi,k−1

)
exp

(
−bTi,k−1

)
− exp

(
−bTi,k

)
−a

N∑
i=1

Ti,di exp
(
−bTi,di

)
(12)

Let Equations (11) and (12) equal 0, respectively. Thus, we
have

â =
N∑
i=1

di/
N∑
i=1

(
1− exp

(
b̂Ti,di

))
(13)

×

N∑
i=1

di∑
k=1

Ti,kexp
(
−b̂Ti,k

)
− Ti,k−1exp

(
−b̂Ti,k−1

)
exp

(
−b̂Ti,k−1

)
− exp

(
−b̂Ti,k

)
= â

N∑
i=1

Ti,di exp
(
−b̂Ti,di

)
(14)

By simultaneously solving Equations (13) and (14), esti-
mated values of the parameters a and b (â, b̂, respectively)
are obtained.

B. ESTIMATION OF THE PARAMETER ϕ
The parameter ϕ is estimated using the maximum-likelihood
method.

It is straightforward that the likelihood function corre-
sponding to the parameter ϕ is

L(ϕ
∣∣∣XE ) = N∏

i=1

di∏
k=1

fXE (X
Ei,k |ϕ ) (15)

By maximizing Equation (15), the estimated value of the
parameter ϕ (ϕ̂) can be obtained.

C. ESTIMATION OF THE PARAMETER µα, σα, β, σB
Clearly, the parameters µα, σα, β, σB are components of the
random system degradationmodel. In this study, these param-
eters are estimated using the maximum-likelihood method.

Based on Equation (4), we have

XD(0)+ αtβ + σBB(t) = X (t)+
N (t)∑
i=0

XEi (16)

If we let

Y (t) = X (t)+
N (t)∑
i=0

XEi ,XE0 = 0 (17)

then we have

Y (0) = 0 (18)

Equation (16) is further transformed into

Y (t) = Y (0)+ αtβ + σBB(t) (19)

Y (t) represents the equivalent extent of performance degra-
dation of the equipment. A comparison of Equations (19)
and (1) finds that Y (t) follows a nonlinear Wiener process.
Thus, based on the fundamental properties of a nonlinear
Wiener process [21], a logarithmic likelihood function of
µα, σα, β, σB with respect to the extent of performance degra-
dation (Y ) can be obtained as shown in Equation (20).

lnL(Y ) = −
ln(2π )

2

N∑
i=1

mi −
1
2

N∑
i=1

ln(|6i|)

−
1
2

N∑
i=1

(1Y i − µα1ψ i)
′6−1i (1Y i − µα1ψ i)

(20)

where Y = [1Y1,1Y2, · · · ,1YN ], 1Y i = [1Yi,1,
1Yi,2, · · · ,1Yi,mi ]

′, 1Yi,j = Y (ti,j) − Y (ti,j−1), ti,0 = 0,
6i = σ 2

α1ψ i1ψ
′
i + σ

2
B�i, �i = diag(1t1,i,1t2,i, · · · ,

1tj,i), 1ψ i = [1ψi,1,1ψi,2, · · · ,1ψi,mi ]
′, and 1ψi,j =

ψ(ti,j, β)− ψ(ti,j−1, β), 1ti,j = ti,j − ti,j−1.
To facilitate description, let

σ̄ 2
B =

σ 2
B

σ 2
α

(21)

6̄i =
6i

σ 2
α

(22)

Thus, Equation (20) is equivalent to

lnL(Y ) = −
ln(2π )

2

N∑
i=1

mi −
1
2
ln σ 2

α

N∑
i=1

mi

−
1

2σ 2
α

N∑
i=1

(1Y i − µα1ψ i)
′6̄
−1
i (1Y i − µα1ψ i)

−
1
2

N∑
i=1

ln(
∣∣6̄i
∣∣) (23)

By calculating the partial derivatives of the likelihood func-
tion lnL(Y ) with respect to µα and σ 2

α , respectively, we have

∂ lnL(Y )
∂µα

=
1
σ 2
α

(
N∑
i=1

1ψ ′i6̄
−1
i 1Y i−µα

N∑
i=1

1ψ ′i6̄
−1
i 1ψ i

)
(24)
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∂ lnL(Y )
∂σ 2

α

= −
1

2σ 2
α

N∑
i=1

mi +
1

2
(
σ 2
α

)2
×

N∑
i=1

(1Y i−µα1ψ i)
′6̄
−1
i (1Y i−µα1ψ i) (25)

By setting the partial derivatives to zero, estimated values
of µα and σ 2

α can be obtained:

µ̂α =

N∑
i=1
1ψ ′

i6̄
−1
i 1Y i

N∑
i=1
1ψ ′

i6̄
−1
i 1ψ i

(26)

σ̂ 2
α =

N∑
i=1

(1Y i − µ̂α1ψ i)
′6̄
−1
i (1Y i − µ̂α1ψ i)

N∑
i=1

mi

(27)

Because 6̄i contains hidden parameters σ̄ 2
B and β, it is

impossible to directly determine µ̂α and σ̂α . To estimate
these parameters, Equations (26) and (27) are substituted into
Equation (23). Thus, a logarithmic likelihood function of Y
with respect to σ̄ 2

B and β is obtained:

lnL(Y ) =−
1+ln(2π )+ln σ̂ 2

α

2

N∑
i=1

mi−
1
2

N∑
i=1

ln(
∣∣6̄i
∣∣) (28)

By maximizing Equation (28), estimated values of σ̄ 2
B and

β can be obtained. Then, by substituting the estimated values
of σ̄ 2

B and β into Equations (21), (24), and (25), respectively,
σ̂B, µ̂α and σ̂α can be determined.

IV. RUL PREDICTIONS FOR THE EQUIPMENT
SUBJECT TO IM
The life of the equipment refers to the time at which the
extent of its performance degradation reaches the failure
threshold for the first time (first hitting time). If only the per-
formance degradation of the equipment is taken into account
while ignoring IM, then its life T can be represented by the
following:

T = inf
{
t : XD(t) ≥ ω

∣∣∣XD(0) < ω
}

(29)

where ω is the failure threshold.
A previous study [22] demonstrated that a T correspond-

ing to a nonlinear Wiener process approximately follows an
inverse Gaussian distribution and gave the PDF of T under a
fixed failure threshold:

fT |ω (t |ω )

≈
1√

2π t2
(
ψ(t, β)2σ 2

α + σ
2
B t
)

· exp

(
−

(ω − ψ(t, β)µα)2

2(ψ(t, β)2σ 2
α + σ

2
B t)

)

·

(
ω − ξ (t)µα −

ω − ψ(t, β)µα
ψ(t, β)2σ 2

α + σ
2
B t
ψ(t, β)σ 2

α

)
(30)

where ξ (t) = ψ(t, β)− t (dψ(t, β)/dt).
Further analysis finds that the RUL of the equipment at the

time point tk (lk ) meets the following condition: T = tk + lk .
On this basis, the RUL of the equipment at the time point tk
can be defined as follows:

L = inf
{
lk : XD(tk + lk ) ≥ ω

∣∣∣XD(0) < ω
}

(31)

If we let XU (lk ) = XD(tk + lk )− XD(tk ), then we have

XU (lk ) = αν(lk )+ σBB(lk ) (32)

where ν(lk ) = ψ(tk + lk , β) − ψ(tk , β). Without loss of
generality, XU (0) can be set to 0.

It is clear that XU (lk ) is equivalent to the nonlinear Wiener
process shown in Equation (1). Thus, we have

L = inf
{
lk : XU (lk ) ≥ ω − dk

∣∣∣XU (0) < ω − dk
}

(33)

On this basis, a conditional PDF of the equipment under a
fixed failure threshold can be obtained:

fT |ω (t |ω )

≈
1√

2π l2k
(
ν(lk )2σ 2

α + σ
2
B lk
)

· exp

(
−
(ω − dk − ν(lk )µα)2

2
(
ν(lk )2σ 2

α + σ
2
B lk
) )

·

(
ω−dk−3(lk )µα−

ω−dk−ν(lk )µα
ν(lk )2σ 2

α+σ
2
B lk

ν(lk )σ 2
α

)
(34)

where 3(lk ) = ν(lk )− lk (dν(lk )/dlk).
Considering the effect of IM on the equipment degradation

state, and assuming XW (lk ) = X (tk + lk )− X (tk ), we have

XW (lk )

= XD(tk + lk )− XD(tk )−
(
XM (tk + lk )− XM (tk )

)
= αν(lk )+ σBB(lk )−

N (tk+lk )∑
i=0

XEi −
N (tk )∑
i=0

XEi


XU (lk )−

N (tk+lk )∑
i=0

XEi −
N (tk )∑
i=0

XEi

 = (35)

I.e.,

XU (lk ) = XW (lk )+
N (tlk )∑
i=0

XEi (36)

where
∑N (lk )

i=0 XEi =
∑N (tk+lk )

i=0 XEi −
∑N (tk )

i=0 XEi .
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On this basis, the RUL of the equipment that accounts for
the effect of IM can be defined as follows:

L = inf

lk : XU (lk ) ≥ ω +
N (lk )∑
i=0

XEi

−Xk
∣∣∣XU (0) < ω +

N (lk )∑
i=0

XEi − Xk

 (37)

A comparison of Equations (37) and (33) finds that the
effect of IM on the RUL of the equipment is equivalent to
changing the originally fixed failure threshold ω to a variable
failure thresholdω∗ = ω+

∑N (lk )
i=0 XEi . Based on the previous

analysis, IM XM (t) is a compound nonhomogeneous Poisson
process. Thus, based on the law of total probability, we have

fLk (lk ) = Eω∗
(
fLk |ω ∗(lk |ω∗ )

)
=

∞∑
i=0

f�

 1√
2π l2k

(
ν(lk )2σ 2

α + σ
2
B lk
)

·

(
ω + Ri − Xk −3(lk )µα

−
ω + Ri − Xk − ν(lk )µα

ν(lk )2σ 2
α + σ

2
B lk

ν(lk )σ 2
α

)

· exp

(
−

(
ω + Ri − Xk − ν(lk )µα

)2
2
(
ν(lk )2σ 2

α + σ
2
B lk
) )

·f iRi (X
Ri
|τ )dRi

(a (exp (b(lk + tk ))− exp (btk)))i

i!
· exp (−a (a (exp (b(lk + tk ))− exp (btk)))) (38)

where XR
i
=
∑i

j=0 X
Ej , f i

XRi
(XR

i
|τ ) is the PDF of XR

i
(τ is

a distribution parameter) and � is the value range of XR
i
.

In engineering applications, the average predicted RUL
is generally used as the predicted RUL, which is shown as
follows:

lpk = E(lk ) =
∫
+∞

0
fLk (lk )lkdlk (39)

V. A MAINTENANCE DECISION MODEL FOR THE
EQUIPMENT SUBJECT TO IM
To determine optimal maintenance decisions for the equip-
ment subject to IM, in this study a maintenance decision
model is constructed based on the renewal reward theorem
[23]. The average life-cycle maintenance cost (C(T )) for the
equipment is treated as an objective function, and the PvM
threshold for the equipment (i.e., the RUL threshold (lpr ) in
this study) and the inspection cycle length (1τCM ) are treated
as strategy variables. By minimizing the C(T ), an optimal
maintenance decision is obtained. The maintenance decision
model is represented by the following:

min C(1τCM , lpr ) = lim
T→∞

C(T )
T
=
E (C(T ))
E(T )

(40)

where 1τCM is the inspection cycle length, lpr is the RUL
threshold for the equipment, and T is the life of the equip-
ment, C(T ) is the total maintenance cost within the life
cycle of the equipment, and E(·) signifies calculation of the
expected value.

Additionally, the basic assumptions for the maintenance
decision model are provided as follows. 1) The inspection
method is perfect and can accurately detect the degrada-
tion states of the equipment without the need to shut the
equipment down. Let CCM be the inspection cost for each
time. 2) Compared to the run time of the equipment, the
duration of IM (equivalent to the downtime of the equip-
ment) is negligible. Let Cim be the maintenance cost for
each time. 3) A preventive replacement (PvR) is performed
when the equipment operates fault-free until k1τCM and
its RUL lk1τCM < lpr . Let Cpr be the replacement cost.
4) If the equipment breaks down between two consecutive
inspections, a failure replacement (FR) needs to be performed
immediately. Let Cfr be the sum cost of the replacement and
the additional loss resulting from the sudden malfunction.
In normal circumstances, CCM < Cim < Cpr < Cfr .
Based on the above analysis, the C(T ) for the equipment

includes CCM , Cim, Cpr , and Cpr , i.e.,

E (C(T )) = CCME(NCM )+ CimE(Nim)

+CprPpr (1τCM , lpr )+ CfrPfr (1τCM , lpr ) (41)

where Ppr (1τCM , lpr ) is the probability that the equipment
needs a PvR and Pfr (1τCM , lpr ) is the probability that the
equipment needs an FR.

The equipment is generally subject to inspections and IM
several times within one life cycle and enters the next new life
cycle upon being subject to a PvR or FR, as shown in Figure 1.

As demonstrated in Figure 1(a), the equipment is subject
to an FR between two consecutive inspections, i.e., the life of
the equipment is between (k − 1)1τCM and k1τCM , which
is equivalent to the RUL of the equipment at the time point
(k − 1)1τCM being less than 1τCM . Thus, the probability
that the equipment is subject to an FR within the interval
((k − 1)1τCM , k1τCM ) is as follows:

Pfr,k (1τCM , lpr )

= P {T < k1τCM |T > (k − 1)1τCM }

=
P {(k − 1)1τCM < T < k1τCM }

T > (k − 1)1τCM

=
P {0 < T − (k − 1)1τCM < 1τCM }

T − (k − 1)1τCM > 0
= P

{
l(k−1)1τCM < 1τCM

}
(42)

On this basis, we have

Pfr (1τCM , lpr )

=

+∞∑
k=1

Pfr,k (1τCM , lpr )

=

+∞∑
k=1

P {lt < 1τCM |t = (k − 1)1τCM }
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FIGURE 1. The lifecycle maintenance process of the equipment.

=

+∞∑
k=1

Flt (1τCM |t = (k − 1)1τCM )

=

+∞∑
k=1

∫ 1τCM

0
flt (lt |t = (k − 1)1τCM )dlt (43)

Further analysis finds that a PvR and an FR within the
life cycle of the equipment are complementary events. Thus,
based on the relevant properties of complementary events
in probability theory, the probability that the equipment is
subject to a PvR is as follows:

Ppr (1τCM , lpr ) = 1− Pfr (1τCM , lpr ) (44)

A PvR is performed simultaneously when the equipment is
subject to the kth inspection. Because k ∈ N, the equipment is
subject to a PvR. There are two scenarios, namely, k = 0 and
k ≥ 1. When k = 0, the equipment is subject to a PvR at the
initial time point. This is equivalent to a PvR being performed
before the operation of the equipment begins. When k ≥ 1,
a PvR is needed when the operation of the equipment lasts
until the time point k1τCM . Additionally, if a PvR is not
performed, the equipment will soon break down.

As demonstrated in Figure 1(b), in the scenario when
k ≥ 1, if the equipment is subject to a PvR at the time point
k1τCM , its corresponding RUL is less than the lpr and its
RUL at the time point (k − 1)1τCM is greater than the lpr .
On this basis, the probability that the equipment is subject to
a PvR is determined as follows:

Ppr,k (1τCM , lpr |k ≥ 1)

= P{0 ≤ lk1τ < lpr
∣∣l(k−1)1τ > lpr }

=
P{0 ≤ lk1τ < lpr ∩ l(k−1)1τ > lpr }

P{lk−1 > lpr }

=
P{0 ≤ lk1τ < lpr ∩ lk1τ > lpr −1τ }

P{lk1τ > lpr −1τ }
(45)

Based on Equation (45), the relative magnitudes of the lpr
and 1τCM will directly affect the value of Ppr,k (1τCM , lpr ).
Thus, Equation (45) is transformed into the following:

Ppr,k (1τCM , lpr )

=


P{lpr −1τCM < lk1τCM < lpr }

P{lk1τ > lpr −1τCM }
, lpr > 1τCM

P{0 ≤ lk1τCM < lpr }
P{lk1τ > lpr −1τCM }

, lpr ≤ 1τCM
(46)

By finding the sum of Equation (46), the probability that the
equipment is subject to a PvRwhen k ≥ 1 can be determined:

Ppr (1τCM , lpr |k ≥ 1)

=

+∞∑
k=1

Ppr,k (1τCM , lpr )

=

+∞∑
k=1

P{lpr −1τ ≤ lt < lpr |t = k1τCM }
P{lt > lpr −1τ |t = k1τCM }

=

+∞∑
k=1

Flt
(
lpr |t = k1τCM

)
− Flt

(
lpr −1τ |t = k1τCM

)
1− Flt

(
lpr −1τCM |t = k1τCM

)
=

+∞∑
k=1

∫ lpr
ϑ flt (lt |t = k1τCM ) dlt∫
+∞

ϑ
flt (lt |t = k1τCM ) dlt

(47)

where

ϑ =

{
0, lpr ≤ 1τCM
lpr −1τCM , lpr > 1τCM

(48)

Based on the basic properties of complementary events,
the probability that the equipment is subject to a PvR at the
initial time point when k = 0 is determined:

Ppr,0(1τCM , lpr |t = 0)

= 1− Ppr (1τCM , lpr |t ≥ 1)− Pfr (1τCM , lpr ) (49)

Additionally, it is easy to conclude

Ppr (1τCM , lpr )

= Ppr (1τCM , lpr |k≥1)+Ppr,0(1τCM , lpr |t=0) (50)

In this study, to calculate the expected life E(T ) of the
equipment, E(T ) is decomposed into two parts, namely, the
life corresponding to the FR (Tf ) and the life corresponding
to the PvR (Tp).

Let Tf ,k be the life of the equipment corresponding to a
breakdown that occurs within ((k − 1)1τCM , k1τCM ). Thus,
based on Figure 1(a), we have

FTf ,k (T )

= P{Tf ,k<T
∣∣Tf ,k> (k−1)1τCM , (k−1)1τCM <T<k1τCM}

=
P{(k − 1)1τCM < Tf ,k < T }
P{Tf ,k > (k − 1)1τCM }
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=
P{Tf ,k > (k − 1)1τCM } − P{Tf ,k ≥ T }

P{Tf ,k > (k − 1)1τCM }

= 1−
P{Tf ,k ≥ T }

P{Tf ,k > (k − 1)1τCM }
(51)

It is clear that

P{Tf ,k ≥ T } = 1− P{Tf ,k < T }

= 1− F(T ) = 1− F0(l0) (52)

where F(T ) is the cumulative distribution function (CDF) of
the life of the equipment (T ), l0 is the RUL of the equipment
at the initial time point, which is equivalent to T , and F0(l0)
is the CDF corresponding to l0.

By substituting Equation (52) into Equation (51), we have

FTf ,k (l0) =
F0(l0)− F0((k − 1)1τCM )
1− F0((k − 1)1τCM )

(53)

Further analysis finds the following:

F0(l0) =
∫ l0

0
flk |t=0 (lk |t = 0 )dlk (54)

Based on the above analysis as well as Equation (39),
we have

E(Tf ,k )

=

∫ k1τCM

(k−1)1τCM
l0fTf ,k (l0)dl0 =

∫ k1τCM

(k−1)1τCM
l0dFTf ,k (l0)

= l0FTf ,k (l0)
∣∣k1τCM
(k−1)1τCM

−

∫ k1τCM

(k−1)1τCM
FTf ,k (l0)dl0

=
k1τCM (F0(k1τCM )− F0((k − 1)1τCM ))

1− F0((k − 1)1τCM )

−
1

1− F0((k − 1)1τCM )

∫ k1τCM

(k−1)1τCM
F0(l0)dl0

=
k1τCM

∫ k1τCM
(k−1)1τCM

flk |t=0 (lk |t = 0 )dlk

1− F0((k − 1)1τCM )

−
1

1− F0((k − 1)1τCM )

×

∫ k1τCM

(k−1)1τCM

∫ l0

0
flk |t=0 (lk |t = 0 )dlkdl0 (55)

Let Tp,k be the life of the equipment when it is subject to
a PvR at the time point k1τCM . Thus, based on Figure 1(b),
we have

E(Tp,k ) = k1τCMPpr,k (1τCM , lpr ) (56)

It is clear that Tp,0 = 0. Thus, based on Equations (47),
(48), (55), and (56), we have

E(T )

=

+∞∑
1

E(Tf ,k )+
+∞∑
0

E(Tp,k )

=

+∞∑
1

E(Tf ,k )+
+∞∑
1

E(Tp,k )

=

+∞∑
k=1

(
k1τCM

∫ k1τCM
(k−1)1τCM

flk |t=0 (lk |t = 0 )dlk

1− F0((k − 1)1τCM )

−
1

1− F0((k − 1)1τCM )

×

∫ k1τCM

(k−1)1τCM

∫ l0

0
flk |t=0 (lk |t = 0 )dlkdl0

+
k1τCM

∫ lpr
ϑ flt (lt |t = k1τCM ) dlt∫

+∞

ϑ
flt (lt |t = k1τCM ) dlt

)
(57)

Based on the above analysis, equations for calculating
E(NCM ) and E(Nim), respectively, are obtained:

E(NCM )

=
E(T )
1τCM

(58)

E(Nim)

=

+∞∑
k=1

(
m
(
E(Tf ,k )

)
− m ((k − 1)1τCM )

)
Pfr,k (1τCM , lpr )

+

+∞∑
k=1

(m (k1τCM )− m ((k − 1)1τCM ))

·Ppr,k (1τCM , lpr |k ≥ 1)+ 0× Ppr,0(1τCM , lpr |k = 0)

=

+∞∑
k=1

(
m
(
E(Tf ,k )

)
− m ((k − 1)1τCM )

)
·

∫ 1τCM

0
flt (lt |t = (k − 1)1τCM )dlk

+

+∞∑
k=1

(m (k1τCM )− m ((k − 1)1τCM ))

·

∫ lpr
ϑ flt (lt |t = k1τCM ) dlt∫
+∞

ϑ
flt (lt |t = k1τCM ) dlt

(59)

By substituting Equations (41)-(59) into the maintenance
decision model shown in Equation (40), the lpr and 1τCM
for the equipment subject to IM can be determined. On this
basis, the average C(T ) for the equipment can be minimized.

VI. PRACTICAL CASE ANALYSIS
Air propelling devices (e.g., fans and air blowers) are key
components of the cooling the equipment of large the equip-
ment and play an important role in ensuring the safety and
stability of their operation. In engineering applications, vibra-
tion data for air-propelling devices are often examined to
determine their performance state. Specifically, mechanical
wear and dust adherence will cause gradual performance
degradation in an air-propelling device and increase its vibra-
tion intensity. When its vibration level exceeds a certain
threshold, an air-propelling device will fail and must be
replaced. In industrial production processes, to further reduce
production costs and prolong the useful lives of air-propelling
devices, generally, the devices are subject to dynamic bal-
ance adjustments (including dust removal and lubrication)
to improve their performance. However, these operations are
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FIGURE 2. Performance degradation data for fans.

able to improve the degradation level of an air propelling
device only to a certain extent but are unable to restore it to
a brand-new condition. Thus, dynamic balance adjustments
performed on air-propelling devices are IM. In this study,
performance degradation data acquired for fans of a certain
model during a blast-furnace steelmaking process are used
for analysis, as shown in Figure 2.

In engineering applications, the fans are often consid-
ered to have failed and must be replaced when its vibration
amplitude exceeds 130 mm. Thus, 130 mm is the failure
threshold for fan performance degradation. As demonstrated
in Figure 2, the No. 3 fan failed, whereas the fans No. 1 and
No. 2 did not fail. Thus, in this study, the No. 3 fan is
selected as the target equipment for analysis to examine the
correctness of the maintenance decision method proposed in
this study.

In this study, based on the performance degradation data
for fans No. 1 and No. 2, the parameters of the degrada-
tion model for the equipment subject to IM are estimated
in Table 1. To facilitate analysis, the optimal maintenance
decision method based on RUL predictions for the equipment
subject to IM proposed in this study is denoted by M0. The
RUL prediction method proposed in [21] is introduced to
the maintenance decision model proposed in this study, and
the resulting maintenance decision method is denoted by
M1. Further analysis finds that the main difference between
M0 and M1 lies in that a nonhomogeneous Poisson process
and a homogeneous Poisson process are used to depict IM
actions performed on the equipment, respectively.

TABLE 1. Estimated values of the parameters.

TABLE 2. K-S hypothesis test results.

To estimate the distribution parameter ϕ of the extent of
recovery (E) of the performance index of a fan after IM, it is
necessary to first determine its distribution pattern. In this
study, the extent of recovery of the performance index of
each of the No.1 fan and No.2 fan after IM is subjected
to a hypothesis test using the Kolmogorov-Smirnov (K-S)
test method (significance level: 5%). Table 2 summarizes the
results.

As demonstrated in Table 2, it is more reasonable to use the
Gamma distribution to depict the extent of recovery of the
performance index of the equipment after IM. Thus, in this
study, it is assumed that the extent of recovery of the perfor-
mance index (XEi,k ) satisfies the Gamma distribution. Thus,
the value of ϕ is estimated using the maximum-likelihood
method to be (30.02, 0.9628).
XEi,k is independently identically distributed. Thus, based

on the additivity of the Gamma distribution, XRi satisfies a
Gamma distribution with a parameter τ = (30.02i, 0.9628).
The corresponding PDF is as follows:

f iRi (X
Ri
|τ )

=
1

0.962830.02i0(30.02i)

(
XR

i
)30.02i−1

e−
XR

i

0.9628 , XR
i
>0

(60)

By substituting the estimated values of the parameters
in Table 1 and Equation (60) into Equations (38) and (39),
the RUL prediction for the target equipment can be obtained,
which is shown in Figure 3.

As demonstrated in Figure 3, the PDF of the RUL corre-
sponding to M0 at various time points completely covers the
actual RUL of the target equipment, and the corresponding
predicted RUL is also closer to the actual RUL. This sug-
gests that M0 is more accurate than M1 in predicting RULs.
To further verify that the proposed method is more accurate
in predicting RULs, an α − λ index [24] is introduced as an
evaluation criterion. The α − λ index is defined as follows:
The α−λ index is primarily used to measure the closeness

between the predicted and actual values of the RUL. In this
index, a confidence region near ±(α)(100)% of the actual
RUL is given (in this study, α is set to 0.2 based on [24]).
If the predicted RUL falls in this region, then it is considered
that the predicted RUL meets the accuracy requirement; oth-
erwise, it does not. λ is used to describe a normalized time
series and defined as λ = tk/T .
Thus, the α − λ index values corresponding to M0 and

M1 are given, as shown in Figure 4.
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FIGURE 3. RUL prediction.

TABLE 3. Maintenance cost parameters.

As demonstrated in Figure 4, most of the RUL curve corre-
sponding to M0 falls in the confidence interval, whereas the
RUL curve corresponding to M1 nearly entirely falls outside
the confidence interval. This further demonstrates that the
method proposed in this study is more accurate in predicting
RULs.

Moreover, the C(T ) parameters for the fan are given,
as shown in Table 3.

By substituting the predicted RULs obtained using M0 and
M1 into the maintenance decision model proposed in this
study, an optimal 1τCM and lpr can be determined. Con-
sidering that inspections and replacements are performed
based on integer days in the actual maintenance process, it is
assumed that 1τCM , lpr ∈ N . Based on the above analysis,
the optimization model is solved using the genetic pollen
algorithm [25]. Thus, aminimumC(T ) (as shown in Figure 5)

FIGURE 4. Predicted RUL values.

FIGURE 5. Iteration results for the C(T ).

TABLE 4. Optimal maintenance decisions.

and an optimal maintenance decision (as shown in Table 4)
are obtained using M0 and M1, respectively.

As demonstrated in Table 4, the optimal 1τCM obtained
using each of M0 and M1 is one day. However, the lpr
and optimal C(T ) obtained using M0 are both lower than
those obtained using M1. This suggests that the maintenance
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FIGURE 6. Average C(T ) curves for the equipment.

decision obtained using M0 is advantageous over that
obtained using M1. Moreover, average C(T ) curves corre-
sponding to M0 and M1, respectively, are given, as shown
in Figure 6.

As demonstrated in Figure 6, the average C(T ) for
the equipment determined using M0 is, overall, lower
than that determined using M1. This further demonstrates
that the M0 strategy method is superior to the M1 strat-
egy method. This is mainly because, compared to M1,
M0 is more accurate in predicting RULs, and consequently
M0 can ensure that PvM is performed in a timelier fashion
and thereby reduce the risk of system failure and main-
tenance cost. This conclusion reflects that RUL predic-
tion accuracy significantly affects the maintenance decision
and thereby demonstrates that the proposed method is
reasonable.

Furthermore, the sensitivity of each maintenance cost
parameter to the optimal system maintenance decision pro-
posed in this study is examined using the control variate
method. Because of CCM < Cim < Cpr < Cfr , let CCM ∈
[1, 50], Cim ∈ [5, 500], Cpr ∈ [50, 5000], and Cfr ∈
[500, 8500]. Thus, the quantitative relationships between the

cost parameters and the optimal maintenance decision are
determined, as shown in Figure 7.

As demonstrated in Figure 7(a), the optimal average C(T )
for the equipment is relatively significantly affected by the
CCM . As the CCM gradually increases, the average C(T )
increases nearly linearly at an average rate of approximately
0.1422 day−1. The 1τCM basically remains constant as
the CCM changes and only changes suddenly at a CCM of
approximately¥30. This suggests that the1τCM is relatively
insignificantly affected by the CCM . When the CCM per
inspection is relatively low, a relatively high inspection fre-
quency can help to improve the operational reliability of the
equipment and reduce its failure risk and maintenance cost.
When theCCM per inspection is relatively high, a high inspec-
tion frequency will incur a high CCM , which will account for
the majority of the C(T ). Therefore, it is necessary to reduce
the total number of inspections by increasing1τCM to reduce
C(T ). Further analysis finds that there is an approximately
linear relationship between the lpr and CCM , indicating that
theCCM is relatively highly sensitive to the lpr . Increasing the
lpr , which is equivalent to shortening the effective run time
of the equipment, can reduce the number of inspections and
thereby offset the effect of the increase in the CCM .
As demonstrated in Figure 7(b), the Cim is linearly pos-

itively correlated with the optimal average C(T ) for the
equipment. Additionally, for every ¥100 increase in the Cim,
there is an approximately ¥0.9404 day−1 increase in the
optimal average C(T ) for the equipment. This suggests that
the optimal average C(T ) is relatively highly sensitive to the
Cim. Throughout the changes in Cim, 1τCM and lpr change
insignificantly. This suggests that1τCM and lpr are relatively
insignificantly affected by the changes in the Cim. This is
mainly because when1τCM and lpr are constant, the number
of occasions of IM to which the equipment is subject is
also approximately constant. As a result, the C(T ) for the
equipment is primarily affected by the Cim.

As demonstrated in Figure 7(c), the Cpr exerts the most
significant impact on the optimal average C(T ) for the equip-
ment. As the Cpr increases, the optimal average C(T ) for
the equipment increases linearly at a rate of approximately
1.5138×10−3 day−1. In comparison, changes in the Cpr rela-
tively insignificantly affect1τCM and lpr . When the value of
Cpr is relatively small, both 1τCM and lpr remain constant.
When the Cpr is close to the Cfr and gradually increases, both
the 1τCM (>¥4,100) and lpr (>¥3,600) begin to increase.
This is because when the Cpr is close to the Cfr , the effective-
ness of Cpr in reducing the C(T ) weakens, and the effect of
CCM and Cim on the C(T ) for the equipment becomes more
prominent. Therefore, it is necessary to reduce the number of
inspections and the number of maintenance interventions by
increasing 1τCM and lpr to achieve an optimal maintenance
decision.

As demonstrated in Figure 7(d), the Cfr relatively signif-
icantly affects the optimal average C(T ) for the equipment
and its lpr but almost exerts no impact on the1τCM . This sug-
gests that the Cfr is relatively highly sensitive to the optimal
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FIGURE 7. Sensitivity analysis of the cost parameters.

average C(T ) for the equipment and its lpr but relatively
weakly sensitive to the1τCM . Further analysis of Figure 7(d)
finds the following. When the value of Cfr is relatively small,
the lpr decreases at a relatively high rate as the Cfr increases.
When the value of Cfr is relatively large, the lpr gradually
begins to change to a decreasing extent. This is mainly
because when the Cfr is close to the Cpr , the effect of Cfr
is close to that of Cpr , and the Cim is the primary factor that
affects the C(T ). A relatively high lpr can help to effectively
reduce the expected life of the equipment and result in a
relatively small expected number of occasions of IM, thereby
reducing the Cim and ensuring an optimal C(T ). When the
value of Cfr is relatively large, the Cfr plays a leading role in
the change in the C(T ) for the equipment, and the value of lpr
is also basically constant.

VII. CONCLUSION
In this study, a compound nonhomogeneous Poisson process
is used to construct a comprehensive degradation model for
the equipment subject to IM. Additionally, based on the
derivation of the RUL distribution, an optimal maintenance
decision is obtained. The following conclusions are derived
from this study. (1) For the degradation model of the equip-
ment subject to IM, a nonhomogeneous Poisson process is of
higher accuracy and applicability than a homogeneous Pois-
son process. (2) A higher-accuracy RUL prediction can help
to determine an optimal maintenance decision for the equip-
ment and further reduce themaintenance cost and improve the
effectiveness of maintenance. (3) The maintenance decision
method proposed in this study has relatively high modeling
generality and RUL prediction accuracy and can be used
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to devise superior strategies and thus has broad engineering
application prospects.
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