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ABSTRACT Electric vehicles (EV) are becoming increasingly popular due to their efficiency and potentials
to reduce greenhouse gas emission. However, penetration of a very large number of EVs can have negative
impacts on power systems. This study proposes optimal vehicle-to-grid (V2G) models to incorporate
the EV penetration by minimizing multiple objectives including the peak demand, the variance of load
profile, the battery degradation cost and the EV charging/discharging cost based on real-time pricing (RTP).
The proposed models incorporate EV driving patterns including driving distance, driving periods, and
charging/discharging levels and locations. A nonlinear battery degradation cost function is linearized and
incorporated into the optimal models. In addition, a distributed control algorithm is developed to implement
the optimal models. One-day simulation results show that the proposed approach can reduce the peak demand
and the variance of the load profile by 7.8% and 81.9%, which can significantly improve power system
stability and energy efficiency. In addition, the sum of EV charging/discharging cost and battery degradation
cost is decreased from $251 to -$153. In fact, 100 EVs earn $153 in the day from the V2G program. The
approaches can be used by a load aggregator or a utility to effectively incorporate EV penetration to power
systems to unlock V2G opportunities and mitigate negative impacts.

INDEX TERMS Electric vehicles, vehicle-to-grid, battery degradation, real-time pricing, convex optimiza-
tion, demand response.

NOMENCLATURE
VARIABLES AND FUNCTIONS
α decay coefficient
β constant in Eq. 6
σ standard deviation
µ average value
λ, υ, κ coefficients for weighted average
T time horizon
a1, a2, b1, b2 constants in Eq. 3
Cb battery cost per kWh
CL battery life cycle
DC(DOD) degradation cost
DOD depth of discharge
E0 rated battery capacity
EV i the ith EV
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max(·) peak demand of the load profile
Prated rated EV charging/discharging power
SOCmin minimum SOC
SOCmax maximum SOC
SOCacc accepted SOC before driving EV
Pbase,t base load at time t
PEV−it EVs except the ith EV
i index of EV
LC labor cost of replacing a battery
L0 cycle life at 100% of DOD
PEV it electricity load of the ith EV
RTPt real time price at time t
SOC state of charge
t time
t1 home leaving time
t2 work arrival time
t3 work leaving time
t4 home arrival time
var(·) variance of the load profile
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ACRONYMS
DR demand response
EV electric vehicle
LMP locational marginal price
RTP real-time pricing
V2H vehicle-to-home
V2G vehicle-to-grid
V2V vehicle-to-vehicle

I. INTRODUCTION
V2G features with bi-directional power flow and two-way
communication, which allows EVs act as both control-
lable loads under demand response (DR) and distributed
energy resources [1], [2]. The number of EVs is expected
to reach 5.1 million globally by 2020 [3]. On one hand,
EV penetration and uncontrolled EV charging can dramat-
ically increase peak demand and have negative impacts on
the power system [4], [5]. On the other hand, EVs have
batteries with a significant energy capacity and are parked
95% of time in average [6], [7], which can - through V2G
applications - provide ancillary services such as peak demand
shaving, frequency regulation, voltage regulation and renew-
able energy integration [8]–[12].

Various frameworks, modeling, and optimization approac-
hes have been developed to facilitate V2G applications. The
frameworks can be summarized from small scale to large
scale as: vehicle-to-home (V2H), vehicle-to-vehicle (V2V)
and V2G [1]. Under the framework of V2H, an optimal home
energy management system was developed to coordinate var-
ious household loads, photovoltaics and EVs by minimizing
overall energy cost under energy price tag [13]. Since house-
hold loads cannot be modeled deterministically, a layered
stochastic approach was developed to minimize household
electrical cost under RTP and incentives, which considers
EVs as controllable loads [14]. In a larger scale residential
sector, a stochastic optimization model was developed to
minimize the power loss through coordination of EV charging
in a residential distribution grid [15].

Under the framework of V2V, a localized peer-to-peer
electricity trading among EVs was developed for DR appli-
cations in balancing local electricity demand out of self-
interests smart grids [16]. Similarly, EVs were modeled
as self-interested agents in a multi-agent system for a DR
application in an electricity market [17]. To coordinate EV
charging under DR in parking stations, a real-time control
scheme was proposed in [18]. In V2G framework, smart
charging strategies were developed for optimal EV integra-
tion to distribution systems, and the model was tested in a
37-bus distribution system [19]. The work in [20] developed
an optimal dispatching model with multiple objectives to
coordinate charging/discharging of a very large number of
EVs in microgrids

However, the above-mentioned research did not consider
batter degradation. The battery is one of the most impor-
tant and expensive components in EVs [21] and V2G appli-
cations requires frequent EV charging and/or discharging.

The charging/discharging is associated with a gradual change
in the physical structure of both the electrolyte and elec-
trode, which causes battery degradation [22]. Therefore, the
batter degradation should be studied and considered in V2G
programs.

Modeling EV battery degradation can be burdensome and
computationally complex since many factors account for the
battery ageing process [22]. Extensive efforts have beenmade
to understand the battery degradation for lithium ion bat-
tery [23]. Consequently, various capacity loss models have
been established based on different aging mechanisms such
as solid electrolyte interphase formation [24], parasitic side
reaction [25] and resistance increase [26].

As one of the examples, the degradation cost can be esti-
mated as follows [27], [28].

DC = k
CbE0 + LC
CLE0DOD

(1)

where DC is the degradation cost for each charging/ dis-
charging cycle. k is a constant value. Cb is the battery cost
per kWh, E0 is the rated battery capacity and LC is labor
cost of replacing a battery. DOD is depth of discharge, and
DOD = 1− SOC , where SOC represents state of charge. CL
is the life cycle of a battery, which is shown in Eq. 2.

The battery cycle life CL depends on the DOD of each
charging/discharging cycle. For example, a lower DOD can
lead to higher battery life cycles not only because it repre-
sents less energy of charging/discharging, but also it results
in lower degradation cost. Typically, 20% of final DOD is
recommended for a Li-Ion battery [26]. Eq. 2 shows the cycle
life as a function of DOD based on experiment of Saft Li-Ion
battery [28].

CL = L0eα(1−DOD) (2)

where L0 is the cycle life at 100% of DOD. α is the decay
coefficient. Typically, α falls between values of 3 and 6 for
different batteries and the maximum cycle life is usually at a
DOD = 1/α. The Saft Li-Ion experiment show 3000 cycles
at aDOD of 100% and 1,000,000 cycles at aDOD of 3% [29].
In addition, experiments (α = 6) showed that the most
economical DOD ranged between 16.7% and 33.3% [26].

Recently, various battery degradation cost functions have
been incorporated into optimal approaches. For instance,
an EV charge/discharge optimization model with consid-
eration of the battery degradation cost was developed for
frequency regulation [30]. An optimization model is also
proposed to minimize both battery charging/discharging cost
and battery degradation cost based on three-phase power flow
and sensitivity approaches [31]. An optimization problem
was formulated in [32], in which the cost function is the
combination of electricity prices and the battery degradation
cost. However, these studies did not consider the EV driving
patterns such as driving distance, driving times, and EV
charging/discharging levels and locations.

In our study, we developed two optimal V2G models for
EV penetration into a microgrid. Multiple objectives were
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proposed to minimize the peak demand, the variance of load
profile, the battery degradation cost and the EV charging/
discharging cost based on RTP. A linearized degradation cost
function was developed.

The vehicle driving patterns was incorporated and the
level-1 charging/discharging at homes and level-2 charging/
discharging at workplaces were considered. The contribu-
tions of this work are summarized as follows.
1. Two optimal V2G approaches are developed to minimize

multiple objectives including the peak demand, the vari-
ance of load profile, the battery degradation cost and the
charging/discharging cost based on RTP.

2. Weighting factors of the multiple objectives are quantita-
tively evaluated, and the values can provide a baseline for
a utility or an EV aggregator to implement the proposed
models.

3. A distributed control algorithm is developed to imple-
ment the proposed optimal approaches, which is linearly
scalable to control a very large number of EV charging/
discharging.

4. Case studies are conducted using the actual data from the
(Pennsylvania, Jersey andMaryland) PJM electricity mar-
ket. Simulation results demonstrate the effectiveness of the
proposed approach. More specifically, the peak demand
and variance of the load profile is reduced by 7.8% and
81.9%, which can significantly improve the power system
stability and reduce the power generation cost. In addition,
one EV can earn $1.5/day in average by using the proposed
method.

The rest of the paper is organized as follows. Section II
illustrates themethodology. Section III shows the case studies
and simulation results followed by a discussion in Section IV.
The study is concluded in Section V.

II. METHODOLOGY
A. SYSTEM ARCHITECTURE
In this study, we consider a microgrid having all the three
sectors of the power system: residential, commercial and
industrial. We focus on the study of EV charging/discharging
control and its impact on power systems. Fig. 1 shows the sys-
tem diagram, where solid lines represent power distribution
while dash lines represent communication.

We assume that an EV aggregator is presented and con-
trols EV charging/discharging. We also assume the EVs have
information and communication devices installed, and the
owners are contracted with the aggregator.

In this study, we optimize EV charging/discharging in a
distribution network. The EVs can be charged/discharged at
home with level-1 charging stations and at workplace with
level-2 charging stations. The daily EV driving distance and
driving periods are also considered, which results various
battery SOCs.

B. LINEARIZED DEGRADATION COST MODEL
In this study, we linearize the battery degradation cost model
shown in Eq. 1 and Eq. 2 by applying the linear regression

FIGURE 1. System diagram.

FIGURE 2. Degradation cost.

approach. The linearized degradation cost model is shown
in Eq. 3.

DC(DOD) =

{
a1 × DOD− b1, ∀ 0 ≤ DOD ≤ 70%
a2 × DOD− b2, ∀ 70% < DOD ≤ 100%

(3)

where a1, a2, b1, b2 are constants.
The blue line in Fig. 2 shows the actual battery degradation

cost based on Eq. 1 and Eq. 2, and the red line shows the
battery degradation cost based on the proposed linearized
degradation cost model. To calculate a1, a2, b1, b2, we first
generated a set of data using Eq. 1 and Eq. 2, and then used
Eq. 3 to fit the data by the linear regression method.

We incorporate the linearized degradation cost model into
optimal V2G models.

C. OPTIMAL V2G MODELS
In this section, we discuss two optimal V2G models. Model
1 is to minimize the peak demand of the load profile and the
battery degradation cost. Model 2 minimizes the variance of
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the load profile, the battery degradation cost and the charging/
discharging cost based on RTP.

Model 1

minimize
P
EVi
t

max
(
PEV it − PEV it∈[t1,t2]∪[t3,t4]

+PEV−it + Pbase,t
)
+ λ

∑
t∈T

DC (DODt)
∣∣∣PEV it

∣∣∣
(4)

subject to

− Prated ≤ P
EV i
t ≤ Prated ,∀t ∈ [t2, t3] ∪ [t4, t1]

(5)∑
t

PEV it = βE0,∀t ∈ [t1, t2] ∪ [t3, t4] (6)

SOC t = SOC0 +

t∑
t=0

PEV it (7)

SOCmin ≤ SOC t ≤ SOCmax , ∀t ∈ T (8)

SOC t2 ≥ SOCacc (9)

SOC t4 ≥ SOCacc (10)

DODt = 1− SOC t , ∀t ∈ T (11)

The optimization model is comprised of two objectives.
The first term, max(·), is the peak demand of the load profile.
i is the EV index and EV i is the ith EV. P

EV i
t is the electricity

load at t of the EV i under optimization.
PEV it∈[t1,t2]∪[t3,t4]

is the power consumption (battery discharg-
ing) during EV driving. t ∈ [t1, t2] ∪ [t3, t4] is the driving
period. The energy consumption is constrained by Eq. 6, in
which β ≤ 1 is a constant, E0 is the rated battery capacity,
and βE0 represents the energy consumption of driving an EV.
The value of β is discussed in Section III.A.
PEV it∈[t1,t2]∪[t3,t4]

will be negative (constrained by Eq. 6) and
uncontrollable. However, this consumption is not the dis-
charging to the power system; therefore, we need to cancel
these values by subtracting them from load profile (PEV it −

PEV it∈[t1,t2]∪[t3,t4]
) in the objective function.

PEV−it is the aggregated charging/discharging profiles of
the other EVs at time t , which is obtained from informa-
tion exchange among EVs. Pbase,t represents the base load
at time t . We used the load profile from PJM [33] as the
based load and we also called it the load profile without EV
charging/discharging. T is the time horizon.
The second term in the objective function represents

the battery degradation cost from EV charging/discharging.
DC (DODt) is the degradation cost based on the DOD at
time t , which is defined in Eq. 3. λ is a non-negative con-
stant to determine the weighted average of peak demand and
battery degradation cost. λ also converts the last term to have
the same unit as the first term.

Fig. 3 shows the important times, where blue areas show
plug-in time while green areas show driving periods. t1 is the
home leaving time and t2 is the work arrival time. t3 is the
work leaving time and t4 is the home arrival time. t1, t2, t3

FIGURE 3. Diagram for important times.

and t4 are assumed to be normally distributed as follows.

f (t|µ, σ ) =
1

σ
√
2π

e
−

(x−µ)2

2σ2
(12)

where µ is the average value and σ is the standard deviation.
Eq. 5 describes EV charging/discharging - when plu-

gin to the power system - cannot exceed the rated power.
Eq. 6 shows the power consumption from EV driving.

Eq. 7 calculates the SOC t , where SOC0 is the initial SOC.
In addition, at any time, the SOC t should be between the
minimum and maximum SOC , e.g., 0% and 100%, which is
shown in Eq. 8.

Eq. 9 and Eq. 10 constraint the SOC at t2, t4, the start of
driving periods. SOCacc is the accepted SOC before driving
the EV so that the driving distance can be fulfilled. The SOC
should be greater that a certain accepted value so that it can
satisfy a driving range. For example, we use SOCacc = 50%
in this study. Eq. 11 shows DOD of the EV battery.

This model is a convex optimization model since the objec-
tive function is convex and all the constraints are affine.
More specifically, the first term of the objective function is
linear or can be transferred as a linear function by introducing
slack variables. In the second term of the objective function,
DC (DODt) is a piecewise linear function of P

EV i
t and mono-

tonically increases. In addition, λ is non-negative. Therefore,
the second term is convex. The objective function is a linear
function plus a convex function and therefore is a convex
function. In addition, all the constraints are affine functions.
Therefore, the optimization model is a convex optimization
model and can be solved efficiently.

Model 2

minimize
p
EVi
t

var
(
PEV it − PEV it∈[t1,t2]∪[t3,t4]

+ PEV−it + Pbase,t
)

+υ
∑
t∈T

DC (DODt)
∣∣∣PEV it

∣∣∣+ κ∑
t∈T

RTPtP
EV i
t

subject to Eq.5− 11. (13)

Model 2 minimizes the variance of the load profile,
the battery degradation cost and the charging/discharging cost
based on RTP. In the objective function, var(·) represents
the variance of the load profile, and the second term is the
battery degradation cost. The third term is the EV charg-
ing/discharging cost, where RTPt is the real-time price at
time t . υ and κ are non-negative constants to determine the
weighted average of the three terms. υ and κ also convert the
last two terms to have the same unit as the first term.

The first term in the objective function is a quadratic
function and both the second term and the third term are
linear functions. As illustrated earlier in the Model 1, all the
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FIGURE 4. The flowchart of the optimal control algorithm.

constraints are affine functions. Therefore, theModel 2 is also
a convex optimization model.

D. DISTRUBITED ALGORITHM FOR OPTIMAL EV MODELS
To implement the proposed optimal V2G models, a dis-
tributed control algorithm is designed, and the flowchart is
shown in Fig. 4. The EV aggregator monitors if a contracted
EV is plugged into the system. If no EVs is plugged in,
the system will continuously monitor the action. Otherwise,
the proposed Model 1 or Model 2 will be solved based on the
input information. The EV charging/ discharging cost and
degradation cost will then be determined and recorded.

III. CASE STUDIES
This section presents case studies in the following five sce-
narios.

Senario # 1: Without V2G models. No EV charging/
discharging are controlled;

Senario # 2: Model 1 is applied to only minimize the peak
demand (λ = 0);

Senario # 3: Model 1 is applied to minimize both the peak
demand and the degradation cost;

Senario # 4: Model 2 is applied to only minimize the
variance of the load profile (υ = 0, κ = 0);

Senario # 5: Model 2 is applied to minimize multiple
objectives including the variance of the load profile and the
degradation cost and the EV charging/discharging cost based
on RTP.

A. EXPERIMENTAL SETUP
We assumed that the distribution network has 500 homes.
We now discuss the magnitude of power and electricity
price of this distribution network in this study. The average

FIGURE 5. The scaled load profile on October 27, 2019 [33]. Used as the
base load or load profile without EV penetration.

household electricity usage is approximately 30 kWh per
day [34]. In addition, residential customers consume about
1/3 of total electricity [35], [36].

Then, the electricity energy per day in the distribution net-
work including residential commercial and industrial sectors
can be calculated as 30 kWh∗500∗3 = 45MWh. To simulate
the base load or the load profile without EV penetration,
we used the load consumption on October 27, 2019 in the
PJM market [33]. This load profile is the aggregated load in
the whole service area of the PJM, which is much greater than
the loadmagnitude in this study. Therefore, we scaled it down
to fit our study so that the energy consumption in the day was
45 MWh. Fig. 5 shows the load profile.

We also used the locational marginal prices (LMP) in the
same day to calculate the EV charging/discharging cost [33].
Since the LMP are wholesale electricity prices, we scaled
them up to RTP in a retail market. The retail electricity
pricing varies from states to states and from residential to
industry. In this study, we used the pricing in Saskatchewan,
Canada as the reference and the flat rate for residential and
small commercial customers was $0.1565/kWh [37]. The
RTP was calculated as follows. Based on the electricity load
and LMP, the energy cost was calculated as energy cost =∑

(LMP× load). The equivalent flat rate was calculated as
equivalent flat rate = energy cost∑

load .

The scaler can be calculated as scaler = flat rate
equivalent flat rate .

Finally, the RTP was the LMP times the scaler, which is
shown in Fig. 6. This pricing was used to calculate the EV
charging/discharging cost.

Although the linearized degradation cost model was incor-
porated into the optimal V2G models, we use the Eq. 1 and 2
to calculate the actual degradation cost for a higher accuracy.

In this study, we assumed 20% EV penetration, which
represented 100 EVs in the distribution network. Nissan leaf
e-plus with a rated capacity of 62 kWh was used in the
EV model and the full range was 275 km [38]. The daily
driving distance was assumed as 30 km and the average daily
driving time was assumed as 45 minutes, which was derived
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FIGURE 6. Calculated real-time pricing based on locational marginal price
on October 27, 2019 in PJM market [33].

TABLE 1. Simulation parameters.

from [39, 40]. The energy consumption of driving 30 km
represents 11% of the driving capacity, which leaded to an
89% of initial SOC in the Scenario #1. In the Scenario #4-#5,
to ensure the EV has sufficient energy for driving at t1 and
t3, we used SOCacc = 50%. The distribution of t1 and t3 are
assumed as normal distribution and therefore t2 and t4 are also
normally distributed.

The EVs could be charged/discharged at home with the
rated power of 1.7 kW and at work with the rated power
of 7.7 kW. The time horizon was 24 hours, and the time
interval was 5 minutes. The Model 1 and Model 2 were
solved by CVX, a package for specifying and solving convex
programs [41, 42]. The major parameters are outlined in
TABLE 1.

B. SCENARIO #1: WITHOUT V2G MODEL
In this scenario, no EVswere discharged norwas EV charging
controlled. In addition, no EVs was charged at workplaces.

FIGURE 7. Load profiles without and with EV penetration, Scenario #1.

FIGURE 8. Load profiles without and with EV penetration, Scenario #2.

In other words, people arrived home, plugged in their EVs
and charged up the EVs. The initial SOC was 89%.

Fig. 7 shows the simulation results in the Scenario #1. The
blue line represents the load profile without EV penetration
while the green line represents the load profile with 20%
of EV penetration. The load profile without EV penetration
is considered as the base load. The peak demand and the
variance of the based load were 2.2171 MW and 0.0500 MW.
The peak demand and the variance of the load profile with EV
penetration were 2.3599 MW and 0.0617 MW. The charging
cost of the 100 EVs was $223 and degradation cost was $ 28.
The sum of the two costs was $251.

The average, minimum and maximum individual EV
charging cost was $2.2287, $1.4325, and $2.9916 respec-
tively. The variance of the charging cost was $0.0980. The
individual EV degradation cost was averaged at $0.2776. The
minimum and maximum degradation costs were $0.2129 and
$0.3787.

C. SCENARIO #2: MODEL 1 WITH λ = 0
In this scenario, the Model 1 was applied to minimize the
peak demand without considering the degradation cost, i.e.,
λ = 0. Fig. 8 shows the simulation results, in which, the blue
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FIGURE 9. EV charging/discharging cost, battery degradation cost and the
sum of the two costs of 100 EVs with respect to λ.

line represents the load profile without EV penetration while
the green line represents the load profile with 20% of EV
penetration.

With the proposed Model 1, the peak demand was reduced
to 2.0705 MW and the variance of the load profile was
reduced to 0.0403 MW. The EV charging cost was $64 and
the degradation cost was $ 39. The total cost was $103.

The average, minimum and maximum individual EV
charging cost was $0.6356, -$1.5936, and $1.5940 respec-
tively. The negative cost represents that the EV owner made
money. The variance of the charging cost was $0.7009. The
individual EV degradation cost was averaged at $0.3876.

D. SCENARIO #3: MODEL 1 WITH CONSIDERATION OF
DEGRADATION COST
In this scenario, theModel 1was applied tominimize the peak
demand with the consideration of the degradation cost. λ is a
positive constant in this case and can play an important role
in the objective function. More specifically, if λ is too small,
the degradation cost functionwill have no effect on the overall
objective function, however, if λ is too large, the degradation
cost will be the dominant factor. Therefore, λ needs to be
carefully chosen.

Fig. 9 shows the EV charging/discharging cost, battery
degradation cost and the sum of the two with respect to a
wide range of λ. As can be seen, the Model 1 with λ = 0.05
provided the minimum total cost. λ = 0.05 was then used in
the objective function in this scenario.

Fig. 10 shows the load profiles without and with EV pene-
tration. The peak demand was reduced to 2.0751 MW and
the variance of the load profile with EV penetration was
reduced to 0.0389 MW. The EV charging cost was $27 and
the degradation cost was $23. The total cost was $51.

The average individual EV charging/discharging cost was
$ 0.2726, the minimum was $-0.8933, the maximum was
$0.1996, and the variance was $0.1996. The average degra-
dation cost was $0.2395, the minimum was $0.1384, the
maximum was $0.9804, and the variance was $0.0175.

FIGURE 10. Load profiles without and with EV penetration, Scenario #3.

FIGURE 11. Load profiles with and without EV penetration, Scenario #4.

E. SCENARIO 4: MODEL 2 WITH υ = 0, κ = 0
The Model 2 was applied with υ = 0, κ = 0. Fig. 11 shows
the load profiles without and with EV penetration in this
scenario. With the proposed model 2, the peak demand
and variance were reduced to 2.0470 MW and 0.0067 MW
respectively. The EV charging/discharging cost was -$179
and degradation cost was $85. The total cost was -$94. The
negative cost means that the EVs create revenues.

The average EV charging cost was -$1.7886, the minimum
was -$3.7278, the maximum was -$0.4361, and the variance
was $0.4854. The average degradation cost was $0.8473,
the minimum was $0.4303, the maximum was $1.7720, and
the variance was $0.1082.

F. SCENARIO 5: MODEL 2 WITH CONSIDERATION OF
DEGRADATION COST AND RTP
Similar to λ, we also quantitatively evaluated the effect of
υ and κ . Fig. 12 shows the EV charging/discharging cost,
battery degradation cost and the sum of the two with respect
to υ. More specifically, the blue line shows the EV charging/
discharging cost with respect to various υ while the green
line shows the battery degradation cost. The red line
shows the sum of EV charging/discharging cost and battery
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FIGURE 12. EV charging/discharging cost, battery degradation cost and
the sum of the two costs with respect to υ.

FIGURE 13. EV charging/discharging cost, battery degradation cost,
the sum of the costs and the variance of the load profile with respect to κ .

degradation cost. As can be seen, the sum of the costs was
stable with 2 ≤ υ ≤ 13 and υ = 2 was used for the Model 2
in this scenario.

Fig. 13 shows the EV charging/discharging cost, battery
degradation cost, the sum of the two costs and the variance of
the load profile with respect to κ .

In Fig. 13, the green line shows the battery degradation
cost, which was stable with respect to κ since the υ was
not changed. Both the total cost and EV charging/discharging
cost decreased with increasing κ and reach the minimum at
κ = 8. After that, the cost started to increase. The variance
of the load profile also reached its minimum at κ = 8.
Therefore, κ = 8 was selected.

Fig. 14 shows the simulation results in the application of
Model 2 with υ = 2 and κ = 8. The peak demand and
variance were 2.0470 MW and 0.0090 MW respectively. The
EV charging/discharging cost, degradation cost and the total
cost were -$239, $86 and -$153 respectively.

The average EV charging cost was -$2.3930, the minimum
was -$4.2823, the maximum was -$0.9476 and the variance
was $0.4621. The average degradation cost was $0.8603,
the minimum was $0.4486, the maximum was $1.5800, and
the variance was $0.0855.

FIGURE 14. Load profiles with and without EV penetration, Scenario #5.

FIGURE 15. Base load profile (without EV penetration) and load profiles
of Scenarios #1-5.

IV. DISSCUSSION
In this study, we have developed distributed optimal
approaches to facilitate EV penetration to the power system,
which minimizes multiple objectives.

Weighting factors are introduced and quantitatively evalu-
ated to find the tradeoff among the multiple objectives. The
real data including the load profile and the LMP from PJM
are used to evaluate the proposed models in 5 scenarios.

The Scenario #1 is considered as the reference scenario.
We consider the EV driving patterns including driving time
period and driving distance, based on which, the initial SOC
and required charging energy are calculated. The average
daily battery degradation cost is $0.28, which leads to a yearly
degradation cost of $102.

Fig. 15 shows the base load profile (without EV pen-
etration) and the load profiles of the Scenarios #1-#5.
Table 2 summarizes the major observations including the
peak demand, the variance of load profile, the battery degra-
dation cost, the EV charging/discharging cost and the total
cost. As can be seen, with 20% of EV penetration, the uncon-
trolled EV charging can increase the peak demand and
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TABLE 2. Summary of the major observations.

variance of the load profile by 6.4% and 23.4% respectively.
Therefore, a very large number of uncontrolled EV penetra-
tion can jeopardize the power system stability.

Since the power generation cost is directly proportional to
the load magnitude due to economical generation dispatch,
reducing peak demand can effectively reduce the generation
cost and hence the electricity prices. Therefore, the Model 1
is developed to minimize the peak demand. In addition, this
approach can avoid peak demand rebound from purely min-
imizing electrical energy cost based on the RTP. By only
minimizing peak demand in the Scenario #2, the quality of
all the observations are improved. For example, the total
cost is reduced from $251 to $103. With the consideration
of the battery degradation cost, the performance is further
improved. For instance, the total cost is reduced to $51.

However, as can be seen from Fig. 15, by minimizing
peak demand in the Scenario #2 and #3, the Model 1 fails to
encourage EV owners to charge EVs in the off-peak demand
periods.

To improve this limitation, the Model 2 is developed
to minimize multiple objectives including the variance of
the load profile, the battery degradation cost and the EV
charging/discharging cost based on the RTP. The model
performance in the Scenario #4 and #5 are significantly
improved. We can see that the peak demand remains the same
in both the Scenario #4 and #5. Although the battery degra-
dation cost and the variance in the Scenario #5 are slightly
higher than the Scenario #4, the total cost is dramatically
reduced in the Scenario #5. Therefore, the Scenario #5 is
identified as the best scenario.

In comparison with the Scenario #1 and the Scenario #5,
the degradation cost is increased by 207%; however, the
charging/discharging cost is reduced by 207% with a larger
base value. In addition, the overall cost is reduced by 161%.

FIGURE 16. Total cost of individual EVs. The total cost is the sum of EV
charging/discharging cost and the battery degradation cost.

In fact, the 100 EVs earns $153 instead of paying for the
electricity.

Furthermore, the weighting factors in the Model 2 are
quantitatively studied and υ = 2, κ = 8 provide the best per-
formance. This provides a baseline for an EV aggregator or a
utility to develop such models and design contract with EV
customers.

Fig. 16 shows the total cost of individual EVs, where
the markers show the cost and the line shows the linear
regression. The simulation is conducted using Monto Carlo
method and the # of EV is corresponding to the EV plug-
time order/time. As can be seen, a later EV has a slightly
higher cost. This is because the latter EVs do not have
as much freedom as the earlier EVs since the total load
profile changes with time. Although, this is not a signifi-
cant problem because the EV plug-in time of various cus-
tomers are random, this factor should be considered by a
utility when the model is implemented and/or the contract is
designed.

V. CONCLUSION
The increasing popularity of EVs in the transportation sector
poses both opportunities and challenges to power systems.
The opportunities include V2G applications for reducing
peak demand, integrating intermittent renewable energy and
providing ancillary services while the optimal EV charging/
discharging control with consideration of battery degradation
remains a great challenge.

This paper proposes optimal V2G models and a distribute
control algorithm to tackle the challenges and unlock the
opportunities. Case studies show that the proposed Model 2
can effectively incorporate the EV penetration to power sys-
tems by minimizing multiple objectives including the vari-
ance of load profile, the battery degradation cost and the
charging/discharging cost based on RTP. More specifically,
the approach can reduce the peak demand and variance of the
load profile by 7.8% and 81.9%. Although the degradation
cost increased from $28 to $86, the sum of EV charging/
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discharging cost and degradation cost is decreased from
$251 to -$153. In fact, the 100 EVs earn $153 from the V2G
program. In addition, the weighting factors of the multiple
objectives are quantitatively evaluated, and the values provide
a baseline for a utility or an EV aggregator to implement the
proposed model.
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