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ABSTRACT The localization of outer raceway defect plays a significant role in malfunction elimination,
failure cause analysis as well as the residual life prediction of ball bearings. Based on the nonlinear
dynamic model for a ball bearing and the outer raceway defect model considering the ball finite size,
this article employs the detailed mathematical derivation and theoretical analysis of the load distribution
for the bearing system with an outer raceway defect located at the different angular positions. Therefore,
the essential mechanism of the approximate linear relationship between the proposed indices, namely
horizontal–vertical synchronized Peak (HVSPeak) and horizontal–vertical synchronized RMS (HVSRMS),
and the defect angular position is explained.More importantly, it is theoretically demonstrated that HVSRMS
is approximately a cotangent function with the defect angular position as the only variable, which indicates
that the index has excellent anti-interference and practicability. In addition, the superiority and necessity of
the HVSRMS index can be seen when compared to HVSPeak, RMS, SampEn and Lemple-Ziv. It is validated
through simulation and experiment results that HVSRMS index can efficiently diagnose the angular position
of outer raceway defect. Finally, the signal denoisingmethods for HVSRMS are compared and studied, which
indicates the direction for subsequent research.

INDEX TERMS Defect localization, HVSRMS, ball bearing, fault diagnosis.

I. INTRODUCTION
The mechanism and method of fault diagnosis for ball bear-
ings is a continuous research focus. With the development of
theory and technology, the research hotspot from qualitative
diagnosis to quantitative diagnosis is gradually becoming a
trend. The quantitative diagnosis for an outer raceway defect
mainly includes two aspects: defect size estimation and defect
angular position estimation. The angular position estimation
of the outer raceway defect, namely the localization diagnosis
of outer raceway defect mainly has the following important
significance or application value [1]: 1) The defect angular
position is one of the main factors affecting the residual life
prediction of the bearing; for example, in the case of all other
factors held constant, the defect closer to the load center may
have a faster expansion speed making the residual life of the
bearing also shorter. 2) Different angular positions of outer
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raceway defects may correspond to different failure causes;
for example, if a defect happens close to the load center,
it mainly caused by fatigue damage; but if the defect occurs
far away from the load center, the cause is more likely to be
the machining defects, maintenance defect, or others.

In recent years, scholars have carried out a large number of
systematic studies on the quantitative diagnosis mechanism
and method of the defect size of rolling bearing and have
obtained some remarkable achievements that enhanced the
scholarship. If a rolling element bearing has a local fault,
a series of impulses with certain laws will be generated in its
time-domain waveform [2], [3], so vibration signals are used
widely for the fault diagnosis of bearing [4]–[9]. However,
bearing fault signatures are usually contaminated or even
overwhelmed by interfering noise [10]. In such circum-
stances, a method for noise reduction and feature extraction
is needed, such as wavelet transform, sparse representation
and empirical mode decomposition [11]–[14]. A technique
based on decomposition Symlet wavelet was employed for
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estimating the inner raceway defect width [15]. To sepa-
rate the entry-exit events, and to calculate the size of the
fault, the approximate entropy method and empirical mode
decomposition were applied by Ref. [16]. Zhao et al. [17]
presented a methodology for the detection and recovery of
fault impulses, with which the double impact phenomenon
caused by a distributed defect was extracted successfully,
so the defect size of a bearing can be estimated from its
vibration signal without dismantling the component. An aver-
aged dual-impulse interval determining method was used
to evaluate the spall size [18]. For the fault diagnosis, the
mechanism of fault is indispensable, which gives reasons and
characteristics of fault changes. Many models of ball bearing
have been established by scholars to research and reveal the
defect generation mechanism and characteristic. A dynamic
model with six DOFs was developed to investigate vibrations
of high-speed rolling ball bearings with localized surface
defects on raceways [19]. Khanam et al. [20] proposed an
analytical force modeling approach based on the principles
of engineering mechanics to explain the mechanism of exci-
tation generation due to the impact of ball mass against the
defect edge. Cui et al. [21] established a nonlinear dynamic
model of rolling element bearings for assessment of the
severity of an outer race fault, and analyzed quantitatively the
correlation between vibration responses and fault sizes based
on the model. Liu et al. [22] proposed a local fault model
which includes the time-varying displacement impulse and
contact stiffness, and the relationship between the contact
stiffness and fault sizes was obtained through this method.
Petersen et al. [23] pointed out that faults which differ in size
by natural multiples of the rolling element angular spacing
have the same vibration time interval based on the established
dynamic model, and then proposed a valid method to distin-
guish those faults.

The above research are carried out around the mechanism
and method of outer raceway defect size estimation. How-
ever, the research aiming at the localization diagnosis of
outer raceway defect is almost unreported. The main reasons
linked to two factors, the first is sparse breakthroughs in the
mechanism research. The second is the lack of the single
factor characteristics of the localization diagnosis, which is
not affected by the noise and the inherent characteristics of the
system such as the defect characteristic frequency in the qual-
itative diagnosis and the time interval between double impact
points in quantitative diagnosis. Cui et al. [1], [24] preliminar-
ily explored the localization diagnosis of the outer raceway
defect based on the proposed horizontal–vertical synchro-
nized RMS (HVSRMS) index. However, the inherent mecha-
nism of the index has not been excavated. Therefore, based on
the nonlinear dynamic model for a ball bearing and the outer
raceway defect model considering ball finite size, the detailed
mathematical derivation and theoretical analysis of dynamic
behavior for ball bearings with an outer raceway defect
located at different angular position are researched in this
paper. Hence, the essential mechanism of the approximate
linear relationship between HVSRMS and the defect angular

FIGURE 1. Nonlinear dynamic model of a ball bearing system.

position is explained. Furthermore, the superiority and neces-
sity of HVSRMS index is validated through the comparison
to other indices, including horizontal-vertical synchronized
Peak (HVSPeak), RMS, SampEn and Lemple-Ziv.

This paper is organized as follows. Section II establishes
the static model of a ball bearing with an outer raceway
defect and introduces the theory of horizontal–vertical syn-
chronization eigenvalue. In Section III, the dynamic model
of a ball bearing with an outer raceway defect is established
and the horizontal – vertical synchronization signal analysis
is implemented, where the mechanism of the approximate
linear relationship between HVSRMS and the defect angular
position is explained. In Section IV, the experiment is carried
out to evaluate the performance of the proposed method.
A comparison between the proposed index and other indices,
such as RMS, SampEn and Lemple-Ziv is also presented.
Concluding remarks are presented in Section V.

II. STATIC MODEL AND THE THEORY OF HORIZONTAL
-VERTICAL SYNCHRONIZATION INDEX
A. STATIC MODEL AND FAULT-FREE SYSTEM ANALYSIS
Figs. 1 and 2 represent the diagrams of a dynamic model of
the ball bearing and outer raceway defect model, respectively.
mi and mo are the masses of the inner race and outer race.
(cix , ciy), (kix , kiy) and (xi, yi) are the damping, stiffness and
displacement of the inner race, (cox , coy), (kox , koy) and (xo,
yo) are the damping, stiffness and displacement of the outer
race. Wx and Wy are the loads in the x and y directions. The
static equilibrium equations of inner race can be expressed as:

[
Wx
Wy

]
=

[
Q̄x
Q̄y

]
=

Nb∑
j=1

[
Q̄j,x
Q̄j,y

]
=

Nb∑
j=1

[
K
(
δj
)1.5
+

cosφj
K
(
δj
)1.5
+

sinφj

]
(1)
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FIGURE 2. Diagram of a ball over the defect.

FIGURE 3. Static contact forces of the ball j for a failure-free bearing
system: (a) Horizontal component of contact force Q̄j,x (φj ); (b) Vertical
component of contact force Q̄j,y (φj ).

where Nb is the number of balls, Q̄j,x and Q̄j,y are the static
contact forces between ball j and raceway in the x and y
directions, respectively. ( )+ represents negative setting zero.
The angular position φj of the ball j can be given by:

φj = φ1 +
360o

Nb
(j− 1) (2)

δj is the contact deformation of the ball j. It can be defined as:

δj = δx cosφj + δy sinφj − rl − d(φj) (3)

where δx = xo-xi and δy = yo-yi are the relative dis-
placements between the inner and outer race in the x and
y directions, rl is the radial clearance, d(φj) is the effective
defect depth. For the defect model shown in Fig. 2, d(φj) is
defined as:

d(φj)=ro
(
cos

(
θj
)
− 1

)
+rb −

√
r2b − r

2
o sin

2 (θj) (4)

Q̄j,x(φj) and Q̄j,y(φj) loaded on the ball j in random angu-
lar position φj can be calculated by Eqs. (1)-(4). Taking

FIGURE 4. Horizontal-vertical synchronization contact force HVSQ̄j (φj ).

NSK6308 bearing as an example, set Wx = 0, Wy = −100,
The other parameter values of the bearing system can be
found in [1]. Fig. 3 shows the variation curve of Q̄j,x(φj) and
Q̄j,y(φj) in a complete rotation period in the failure-free case
which illustrates that the load interval is [206.3◦, 333.8◦] in
this case. Furthermore, the curves of Q̄j,x and Q̄j,y varying
with φj are approximate the sine and versine curves centered
at 270◦, respectively, and both have the same frequency fq
and phase ϕq. The sine and versine function curves obtained
by the data fitting using the lsqcurvefit function of MATLAB
are shown as a red line in Fig. 3, and its expressions can be
described as follows{

Q̄j,x = −Ax sin
(
2π fqφj + ϕq

)
Q̄j,y = −Ay versin

(
2π fqφj + ϕq

) (5)

where Ax , Ay, By, fq, ϕq are the coefficients of the fitting func-
tion. It is revealed by combining with Fig. 3 and Eq. (5) that in
the load interval and regarding φj = 270◦ as a starting point,
there is no monotonic mapping relationship between Q̄j,x and
φj, and the inflection points are 239.4◦ and 300.7◦, while
there is a monotonic mapping relationship between Q̄j,y and
φj, but the curve around 270◦ changes slightly. To excavate
the characteristic indices with a simple and effective mapping
relationship with φj, horizontal-vertical synchronization con-
tact force HVSQ̄j is proposed as follows

HVSQ̄j =

∣∣∣∣∣ Q̄j,xQ̄j,y

∣∣∣∣∣ =
∣∣∣∣∣∣K

(
δj
)1.5
+

cosφj

K
(
δj
)1.5
+

sinφj

∣∣∣∣∣∣ = ∣∣cotφj∣∣
=

∣∣∣∣∣ −Ax sin
(
2π fqφj + ϕq

)
Ay versin

(
2π fqφj + ϕq

) ∣∣∣∣∣
=

Ax
Ay

∣∣∣cot(π fqφj + ϕq2 )
∣∣∣ (6)

Fig. 4 presents the results of HVSQ̄j in the load interval.
The comparison between Fig. 3 and Fig. 4 shows that the
relationship between HVSQ̄j and φj is the simplest, espe-
cially in the range of φj = 240◦ ∼ 300◦, HVSQ̄j values
are approximately two straight lines with symmetrical about
φj = 270◦. Since the contact force between the ball and
raceway is the main excitation source of faulty bearing, it can
be expected that this feature will provide a very effective
support for excavating localization diagnosis characteristics
for outer raceway defect.
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To verify the applicability scope of this characteristic,
the mapping relationship between HVSQ̄j and φj is simulated
and analyzed in the case of Wy = 30 ∼ 3000N, as shown
in Fig. 5. It can be seen fromFig. 5 (a) and (b) that Q̄j,x(φj) and
Q̄j,y(φj) increase withWy varying from 30N to 3000N, which
matches with Eq. (1). In addition, the increase of the load
also leads to the increase of the load interval. However, it can
be seen from Fig. 5 (c) that the mapping relationship between
HVSQ̄j and φj is completely unaffected by the change of load.
Actually, it can be known from Eq. (6) that HVSQ̄j is only
affected by φj, and it is most remarkable that the relationship
between HVSQ̄j and φj is almost linear in the main load
interval (240◦ ∼300◦), as shown in Fig. 5 (c).

B. THE MAPPING RELATIONSHIP BETWEEN HVS1Q̄f
AND THE OUTER RACEWAY DEFECT ANGULAR POSITION
This section investigates the influence of the outer raceway
defect angular position φf on the contact forces. The static
contact forces between the ball j and raceways in the x and
y directions for a defective bearing with an outer raceway
defect are named as Q̄dj,x and Q̄

d
j,y in order to distinguish them

from the forces for failure-free bearings. The circumferential
extent and depth were set to 1φf = 1◦ and h = 0.1mm,
respectively. The load is still set asWx = 0 andWy = −100.
Fig. 6 presents the variation curve of Q̄dj,x and Q̄dj,y in the
case of φf = 250◦. As observed in Fig. 6, irrespective of
the x or y direction, once the ball j passes through the defect
zone, the contact force of the ball j will appear mutation.
Furthermore, both Q̄dj,x(φj) and Q̄

d
j,y(φj) reach the extremum

Q̄df ,x and Q̄
d
f ,y when the ball j is arriving at the defect center,

namely, Q̄df ,x = Q̄dj,x(φj = φf ), Q̄df ,y = Q̄dj,y(φj = φf ).
Applying Eqs. (1)-(6) gives

Q̄df ,x = K
(
δf
)1.5
+

cosφf

Q̄df ,y = K
(
δf
)1.5
+

sinφf

HVSQ̄f =

∣∣∣∣∣ Q̄
d
f ,x

Q̄df ,y

∣∣∣∣∣ = ∣∣cotφf ∣∣
(7)

where δf is the contact deformation of the ball j located at
the defect center, namely, δf = δj(φj = φf ). With Eq. (7),
the variation curves of Q̄df ,x and Q̄

d
f ,y with the change of φf in

load interval [206.3◦, 333.8◦] can be solved, as shown in Fig.7
(a) and (b). Fig. 7 shows that Q̄df ,x and Q̄

d
f ,y are equal to zero in

the load interval [206.3◦, 218.1◦] and [332.0◦, 333.8◦]. That
is to say, the ball located at φf is unloaded. It is caused by
two factors: 1) the two intervals are close to the unloaded
interval. Combined with Fig. 4, it can be concluded that even
for a failure-free bearing system, the ball contact force is very
small in the two intervals, that is, the contact deformation δf is
very small. 2) when the defect is located in the two intervals,
it can be obtained from Eq. (3) that δf becomes to be non-
positive influenced by the effective defect depth d , resulting
in Q̄df ,x = Q̄df ,y = 0.

FIGURE 5. Static contact forces and HVSQ̄j under different load
conditions: (a)Q̄j,x (φj ); (b)Q̄j,y (φj ); (c) HVSQ̄j (φj ).

FIGURE 6. Static contact forces of the ball j for a defective bearing with
an outer raceway defect: (a)Q̄d

j,x (φj ); (b)Q̄d
j,y (φj ).

Most noteworthy, it can be known from Eq. (7) that Q̄df ,x
and Q̄df ,y are affected by many factors, such as the load,
the defect angular position and the ball number. However,
HVSQ̄f is a univariate function with the defect angular posi-
tion φf as the variable. In addition, HVSQ̄f distributes sym-
metrically by the angle position 270◦ for the center, and has
the relation of approximate linear change with defect angle
position φf in the main load interval (240◦ ∼300◦), as shown
in Fig. 7(c). 1Q̄f ,x and 1Q̄f ,y represent the value of the
difference between the contact forces of ball j for a failure-
free bearing and a defective bearing of ball angular position
φj = φf . Combined with Eq. (6) and (7), HVS1Q̄f can be
expressed as follows

HVS1Q̄f =

∣∣∣∣∣1Q̄f ,x1Q̄f ,y

∣∣∣∣∣=
∣∣∣∣∣ Q̄j,x(φj=φf )− Q̄

d
f ,x

Q̄j,y(φj = φf )− Q̄df ,y

∣∣∣∣∣= ∣∣cotφf ∣∣
(8)
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FIGURE 7. Variation curves of the extremum of contact force for the ball j
passing through the defect zone varying with φf : (a) Q̄d

f ,x (φf );

(b) Q̄d
f ,y (φf ); (c) HVSQ̄f (φf ).

From Eq. (8), it can be noted that HVS1Q̄f is a cotan-
gent function with φf as the only variable. The value of the
difference for the contact force caused by a ball passing the
defect zone is the main excitation source of the vibration
acceleration response of the bearing system, which reveals
the advantage and the necessity of the horizontal-vertical
synchronization signal analysis for defect localization of the
outer raceway defect in essence.

III. DYNAMIC MODEL AND THE HORIZONTAL-VERTICAL
SYNCHRONIZATION SIGNAL ANALYSIS
In Section II, the relationships between the contact force
and the defect angular position of the static model in the
cases of failure-free and defective are studied. To reveal the
mechanism of the corresponding relationships for the actual
system more realistically, the horizontal-vertical synchro-
nization signal analysis based on the dynamic model of a
bearing system is carried out in this section. The dynamic
equations of the ball bearing shown in Fig. 1 can be expressed
as 

miẍi + cix ẋi + kixxi = Wx − Qx − Qdx
miÿi + ciyẏi + kiyyi = Wy − Qy − Qdy
moẍo + cox ẋo + koxxo = Qx + Qdx
moÿo + coyẏo + koyyo = Qy + Qdy

(9)

where Qx and Qy are the dynamic contact forces in the x and
y directions, Qdx and Qdy are the dynamic contact damping

forces in the x and y directions. Eq. (9) shows a typical
multi-freedom nonlinear self-excited vibration system. It is
difficult to obtain its analytical solution directly. This paper
will analyze it from three aspects: high-precision numerical
solution, simplified analysis solution and linearization anal-
ysis. Firstly, Eq. (9) was solved numerically by the ODE
45 solver in MATLAB. The main parameters of the bearing
system can be found in Ref. [23]. Hence, the dynamic contact
force and vibration acceleration of the outer raceway were
obtained.

FIGURE 8. Dynamic contact forces and vibration acceleration of the outer
raceway for a defective bearing with an outer raceway defect: (a)Qxo(φ1);
(b)Qyo(φ1); (c)axo(φ1); (d)ayo(φ1).

The dynamic contact force and vibration acceleration
response of a ball bearing system with an outer raceway
defect of the angular position φf = 270◦, circumferential
extent 1φf = 1◦ and depth h = 0.3mm are numerically
solved with the ODE function in Matlab by substituting
Eqs. (1) - (4) into Eq. (9), as shown in Fig. 8. According to
Fig. 8 (a) and (b), it can be seen that the peak of the resultant
contact force increases significantly when the ball passes the
outer raceway defect. This results in a significant increase
of the peak of the vibration acceleration. Therefore, this
indicates that the peak of vibration acceleration of the outer
raceway defect bearing depends on the difference value of the
contact force caused by a ball passing the defect. To obtain the
approximate analytical relationship between the defect angu-
lar position and the vibration acceleration, the multi-degree
freedom dynamic model of the bearing system represented
in Fig. 1 and Eq. (9) is simplified as a single-degree-freedom
system. Taking the vibration in the x direction of the outer
ring as an example, the contact damping term is ignored, and
for the failure-free system, the dynamic contact force can be
approximately replaced by the static contact force. Therefore,
the dynamic equation is defined as

moẍo + coẋo + koxo = Q̄x (10)

According to Section I, it can be seen that the external
excitation force Q̄x of the single-degree-freedom system is
the linear superposition of the contact forces Q̄j,x . It can be
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seen from Eq. (5) that for the failure-free case, Q̄j,x is approx-
imately a sine function. Therefore, the vibration response of
the single-degree-freedom system under the excitation Q̄j,x
can be expressed as

x̄j,o(t)=
Ax√(

ko − moω2
q

)2
+ c2oω2

q

cos
(
ωqt − φq

)
(11)

where

φq = arctan

(
coωq

ko − moω2
q

)
(12)

Similarly, for the single-degree-freedom system of the
outer race in the y direction, the vibration response under the
excitation of Q̄j,y can be calculated here as follows

ȳj,o(t)=
Ay√(

ko − moω2
q

)2
+ c2oω2

q

cos
(
ωqt − φq

)
−
Ay
ko

(13)

Eq. (11) and Eq. (13) represent the vibration responses of
a failure-free system. When a defect of 1φf = 1◦ and h =
0.3mm occurs in the outer raceway, the contact force of the
ball j passing through the defect is defined by

Qdj,x = Q̄j,x +1Q̄j,x ,Qdj,y = Q̄j,y +1Q̄j,y (14)

where 1Q̄j,x and 1Q̄j,y represent the value of the difference
between the contact forces of the ball j for a failure-free bear-
ing and a defective bearingwhen the ball j locates at the defect
zone. The effects of 1Q̄j,x and 1Q̄j,y on the single-degree-
freedom systems can be expressed as impulse excitations, that
is 

Q
∼
x
=
∫ t+1t
t 1Q̄j,xdt = 1Q̄f ,x1t

Q
∼
y
=
∫ t+1t
t 1Q̄j,ydt = 1Q̄f ,y1t

(15)

where1t is the duration of the ball passing through the defect
zone. The response of the single-degree-freedom system of
the outer race in the x and y directions under the excitation of
1Q̄f ,x and 1Q̄f ,y can be expressed as

x∼
o
(t)=

Q
∼
x
e−ξωnt

moωd
sinωd t, y

∼
o
(t)=

Q
∼
y
e−ξωnt

moωd
sinωd t (16)

where

ωn=

√
ko
/
mo, ξ = co

/
2mωn, ωd=ωn

√
1− ξ2 (17)

The total responses of the outer race with a defect in the x
and y directions are defined as

xo(t)=
Nb∑
j=1

x̄j,o(t)+ x∼
o
(t), yo(t)=

Nb∑
j=1

ȳj,o(t)+ y
∼
o
(t)

(18)

Substituting Eqs. (11)-(17) into Eq. (18) and gaining the
quadric derivative, the vibration acceleration responses can
be expressed as

ax,o(t)=
Nb∑
j=1

āj,x(t)+ a∼
x,o

(t),

ay,o(t)=
Nb∑
j=1

āj,y(t)+a∼
y,o

(t) (19)

where

āj,x(t) =
−Axω2

q√(
ko − moω2

q

)2
+ c2oω2

q

cos
(
ωqt − φq

)

a∼
x,o

(t) =
ωnQ∼

x

mo
√
1− ξ2

e−ξωnt

sin

(
ωd t + arctan

2ξ2 − 1

2ξ
√
1− ξ2

)
āj,y(t) =

−Ayω2
q√(

ko−moω2
q

)2
+c2oω2

q

cos
(
ωqt − φq

)
a∼
y,o

(t) =

ωnQ∼
y

mo
√
1− ξ2

e−ξωnt

sin

(
ωd t + arctan

2ξ2 − 1

2ξ
√
1− ξ2

)

(20)

According to ISO standard, this paper makes a general
comparison and analysis of the peak value of āj,x(t) and
a∼
x,o

(t) in the rated load range of the selected NSK6308 ball

bearing, that is

Axω2
qmo

√
1− ξ2

ωn1Qx1t

√(
ko − moω2

q

)2
+ c2oω2

q

<
Axω2

qm
1.5
o

1Qx1tk1.5o
<10−3

(21)

Eq. (21) illustrates that the peak of āj,x(t) is far less than the
peak of a∼

x,o
(t). Similarly, the conclusion is also appropriate

for the peak of āj,y(t) and a∼
y,o

(t). Therefore, the peaks Px,o
and Py,o of ax,o(t) and ay,o(t) are expressed as

Px,o = ωnQ∼
x

/
mo
√
1− ξ2,

Py,o = ωnQ∼
y

/
mo
√
1− ξ2 (22)

According to the above analysis, the horizontal-vertical
synchronization peak (HVSPeak) proposed in this paper is
defined as

HVSPeak =
∣∣Px,o/Py,o∣∣ (23)

Then, combining Eqs. (8), (15), (22) and (23), the theoretical
relationship between HVSPeak and φf can be obtained as:

HVSPeak(φf ) =
∣∣cot (φf )∣∣ (24)
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Eq. (24) shows that HVSPeak is approximately a cotan-
gent function that takes φf as the only variable and factor.
In section II, it has been proved based on Eq. (7) and Fig. 6(c)
that for the static system, when the ball passes through the
defect zone, although the value of Q̄dj,x and Q̄

d
j,y are affected

bymultiple factors, HVSQ̄f and HVS1Q̄f are both the cotan-
gent functions with φf as the only variable. To verify the
applicability of this property in the nonlinear dynamic sys-
tem, the relationship between HVSQf of the dynamic system
and φf is simulated by the numerical solution of Eq. (9), as the
red line shown in Fig. 9. It can be seen that the relationship of
HVSQf and φf is also approximately a cotangent function.

FIGURE 9. Variation curves of HVSQf (red), HVSPeak (black) and HVSRMS
(blue) varying with φf for simulated vibration responses.

With Eq. (23) and the numerical solution of Eq. (9), the
variation curve of HVSPeak with the change of the defect
angular position φf was simulated, as the black line shown
in Fig. 9. It can be seen that the relationship between HVS-
Peak and φf is approximately a cotangent function, which
verifies the accuracy of Eq. (24).

However, the stability of the peak is highly susceptible to
the noise and other factors in actual signals. To overcome this
problem, and on account of the linear relationship between
the peak and RMS for the exponential attenuation function,
the horizontal-vertical synchronization RMS (HVSRMS) is
proposed as

HVSRMS = RMSax
/
RMSay (25)

and the theoretical relationship between HVSRMS and φf is
shown as:

HVSRMS(φf ) =
∣∣cot (φf )∣∣ (26)

where RMSax and RMSay are the root-mean-square values
of the horizontal and vertical vibration acceleration signal
for the bearing system, respectively. With Eq. (25) and the
numerical solution of Eq. (9), the curve of HVSRMS chang-
ing with φf is calculated as the blue line shown in Fig. 9,
which indicates that HVSRMS is approximately a cotangent
function that takes φf as the variable, which verifies the
accuracy of Eq. (26). By now, the mathematical and phys-
ical nature of the approximate linear relationship between
HVSRMS and φf on both sides of 270◦, proposed by refer-
ence [1] through qualitative analysis and numerical simula-
tion, is revealed, and a more accurate functional relationship

between them is obtained. Predictably, HVSRMS is a prac-
tical diagnostic feature for the angular position estimation of
the outer raceway defect.

FIGURE 10. Photos of experimental apparatus: (a) The bearing test rig;
(b) Defective bearing with defect size of 1φf = 1◦; (c) The bearing
pedestal.

IV. EXPERIMENTAL VERIFICATION AND METHOD
COMPARISON
The experimental apparatus, applied to acquire actual signals
of a ball bearing with an outer raceway defect and verify the
effectiveness of the method proposed in this paper, is shown
in Fig. 10. The bearing is NSK6308, and has Nb = 8
balls. The shaft frequency and sample frequency were set
to fs = 7Hz and Fs = 65536, respectively. The sam-
pling points is N = 131073. The wire cutting method is
used to process an outer raceway defect of circumferential
extent 1φf = 1◦, depth h = 0.3mm. The vertical (y) and
horizontal (x) direction vibration acceleration signal for the
defect angular position φf = 240◦ ∼ 300◦ are measured at
intervals of 10◦. Fig. 11 shows the time-domain waveform
of the measured vibration acceleration signal for φf = 240◦.
It can be seen that due to the existence of the outer raceway
defect, the acceleration signals in the x and y directions
both vibrate at the same period. Moreover, the peak of the
vibration in the x direction is significantly lower than that of
the y direction. These characteristics are consistent with the
simulation results shown in Fig. 8. To verify the applicability
of HVSPeak and HVSRMS in actual signals, the results of
the measured signals were solved.

With the definitions in section III, HVSRMS andHVSPeak
at different defect angular positions are solved and normal-
ized for observation, as shown in Fig. 12. It can be seen
from Fig. 12 that the curve of HVSPeak for the measured
vibration signal varying with φf is not only non-linear, but
also non-monotonic. It confirms the prediction in section III:
although the relationship between HVSPeak and φf is an
approximate linear relationship in theoretically, actual signals
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FIGURE 11. Measured vibration acceleration signal for the case of
1φf = 1◦ and φf = 240◦: (a) Horizontal acceleration ax (t); (b) Vertical
acceleration ay (t).

FIGURE 12. Variation curves of HVS-indices varying with φf for the
measured vibration acceleration signal: HVSPeak (red), HVSRMS (blue).

are susceptible to noise and other factors, which affects the
applicability and accuracy of HVSPeak.

Comparing with Fig. 9 and Fig. 12, it can be seen that
the HVSRMS of the measured signal gradually exhibits the
symmetrical distribution centered on φf = 270◦, and has the
relation of approximate linear change with φf , which verifies
the simulation results and Eq. (26) in section III.

To further verify the necessity and superiority of HVS-
RMS, Fig. 13 shows curves of some common indices varying
with φf = 240◦ ∼300◦ for the measured horizontal and
vertical acceleration signals, including RMS, Kurtosis, CF,
Sr, Sα [1], SampEn [25] and LempelZiv [26]. Since the mag-
nitudes of the different indicators are different, all indicators
are normalized in Figure 13 for ease of observation. It can be
seen from Fig. 13 (a) and (b) that all of these indices do not
have any monotonicity variation relationship with φf , so they
have no ability to locate the angular position of the outer
raceway defect. This adequately approves the effectiveness
and superiority of the HVSRMS method for localization
diagnosis of outer raceway defect in ball bearings.

It should be noticed that the noise in the measured signals
may interfere the calculation results of HVSRMS, thus affect-
ing the diagnostic accuracy. For example, there is an obvious
deviation of the HVSRMS curve on the left side of 270◦

in Fig. 12, especially at φf = 250◦. To this end, three meth-
ods of lifting wavelet, morphological filtering and matching
pursuit are applied to the measured signal preprocess, where
the signal processing method suitable for HVSRMS is high-
lighted to improve the localization accuracy. Due to the space
limit, only the original signal and the processed signals by
the three methods in the case of φf = 260◦ are given here,

FIGURE 13. Variation curves of RMS( ), Kurtosis( ), CF( ), Sr( ),
Sα( ), SampEn( ) and LempelZiv( ) varying with φf = 240◦ ∼ 300◦
for the measured (a) Horizontal acceleration signals and (b) Vertical
acceleration signals.

FIGURE 14. The processing results of measured horizontal vibration
signals for the case of φf = 260◦ using the three methods: (a) Original
signal; (b) Lifting wavelet; (c) Morphological filtering; (d) Matching
pursuit.

as shown in Fig. 14. It can be seen from Fig. 14 that the signal-
to-noise ratio of the signals processed by the three methods
is significantly improved, and the mature spectrum analysis
methods such as Hilbert envelope spectrum is sufficient to
qualitatively diagnose the bearing outer ring fault.

However, it does not mean that all three methods can
effectively improve the accuracy of the HVSRMS index of
the measured signal. Fig. 15 shows the curves of HVSRMS
varying with φf of the measured signals processed by the
threemethods. It can be found that themorphological filtering
method can significantly improve the accuracy of HVSRMS,
followed by the lifting wavelet method, while the result of
the matching pursuit method is totally ineffective. It can be
explained combined with the definition of HVSRMS and its
mathematical nature in the previous section that although
the matching pursuit method can greatly improve the
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FIGURE 15. Variation curves of HVSRMS varying with φf for the measured
vibration acceleration signals processed by the three methods.

signal-to-noise ratio, it cannot accurately maintain the ampli-
tude information of the fault impulse waveform, as shown
in Fig. 14(d). This is a common problem in existing sparse
decomposition methods. It can be seen from Fig. 14(b) that
the lifting wavelet method maintains the amplitude of the
fault impact waveform while reducing noise, thus improving
the accuracy of HVSRMS. As can be seen from Fig. 14(c),
themorphological filteringmethod significantly increases the
amplitude of the fault impulse waveform while suppressing
noise. Besides, themost critically, the fault impulsewaveform
in the x- and y-direction is scaled up meanwhile, which
makes the morphological filtering method achieve the best
results. This discovery can be used to indicate the direc-
tion of the subsequent signal processing methods for HVS-
RMS: 1. Research a noise reduction method that does not
cause amplitude distortion of the fault impulse waveform. 2.
Develop a method that can proportionally enhance the fault
impulse waveform of the x-direction and y-direction signals.
3. Improve the existing sparse decomposition and other meth-
ods with the goal that reserve the amplitude information of the
fault impulse waveform accurately.

V. CONCLUSION
In-depth discussion and demonstration about the localization
of the outer raceway defect on the ball bearing were carried
out in this paper. Firstly, based on themathematical derivation
and solution of the static model, it shows that the extremums
of the contact component forces Q̄df ,x and Q̄df ,y of the ball
passing through the defect zone are respectively the sine and
versine functions that take the defect angular position φf , the
external load and bearing parameters as variables. However,
HVSQ̄f and HVS1Q̄f are both cotangent functions that take
φf as the only variable. These findings reveal the mechanism
and basis of the HVS-index method to realize the localization
diagnosis of outer raceway defect in essence.

On that basis, the numerical simulation and approximate
analytical analysis of the nonlinear dynamic model of the
bearing system are carried out. It is confirmed that both
HVSQf and HVS1Qf in the dynamic system are approxi-
mately cotangent functions that take φf as the only variable.

Then two localization diagnosis indices: horizontal–vertical
synchronized Peak (HVSPeak) and horizontal–vertical syn-
chronized RMS (HVSRMS) were proposed. Theoretical
analysis and simulation results show that HVSPeak and
HVSRMS are also approximately cotangent functions that
take φf as the only variable, that is to say, both curves of
HVSPeak and HVSRMS varying with φf are approximately
two fixed gradient lines with symmetrical about φf = 270◦

in the interval of [240◦, 300◦]. In addition, the function is
not affected by any other factors except φf in theory. This
feature is similar to the defect characteristic frequency that
the qualitative diagnosis relies on, which provides support
for the localization of outer raceway defect. Then, based
on the analysis of the measured signal acquired from the
experimental apparatus, the applicability and accuracy of
HVSRMS in localization of outer raceway defect are verified.
More importantly, the necessity and superiority of HVSRMS
is highlighted by comparing with HVSPeak, RMS, Kurtosis,
CF, Sr , Sα , SampEn and LempelZiv.
Finally, the effects of three signal processing methods,

lifting wavelet, morphological filtering and matching pursuit,
are compared to solve the problem that noises in actual
signals interfere the accuracy of localization diagnosis based
on HVSRMS. The results show that the morphological filter-
ing method has the best extraction effect, and the matching
pursuit method has the worst effect, even counterproductive.
Combining with the mathematical mechanism of HVSRMS
and the characteristics of the three methods, the principle
is explained, and the following directions are pointed out
for the research of signal processing methods on HVSRMS:
1. Research a noise reduction method that does not cause
amplitude distortion of the impact waveform. 2. Develop a
method that can proportionally enhance the fault impulse
waveform of the x-direction and y-direction signals. 3.
Improve the existing sparse decomposition and othermethods
with the goal that reserve the amplitude information of the
fault impulse waveform accurately.
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