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ABSTRACT Advanced collision-based single trace attacks which can be applied on simple power analysis
resistant scalar multiplications become virtual threat on elliptic curve cryptosystems recently as their
practical experimental results are increasingly reported in the literature. Since such attacks are based on
detecting collisions of data dependent leakage caused by underlying long integer multiplications, so-called
global shuffling countermeasure which breaks such collision correlation by independently randomizing the
execution order of unit operations such as single precisionmultiplication and carry propagation, is considered
as promising countermeasure if theoretical randomness of shuffling order is guaranteed. In this paper,
we firstly analyze the practical security of the global shuffling long integer multiplications by exhibiting
a combined single trace attack on software implementations on an ARM Cortex-M4 microcontroller. Our
combined attack consists of a simple power analysis for revealing random permutation vectors which enables
later collision-based single trace attack. First we demonstrate how to reveal random permutation vectors for
carry propagation process of whole global shuffling long integer multiplications within a single power trace
by simple power analysis accompanied with straightforward substitution of power consumption samples.
Then we perform collision-based single trace attacks after rearranging the order of subtraces for unit carry
propagations based on revealed permutation vectors. Since the vulnerability to simple power analysis is
originated from the if-statement for selection of proper entries of the permutation vectors, we propose a
novel countermeasure which eliminates such selection with simple addition and modulus operation and also
demonstrate practical result achieving regularity in power trace patterns.

INDEX TERMS Cryptography, digital signatures, elliptic curves, public key, side-channel attacks.

I. INTRODUCTION
Elliptic curve cryptosystems (ECC) [1], [2] are widely
used until recently because of their advantages providing
equivalent security with shorter key length compared with
other public key cryptosystems (PKC) such as RSA, DSA,
and, DH. Furthermore, with the shorter keys, scalar mul-
tiplications which is the main operation of ECCs feature
shorter execution time and lower memory requirement than
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RSA modular exponentiations. Hence ECCs are preferably
deployed for PKCs on secure embedded devices.

On the other hand, side-channel analysis attacks [3],
[4] which can reveal the secret from implementations of
ECCs exploiting their timing, power consumption, electro-
magnetic emanation, etc., have been researched consis-
tently. Since ECC protocols such as ECDSA or ECDH
use an ephemeral secret, resistance against Simple Power
Analysis or Timing Attacks [3] which can be performed
with a single power trace is essential for secure embedded
devices. The core idea of such attacks is based on distin-
guishing doubling and addition of a scalar multiplication
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such as double-and-add algorithm [5]. Hence counter-
measures which operate regular scalar multiplication like
double-and-add-always [6], Montgomery ladder [7], [8], and
atomic scalar multiplication [9] deploying unified point addi-
tion formulae are proposed.

Nevertheless, advanced single trace attacks which can
defeat such countermeasures are also proposed. Walter [10]
proposed Big Mac attack which can distinguish doubling
and addition operations in a non-regular scalar multipli-
cation from a single trace utilizing Euclidean distance.
Inspired by the Walter’s work, Clavier et al. [11] pro-
posed Horizontal Correlation Analysis (HCA) which can per-
form on regular scalar multiplications exploiting correlation
between intermediate data and power consumption in a single
trace. Bauer et al. [12] introduced power trace averaging
techniques which can defeat countermeasures proposed by
Clavier et al. [11] against their attack. Recovery of Secret
Exponent by Triangular Trace Analysis (ROSETTA) [13] can
attack scalar multiplications by determining inner-collisions
of a long integer multiplication (LIM) [14] caused by the
same input single precision operations. Horizontal Collison
CorrelationAttack (HCCA) [15] takes advantages of both Big
Mac attack and HCA by exploiting collisions originated by
the same operand inputted in two LIMs. Hanley et al. [16]
improved HCCA by detecting collisions between input and
output operand of two LIMs. These attacks, except HCA and
the attack of Bauer et al. [12], can be categorized as collision-
based single trace attacks.

On the other hand, practical results of such collision-
based single trace attacks are presented later whereas only
simulated results of are shown in the original papers besides
only the work of Hanley et al. [16] exhibited experimental
results targeting 192-bit implementations of scalar multipli-
cation on a 32-bit microcontroller and a FPGA. Thereafter,
practical results of an improved HCCA exploiting collisions
of multiple LIMs in scalar multiplication targeting a 384-bit
implementation on a 64-bit architecture is published by
Danger et al. [17]. Practical experimental results of HCCA
and ROSETTA on specific elliptic curves are presented in the
works of Das et al. [18] and Cho et al. [19] targeting 192-bit
and 256-bit implementations, respectively.

Countermeasures of advanced single trace attacks
are also proposed mainly for securing LIM operations.
Clavier et al. [11] firstly proposed the method of ran-
domizing two loops for single precision multiplications
in LIM operations to exterminate collision characteris-
tics caused by identical manipulation of the same input.
Bauer et al. [12] enhanced the latter countermeasure and
proposed the global shuffling LIM which utilizes incor-
porated single random permutations for the two loop ran-
domization of single precision multiplications and separate
random permutations for carry processing operations. Fur-
thermore, in more recent work [15], this countermeasure
is referenced as a possible countermeasure against HCCA.
However, its practical effectiveness is not explored in the
literature.

Our contribution is threefold. We present the first prac-
tical results of a combined single trace attack, which is a
combination of a simple power analysis for revealing per-
mutation vectors and collision-based single trace attack with
rearranging subtraces, on software implementations of global
shuffling LIM, which is known to be secure against advanced
collision-based single trace attacks, operated on an ARM
Cortex-M4 based STM32F405 microcontroller [20] target-
ing 128, 192, and 256-bit ECC primitives. We analyze the
vulnerability of the algorithm’s carry propagation process
exploitable by SPA despite theoretically it is intended to
give an adversary (2l − 1)! complexity of guessing random
permutations where l is the word length of input operands
of LIM and demonstrate practical result of recovering whole
permutation vectors with a single trace by SPA accompa-
nied with straightforward substitution of power consumption
samples. Then we successfully mount collision-based single
trace attacks with power consumption subtraces of unit carry
propagation operations after rearrangement of processing
order on the basis of revealed permutation vectors. Secondly,
we provide three attack scenarios on which such vulnerability
of the global shuffling algorithm is exploited to successfully
recover the secret scalar. Since our proposed attack targets
the carry propagation process in which only the results of
single precision multiplications are manipulated, exploitable
collisions in operands of LIM is limited in case of both
operands are the same. Nevertheless, still the vulnerability of
global shuffling LIM can lead to the recovery of the secret
scalar for three cases where particular unified point addi-
tions are deployed. Finally, we propose a novel countermea-
sure against our proposed attack. The vulnerability of global
shuffling LIM is caused by the if-statement for selection of
proper entries from the permutation vector. Our proposed
countermeasure eliminates such selection with a permutation
vector rearrangement method utilizing simple addition and
modulus operation and achieves regularity in power trace pat-
terns consequently providing security for resistance against
SPA. Practical result demonstrating the regularity of power
consumption trace acquired from the implementation of our
countermeasure is also presented.

This paper is organized as follows. In Section II, we intro-
duce SPA-resistant scalar multiplications and advanced
collision-based single trace attacks defeating such counter-
measures. And we introduce global shuffling LIM proposed
in [12] which is known to defeat advanced collision-based
single trace attacks when the algorithm is deployed by the
latter scalar multiplications. And in Section III, we analyze
the vulnerability of the global shuffling LIM and present
attack scenarios for three elliptic curve cases on which
recovery of the secret scalar is possible when unified point
additions in projective coordinates are deployed. Then we
present practical results of our combined single trace attacks
which consist revealing random permutation vectors by SPA
and detecting input collisions of global shuffling LIMs by
collision-based single trace attacks followed by rearrange-
ment of subtraces based on revealed permutation vectors.
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In Section IV, we propose a countermeasure eliminating
SPA-leakage and also present practical result of such imple-
mentation. Finally, we conclude this paper in Section V.

II. PRELIMINARIES
Since ECC cryptographic protocols such as ECDSAor ECDH
use an ephemeral secret, differential power analysis [4] which
requires several or many SCA-leakage traces, for example,
power consumption traces, manipulating the same secret is
not possible. As result, attacks exploiting a single power
trace are researched importantly. SPA or Timing attack is
simple and powerful attack which can reveal the secret from a
single power trace hence the SPA-resistant property became
essential for secure implementation for embedded devices.
Thereafter more advanced single trace attacks defeating SPA-
resistant implementations are also proposed. In this section,
we describe basic idea of SPA on some ECC protocols and the
side-channel atomic scalar multiplication with unified point
addition which can defeat SPA. And illustrate some advanced
collision-based single trace attacks which can be performed
in the presence of additional countermeasures defeatingDPA-
like (advanced) single trace attacks, such as HCA, and the
global shuffling LIM countermeasure.

A. SIMPLE POWER ANALYSIS ON ELLIPTIC CURVE
CRYPTOGRAPHY AND UNIFIED POINT ADDITION
Most sensitive operation in ECDSA or ECDH protocols is
scalarmultiplication since a secret scalar k is directlymanipu-
lated during calculation of kPwhere P is a point on an elliptic
curve. Simplest algorithm for scalar multiplication is left-to-
right binary or double-and-add [5] method. Assume an n-bit
scalar k is represented as k = (kn−1, . . . , k0)2 and a register
R for the result of the algorithm is set as the point at infinity
of an elliptic curve, the algorithm scans the most significant
bit to the least significant bit of k and if scanned bit is zero
it performs a point doubling on R or a point addition R + P
followed by a point doubling on Rif the bit is one.

Since double-and-add algorithm operates different sequen-
ces depending on the secret bit, an adversary can reveal
the key bit if it can determine the difference by inspecting
side-channel leakage of an implementation such as timing or
patterns of power trace [3]. Hence so-called regular algo-
rithms, that is, double-and-add-always [6], Montgomery lad-
der [7], [8] and, side-channel atomic scalar multiplication [9]
are proposed. Double-and-add-always and Montgomery lad-
der algorithms operate identical sequence regardless of the
key bit value, that is, one doubling and one addition per
the key bit. On the other hand, operation sequence of side-
channel atomic scalar multiplication, as described in Alg. 1,
is similar to double-and-add algorithm. However, doubling
operations are replaced by point additions with the same point
within R0 and the process of scanning the key bit is replaced
by Step 5 which is regular regardless of the key bit value
whereas double-and-add has an if-statement for the process.

To properly implement side-channel atomic scalar mul-
tiplication, unified point addition, in which both addition

Algorithm 1 Side-Channel Atomic Scalar Multiplication
Input: P, k = (kn−1, . . . , k0)2
Output: kP
1: R0← O; R1← P; i← n− 1
2: s← 0
3: while (i ≥ 0) do
4: R0← R0 + Rs
5: s← s⊕ ki; i← i−¬s
6: end while
7: Return R0

Algorithm 2 Long Integer Multiplication [14]
Input: x = (xl−1, . . . , x0)2w , y = (yl−1, . . . , y0)2w
Output: LIM (x, y) = x × y
1: for i = 0 to 2l − 1 do
2: ri = 0
3: end for
4: for a = 0 to l − 1 do
5: c← 0
6: for b = 0 to l − 1 do
7: (uv)2w ← (ra+b + xa × yb)+ c
8: ra+b← v and c← u
9: end for
10: ra+l ← c
11: end for
12: Return r

and doubling operation are calculated on the same formula,
is deployed for the indistinguishability of two operations.
Since Brier and Joye firstly proposed on Weirstrass curve
in [21], unified point additions on various curves and point
representations are studied [21]–[23].

B. ADVANCED COLLISION-BASED SINGLE TRACE ATTACKS
AND COUNTERMEASURES
However, advanced collision-based single trace attacks [13],
[15], [16] can be performed despite such regular scalar multi-
plications are implemented. These attacks are based on deter-
mining collision characteristics originated from identical unit
operations in field multiplications consisting in regular scalar
multiplications and key-dependent existence of such charac-
teristics. We describe collision characteristics of advanced
collision-based attacks in the following and we assume that a
field multiplication is composed of a long integer multiplica-
tion, as shown in Alg. 2, and a following modular reduction.

ROSETTA [13] targets detecting inner collisions of field
squaring operations. Assume an adversary can extract side-
channel traces of single precision multiplications, that is, xa×
yb in Step 7 of Alg. 2, if a field squaring is performed a half of
(l2−l)traces have collision correlation since xa×xb = xb×xa
for all a 6= b. In the opposite case, for a field multiplication,
since xa×yb 6= xb×ya for all a 6= b the collision characteristic
does not exist.
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HCCA [15] determines collisions in at least one input
operand of two (or more) field multiplications. Consider two
LIMs consisting in two field multiplications, LIM (x, y) and
LIM (x, z), if an adversary can collect two groups of side-
channel traces of single precision multiplications, respec-
tively for xa×yb and xa× zb, and if correlation of two groups
are higher than other cases where none of the inputs have the
same value, the collision characteristic is exploitable.

The attack of Hanley et Al. [16] exploits collisions of input
and output of field multiplications. Consider two field multi-
plications denoted byMUL(x, y) = z andMUL(z,w), if there
is higher correlation in this case compared to non-collision
cases, the attack is possible. Contrary to two former attacks,
this attack requires considering the different placement of
side-channel leakage in time domain, thus they deploy the
cross-correlation technique to find points of interest where
input-output collision correlation exists.

Countermeasures of those attacks are already proposed.
Clavier et al. [11] first proposed the idea of randomizing
the two loops of Alg. 2, that is, a and b, separately to
constrain collision correlations caused by sequential (or pre-
determined) manipulation of input operands in LIMs. After
that, Bauer et al. [12] exhibited the attack weakening the
effect of the separate randomization and proposed global
shuffling LIM, described in Alg. 3. Also in [15], this coun-
termeasure is considered to be an effective countermeasure
against HCCA and to the best of our knowledge novel single
trace attacks can defeat this countermeasure are not proposed
in the literature. We further analyze the global shuffling LIM
in the next section.

III. COMBINED SINGLE TRACE ATTACK ON GLOBAL
SHUFFLING LONG INTEGER MULTIPLICATION
In this section, we present a combined single trace attack
which can be applied on side-channel atomic scalar multipli-
cations with unified point addition deploying global shuffling
LIM which is known to be secure against advanced collision-
based single trace attacks. First, we analyze a vulnerability of
the global shuffling LIM proposed in [12] and present attack
scenarios which can lead to the recovery of the secret scalar
for three cases, that is, unified addition formulas with pro-
jective coordinates for short Weirstrass, Jacobi quartic, and
Jacobi intersection curves, where such vulnerability can be
exploited by an adversary. Next, we demonstrate by practical
experiments that the vulnerability really exists showing dis-
tinct patterns with respect to the condition of an if-statement
in power consumption traces. Consequently, as revealing
whole permutation vectors by simple power analysis with a
straightforward substitution of subtraces are possible, then
collision-based single trace attacks can be mounted on origi-
nally shuffled carry propagation operations after rearranging
subtraces based on revealed vectors.

A. EXPLOITABLE VULNERABILITY ANALYSIS OF GLOBAL
SHUFFLING LONG INTEGER MULTIPLICATION
The global shuffling long integer multiplication [12] is an
enhanced version of two loops randomization LIM proposed

by Clavier et al. [11]. The core idea of both countermeasures
is to impose an (l!)2 complexity on an adversary to perform
advanced single trace attacks exploiting single precision mul-
tiplications in LIM by randomizing the execution order of
them. To this end, the two loops randomization LIM deploys
two random permutations in [0, l − 1] to randomize index
variable a and b in Step 7 in Alg. 2, separately. However,
Bauer et al. [12] demonstrate the technique of nullifying
the effect of randomization for one random permutation
by averaging l subtraces. Such attack is possible since an
adversary knows the fact that when executing the loop of
Step 6-9, there are l single precision operations while the
index variable a fixed with some unknown value. Conse-
quently, Bauer et al. [12] proposed the method of random-
izing both indices simultaneously for operations of single
precision multiplications xa × yb.
On the other hand, by the result of changing the construc-

tion of the loop for operations of single precision multiplica-
tions xa × yb, carry propagation process needs to be changed
properly. In the global shuffling LIM algorithm, as described
in Alg. 3, such carry propagations are processed indepen-
dently as shown in Step 12-21 and to prevent advanced
single trace attacks exploiting the correlations caused by
the collisions of input operands of LIMs, another random
permutation vector in [1, 2l − 1] is deployed. Thus theoret-
ically, an adversary attempting advance single trace attacks
on carry propagation process must guess the permutation out
of (2l − 1)! possibilities. Nevertheless, such attacks are still
possible because of the existence of if-statement in Step 15,
consequently the random permutations can be revealed by
SPA.

First, consider Step 12-21 of Alg. 3, when i = 2l − 1
the if-statement suffices only once where the entry of the
permutation vector P is 2l−1. Hence in the power consump-
tion trace, there will be 2l − 2 identical patterns executing
Step 13-15 where the condition of if-statement is false and
one different and longer pattern caused by additional opera-
tions of Step 16-19. If an adversary can identify two different
patterns, it can recover the position of entry 2l − 1 in P
where there exist only 2l−1 positions in the vector. Next, for
i = 2l − 2 the if-statement suffices twice, that is, for entries
2l − 1 and 2l − 2, in this case there will be two different
and longer patterns are expected to be observed in the power
consumption trace. Since the adversary already knows the
position of the entry 2l − 1, it can recover the position
of entry 2l − 2 simply considering the remained position
corresponding to another pattern caused by true condition
of the if-statement is for the latter entry. Similarly, entire
positions of entries which are randomly distributed in P can
be recovered step-by-step.

Now assuming that the adversary knows every permuta-
tion vectors corresponding to each global shuffling LIM’s
carry propagation process, it can mount collision-based sin-
gle trace attacks independently exploiting carry propagation
process. Note that the previous attacks mainly exploit the
single precision multiplications in LIM. Since our proposed
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Algorithm 3 Global Shuffling Long Integer Multiplica-
tion [12]

Input: x = (xl−1, . . . , x0)2w , y = (yl−1, . . . , y0)2w
Output: LIM (x, y) = x × y
1: γ = (α, β) ←a permutation vector where α, β are
random permutations in [0, l − 1]
2: P←a random permutation in [1, 2l − 1]
3: for i = 0 to 2l − 1 do
4: ri = ci = 0
5: end for
6: for h = 0 to l2 − 1 do
7: (a, b)← γh
8: (uv)2w ← ra+b + xa × yb
9: ra+b← v
10: ca+b+1← ca+b+1 + u
11: end for
12: for i = 1 to 2l − 1 do
13: for j = 1 to 2l − 1 do
14: s← Pj
15: if (s ≥ i) then
16: (uv)2w ← rs + cs
17: rs← v
18: cs+1← cs+1 + u
19: cs← 0
20: end for
21: end for
22: Return r

attack targets the carry propagation process in which only
the results of single precision multiplications are manipu-
lated, exploitable collisions in operands of LIM are limited
in case of both operands are the same. Nevertheless, still
this vulnerability of global shuffling LIM can lead to the
recovery of the secret scalar for three cases where particular
unified point additions are deployed, as described in the next
section.

B. APPLICABILITY OF PROPOSED ATTACK ON
ELLIPTIC CURVES
Here, we analyze the possibility of attacking side-channel
atomic scalar multiplication with unified point addition
deploying global shuffling LIM. Assuming an adversary can
detect collisions of two operands in two field multiplications,
that is, two global shuffling LIMs in this context, the secret
scalar k of Alg. 1 can be recovered if such collisions exist
only for doubling (or addition) despite the same sequence of
operations are executed by the unified point addition. In the
following, we demonstrate such possible attack scenarios by
analyzing unified point addition formulae for several elliptic
curves.

1) SHORT WEIERSTRASS CURVES
A Short Weierstrass elliptic curve EK defined over a field K
satisfies following equation

y2 = x3 + ax + b (1)

Algorithm 4 Unified Point Addition for Short Weierstrass
Curves [22]
Input: P1 = (X1,Y1,Z1), P2 = (X2,Y2,Z2)
Output: P1 + P2 = (X3,Y3,Z3)
1: U1 = X1 × Z2
2: U2 = X2 × Z1
3: S1 = Y1 × Z2
4: S2 = Y2 × Z1
5: ZZ = Z1 × Z2
6: T = U1 + U2
7: TT = T 2

8: M = S1 + S2
9: R = TT − U1 × U2 + a× ZZ2

10: F = ZZ ×M
11: L = M × F
12: LL = L2

13: G = (T + L)2 − TT − LL
14: W = 2× R2 − G
15: X3 = 2× F ×W
16: Y3 = R× (G− 2×W )− 2× LL
17: Z3 = 4× F × F2

18: Return (X3,Y3,Z3)

where (x, y) ∈ K 2 in affine coordinates and a, b ∈ K .
Given two points on the curve P1 = (X1,Y1,Z1) and P2 =
(X2,Y2,Z2) with the projective coordinate representation
where x = X/Z and y = Y/Z , the unified addition formu-
las for P1 + P2 = (X3,Y3,Z3) are presented as following
algorithm [22].

If P1 = P2, two input operands of field multiplications
corresponding to (Step 1, Step 2), and (Step 3, Step 4) are
identical, respectively. For the case when P1 6= P2, the latter
collisions of input operands do not occur.

2) JACOBI QUARTIC CURVES
A Jacobi quartic elliptic curve EK defined over a field K
satisfies following equation

y2 = x4 + 2ax2 + 1 (2)

where (x, y) ∈ K 2 in affine coordinates and a ∈ K .
Given two points on the curve P1 = (X1,Y1,Z1) and
P2 = (X2,Y2,Z2)with the projective coordinate representa-
tion where x = X/Z and y = Y/Z , the unified addition for-
mulas for P1 + P2 = (X3,Y3,Z3) are presented as following
algorithm [22].

If P1 = P2, two input operands of field multiplications
corresponding to (Step 1, Step 6), (Step 2, Step 7), and
(Step 4, Step 9) are identical, respectively. For the case when
P1 6= P2, the latter collisions of input operands do not occur.

3) JACOBI INTERSECTION CURVES
A Jacobi intersection elliptic curve EK defined over a field K
satisfies following equation{

s2 + c2 = 1
as2 + d2 = 1

(3)
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Algorithm 5 Unified Point Addition for Jacobi Quartic
Curves [22]

Input: P1 = (X1,Y1,Z1), P2 = (X2,Y2,Z2)
Output: P1 + P2 = (X3,Y3,Z3)
1: A2 = X2

2
2: C2 = Z2

2
3: D2 = A2 + C2
4: B2 = (X2 + Z2)2 − D2
5: E2 = B2 + Y2
6: A1 = X2

1
7: C1 = Z2

1
8: D1 = A1 + C1
9: B1 = (X1 + Z1)2 − D1
10: E1 = B1 + Y1
11: A1A2 = A1 × A2
12: B1B2 = B1 × B2
13: C1C2 = C1 × C2
14: Y1Y2 = Y1 × Y2
15: F = C1C2 + A1A2
16: G = 2× B1B2
17: X3 = E1 × E2 − B1B2 − Y1Y2
18: Y3 = F × (4× Y1Y2 + a× G)+ (D1 × D2 − F)× G
19: Z3 = 2× (C1C2 − A1A2)
20: Return (X3,Y3,Z3)

Algorithm 6 Unified Point Addition for Jacobi Intersection
Curves [23]

Input: P1 = (X1,Y1,Z1), P2 = (X2,Y2,Z2)
Output: P1 + P2 = (X3,Y3,Z3)
1: SC1 = S1 × C1
2: DZ1 = D1 × Z1
3: SC2 = S2 × C2
4: DZ2 = D2 × Z2
5: E = S1 × D2
6: F = C1 × Z2
7: G = D1 × S2
8: H = Z1 × C2
9: J = SC1 × DZ2
10: K = DZ1 × SC2
11: S3 = (H + F)× (E + G)− J − K
12: C3 = (H + E)× (F − G)− J + K
13: D3 = (DZ1 − a× SC1)× (SC2 + DZ2)+ a× J − K
14: Z3 = (H + G)2 − 2× K
15: Return (X3,Y3,Z3)

where (s, c, d) ∈ K 3 in affine coordinates and a ∈ K . Given
two points on the curve P1 = (S1,C1,D1,Z1) and P2 =
(S2,C2,D2,Z2)with the projective coordinate representation
where s = S/Z , c = C/Z , and d = D/Z , the unified addition
formulas for P1 + P2 = (S3,C3,D3,Z3) are presented as
following algorithm [23].

If P1 = P2, two input operands of field multiplications
corresponding to (Step 1, Step 3), (Step 2, Step 4), (Step 5,
Step 7), (Step 6, Step 8), and (Step 9, Step 10) are identical,

respectively. For the case when P1 6= P2, the latter collisions
of input operands do not occur.

C. EXPERIMENTAL RESULT
In this section, we evaluate the security of global shuffling
LIM against advanced single trace attacks. As analyzed in
the previous section, unified point additions for some elliptic
curves have collisions in two operands of fieldmultiplications
which can be exploitable for recovery of the secret scalar
from side-channel atomic scalar multiplications. Such colli-
sions can be detected by an adversary if field multiplications
are based on school-book LIMs as proposed in previous
works [13], [15], [16]. However, the global shuffling LIM
can prevent such detection if it is secure as intended. In the
following, we demonstrate that detection of collisions in two
operands of global shuffling LIMs is possible by a single
trace collision-based attack targeting the carry propagation
operations followed by recovery of the random permutation
vectors with SPA.

1) EXPERIMENTAL SETUP
We conduct practical experiments of our attack for
three power consumption traces consisting of 2n (n =
128, 192, 256) global shuffling LIMs, where n represents the
number of bits of targeted ECC primitive which is operated
on ARMCortex-M4 based STM32F405 microcontroller [20]
embedded on ChipWhisperer [24] CW308T-STM32F [25]
target board. Note that in real attack situation there will be
more than 2n LIMs for one scalar multiplication because
unified point additions consist of more than two LIMs. For
the situation, an adversary should extract power consumption
traces of target LIMs. Such extraction can be achieved by
finding a LIM trace, we refer it as reference trace, from visual
inspection and then locating the rest LIM traces by calculat-
ing correlation coefficient of the reference with the whole
scalar multiplication point-by-point. For the simplicity of the
explanation and due to limited memory of our oscilloscope,
we conduct our experiment assuming an adversary exploits
one LIM from each unified addition. Alg. 3 is implemented in
ARM assembly language. In detail, each power consumption
trace has n pair of LIMs where half of them have input
collisions of two operands and the rest have no collision,
that is, if we represent (A, B, C, D) as operands of a pair of
LIM operations, A = C,B = D for the collision case and
A 6= C,B 6= D for the opposite case where all the inputs
are different random values for each pair of LIMs. Of course,
permutation vectors γ and P for individual LIM operations
are different. Two LIMs consisting a pair are located con-
tiguously. Note that as we target carry propagation process
of the global shuffling LIM, we focus on power consumption
samples corresponding to l(2l − 1) unit carry propagation
operations. Since we conduct experiments for 128, 192,
and 256-bit ECC primitives based on 32-bit words, there
exist 28, 66, and 90 such unit operations within each LIM,
respectively. For all acquisitions of power consumption traces
we amplify the signal with CW501 differential probe [26]
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TABLE 1. Settings for power trace acquisition.

and capture themwith LeCroyHDO6104A oscilloscope [27].
Operating clock frequency of the target device and sampling
rate of oscilloscope for each acquisition are listed in Table 1.
For simplicity, we illustrate our attack experiment targeting
128-bit implementation hereafter. The attack principle and
actual results for the rest of implementations are similar.

2) REVEALING RANDOMIZED VECTORS BY SIMPLE
POWER ANALYSIS
To reveal the permutation vector P for each LIM, we firstly
identify and extract the power consumption samples of
Step 12-21 in Alg. 3 denoted by Ck where k = {1, . . . , 2n}
indicates the index of each LIM operation. This process is
done by finding a single reference trace of Ck and calculating
correlation coefficient point by point with the whole power
consumption trace. Since the vector P varies for each LIM,
actual patterns of every Ck are not identical. Nevertheless,
whereas the value of correlation coefficient peaks ranges
from 0.36 to 0.88, all the peaks are distinguishable to suf-
ficiently determine the starting point in time for each Ck .
Hence we cut the power consumption samples with the same
length of the reference from the starting points and acquire
every Ck . Fig. 1 presents all Ck where k = {1, . . . , 256}.
As shown in Fig. 1, we can determine intervals for each loop
of Step 13-20 in Alg. 3 whereas i increases due to the power
consumption peaks which are common for all Ck appeared
after each loop interval (they are located outside the dotted
lines in Fig. 1). Considering the interval where i = 7, we can
confirm that seven peaks exist since if-statement of Step 15 in
Alg. 3 only suffice once, that is, when s = 7, whereas s varies
from 1 to 7 in random sequence. Hence, by observing the
position of each peak among the seven peaks, we can deter-
mine the location of entry 7 in each permutation vector P.

However, for i = {2, . . . , 6} such simple determination
is not possible because power consumption peaks in each
interval do not present in seven positions. This phenomenon
is caused by the fact that additional operations of Step 16-19
in Alg. 3 are performed only when the if-statement is true
and such condition occurs more than two times for i =
{2, . . . , 6} case. To solve this problem, we can reconsider
the interval of i = 7 in Fig. 1 and analyze different pat-
terns corresponding to the condition of the if-statement of
Alg. 3 as represented in Fig. 2. Obviously, if the condition
is true, longer and distinct pattern of power consumption is
observed and this pattern can be used as a reference pattern
to locate similar patterns in every Ck by calculating corre-
lation coefficient point by point (Note that these patterns

FIGURE 1. Power consumption traces of carry propagation process of
global shuffling LIM.

FIGURE 2. Identification of patterns corresponding to the condition of
if-statement of Alg. 3 where i = 7. This is an example of the case where
entry 7 is located in the first index of permutation vector P (the rest
power consumption traces are colored gray to show peak positions).

can be efficiently distinguished by checking whether power
consumption exceeds a certain threshold, however we choose
this method to locate such patterns accurately and then easily
substitute them from the points where correlation peaks exist
in the next step). After this process, we can substitute all
these particular patterns, which are similar to the reference
pattern, with an arbitrary pattern with the same length of
a false case pattern in Fig. 2 but with different shape. For
example, we choose samples located in the center of true
case pattern in Fig. 2 where relatively higher peak of power
consumption is observed. The result of the substitution for
all Ck is presented in Fig. 3. As all peaks caused by true
condition of the if-statement are located in seven positions
for each loop of i = {2, . . . , 6}, we can now reveal entire
entries of the permutation vector P for each Ck by SPA.
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FIGURE 3. Power consumption traces of carry propagation process of
global shuffling LIM after substitution of samples to locate seven
positions of particular operation for recovering permutation vector P.

FIGURE 4. An example of recovering permutation vector P with a single
power trace.

We illustrate here an example of recovering the permu-
tation vector P for a particular Ck where k = 255 in our
experiment. Similarly to Fig. 2, we present C̃255 in Fig. 4,
where C̃k represents a power consumption trace resulted from
the previous substitution on each Ck , and the rest C̃k where
k = {1, . . . , 254, 256} in gray color to reveal the permutation
vector P by visual inspection. The recovery of entries of
the permutation vector P is performed one by one from the
interval of i = 7 to i = 2. As described previously, a power
consumption peak in the interval of i = 7 indicates the
position of entry 7 in the permutation vector. Hence we can
determine that the first entry of P is 7. Next we can observe
that for the interval of i = 6, there are two peaks in the first
position and the seventh position. As we already know that

TABLE 2. Settings of window parameter for compression.

the peak in the first position is caused by the case of s = 7,
we can infer that the peak in the seventh position is caused by
the case of s = 6. As a result, the entry 7 and 6 are located in
the first and the seventh position in P, respectively. The rest of
entries can be recovered similarly and for i = 1 case, the entry
1 is assigned to the last remained position. Finally, we can
recover the permutation vector as P = {7, 3, 1, 2, 4, 5, 6} for
C̃255. All permutation vectors for the rest C̃k can be recovered
by the same manner.

3) RECONSTRUCTING AND POST-PROCESSING POWER
CONSUMPTION TRACES
Assuming all permutation vectors are known, we describe
preprocesses for performing collision correlation analysis
exploiting the recovered vectors. To detect collisions caused
by the same intermediate data on carry propagation process
of two global shuffling LIMs, we reconsider original power
consumption traces Ck hereafter. In the previous subsection,
all locations of power consumption samples corresponding
to the additional operations of Step 16-19, denoted by Tk,m
where m = {1, . . . , l(2l − 1)}, due to true condition of the
if-statement in Alg. 3 are identified in the process of making
each C̃k by calculating correlation coefficient point by point
with a reference samples of true case pattern in Fig. 2. We
reconstruct the power consumption traces as Ck = [Tk,1 ‖
Tk,2 ‖ · · · ‖ Tk,l(2l−1)] for all k = {1, . . . , 256}.

Then we applied the integration compression tech-
nique [28] to each Ck . The window size parameter which
represents how many number of samples integrated to one
point is selected among factors of points per clock, that is,
the sampling rate of acquisition of ameasuring device divided
by the operating clock cycles of a target device. We present
selected window size parameters which lead to the best suc-
cess rates of further collision attacks for all three experiments
targeting 128/192/256-bit ECC primitives in Table 2.

Finally, we applied the subtraction of mean traces of Tk,m
in the same manner as represented in [29] to remove the
operational dependent leakage and possible noise. Since we
target to determine collisions of manipulated data in a pair
of global shuffling LIMs, we divide power traces Ck where
k = {1, . . . , 256} into two groups. Then for the two groups
separately, mean traces of each group are subtracted from
each Tk,m accordingly.

4) REORDERING POWER CONSUMPTION TRACES
Now to exploit collision characteristic of two global shuffling
LIMs caused by input operands similarly to the previous
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Algorithm 7 Reordering Subtraces
Input: C = [T1 ‖ T2 ‖ · · · ‖ Tl(2l−1)], P
Output: Reordered C = [T̃1 ‖ T̃2 ‖ · · · ‖ T̃l(2l−1)] where
position index m of subtrace Tm is rearranged correspond-
ing to entry values of P
1: offset = 0
2: for i = 1 to 2l − 1 do
3: for j = 1 to |P| do
4: T̃offset+P[j]← Toffset+j
5: end for
6: offset ← offset + |P|
7: P← P\{i} // Omit entry i from vector P
8: end for
9: Return C̃ = [T̃1 ‖ T̃2 ‖ · · · ‖ T̃l(2l−1)]

attacks performed on non-shuffling LIMs, we reorder the
placement of subtraces Tk,m in eachCk such that all reordered
traces C̃k have practically the same order of processing carries
to remove the effect of the global shuffling countermeasure
vanishing the correlation between two LIMs’ power traces by
shuffling the manipulating order of each unit carry processing
operation, that is, Step 16-19 in Alg. 3, every time the global
shuffling LIM is operated. More precisely, as analyzed in the
previous subsection, manipulated indices for each iteration
of i in Alg. 3 can be denoted by mi = {x|i ≤ x ≤ 2l − 1}
where the positions of entries for each mi are shuffled and
Alg. 7 rearranges these shuffled positions in ascending order.

5) FINDING POINTS OF INTEREST
To perform further collision-based single trace attack, we find
points of interest by calculating correlation coefficient vector
with the length of Tk,m denoted by lT . As we have n pairs
of LIM traces where each LIM trace Ck is composed of
l(2l−1)Tk,m traces, we vertically stack all Tk,m separately for
each group of LIM traces and calculate the correlation coef-
ficient of these two matrices as described in Alg. 8. By per-
forming this process, correlation coefficient peaks caused by
the collision characteristic from the same manipulated data
for some pair of LIM traces can be identified despite the
noise is added in the resulting correlation coefficient vector if
there is no collision of input operands for other pair of LIM
traces for the same point in time. After choosing samples
as points of interest where the correlation coefficient value
is equal or greater than some threshold as shown in Fig. 5,
we can perform further collision-based single trace attack.

6) RECOVERING SECRET BY COLLISION-BASED SINGLE
TRACE ATTACK
We can now determine whether each pair of LIM traces have
input collisions or not. As we analyzed in Section III-B, if an
adversary can detect whether there is collision of two input
operands of global shuffling LIMs in some unified point addi-
tions deployed by a side-channel atomic scalar multiplica-
tion or not it can recover secret scalar as described in Alg. 10

Algorithm 8 Calculating Correlation Coefficient Trace to
Find POIs
Input: Ck = [Tk,1 ‖ Tk,2 ‖ · · · ‖ Tk,l(2l−1)]
Output: (1× lT ) correlation coefficient vector CI
1: for j = 0 to n− 1 do
2: for m = 1 to l(2l − 1) do
3: TM1 = [TM1;T2×j,m]
4: TM2 = [TM2;T2×j+1,m]
5: end for
6: end for
8: CI = CorrT (TM1,TM2)
9: Return CI

Algorithm 9 CorrT Function
Input: Two matrices A = (ai,j) and B = (bi,j) of the same
size (1 ≤ i ≤ M , 1 ≤ j ≤ N )
Output: (ρ1, ρ2, . . . , ρN )
1: for i = 1 to N do
2: X = [a1,i, a2,i, . . . , aM ,i]T

3: Y = [b1,i, b2,i, . . . , bM ,i]T

4: ρi = corr(X ,Y )
5: end for
6: Return (ρ1, ρ2, . . . , ρN )

Algorithm 10 Recovering the Secret Scalar With Collision
Power Analysis
Input: Ck = [Tk,1 ‖ Tk,2 ‖ · · · ‖ Tk,l(2l−1)], CI
Output: Recovered secret scalar d = (dn−1, . . . , d0)2
1: Prepare a score vector 1 = [δn−1, . . . , δ1]
2: // Select POIs having values larger or equal than arbitrary
threshold then store indices in a vector IP = [i1, . . . , inP ]
3: for i = 1 to lT do
4: if (CI (i) ≥ threshold) then
5: IP = [Ip, i]
6: end for
7: Reconstruct Ĉk with only POIs extracted T̂k,m =

Tk,m(IP)
8: for j = 0 to n− 1 do
9: Ĉ2×j = [T̂2×j,1 ‖ T̂2×j,2 ‖ · · · ‖ T̂2×j,l(2l−1)]
10: Ĉ2×j+1= [T̂2×j+1,1 ‖ T̂2×j+1,2 ‖· · ·‖ T̂2×j+1,l(2l−1)]
11: δj = corr(Ĉ2×j, Ĉ2×j+1)
12: end for
13: for j = 0 to n− 1 do
14: if (δj > mean(1)) then
15: dj = 0
16: else
17: dj = 1
18: end for
19: Return d = (dn−1, . . . , d1)2

(this attack can be done by exploiting more than one pair of
global shuffling LIMs as long as the collision characteristic
of such LIMs exists only in doubling or addition operation
of a side-channel atomic scalar multiplication but in our
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FIGURE 5. Power consumption t races of carry propagation process of
proposed global shuffling LIM.

TABLE 3. Success rates of combined single trace attacks.

experiment we just consider collisions of a pair of global
shuffling LIMs for simplicity). First, we extract POIs selected
in the previous subsection in each unit carry propagation sub-
trace Tk,m and reconstruct Ĉk = [T̂k,1||T̂k,2|| · · · ||T̂k,l(2l−1)]
where the group of extracted samples of POIs are denoted by
T̂k,m. Then we calculate the correlation coefficient δj between
two contiguous LIMs Ĉ2×j and Ĉ2×j+1 for all j = {0, . . . , n−
1}. If the value of δj is greater than the mean of all δj we
consider the bit value of secret scalar dj is zero else the bit
is one. Results of these attacks targeting 128-bit, 192-bit, and
256-bit implementations are presented in Table 3 where each
success rate is represented by the number of correctly recov-
ered bits divided by the whole secret bit length n. Despite
several bits are recovered incorrectly, we can observe that the
success rate increases as n increases as well whereas each
success rate of the attack is considerable against the security
of a side-channel atomic scalar multiplication deploying spe-
cific unified point additions with global shuffling LIMs. This
phenomenon can be described by the increased number of
unit carry propagations for recovering a bit of secret scalar.
Hence the success rates can be improved by exploiting more
pair LIMs in one doubling or addition operations in a unified
point addition (this can be done by utilizing more than one
measuring device as presented in [30]).

Furthermore, for the full recovery of the secret scalar we
can consider a method of correcting error bits. If an adver-
sary can determine locations of error bits, the correction
could be done by just swapping bit values of corresponding

TABLE 4. Brute-forcing costs for correcting error-bits.

locations. Brute-forcing such locations can be represented
by

∑ne
i=1 n−iCi where ne is the number of error bits and

assuming the most significant bit of the secret is one. In our
experiments, the results are bounded by 229, 237, and 235

for attacking 128-bit, 192-bit, and 256-bit implementations,
respectively. To decrease these costs, we can select some
candidate bit-locations for brute-forcing on which correla-
tion coefficient δj values are within an arbitrary distance
from the mean of all δj. For example, in our experiment
targeting 192-bit implementation, the mean value of all δj
is 0.4915 where the values range from −0.6153 to 0.9614,
and by choosing the distance as 0.3035 we have thirty-nine
candidate locations including all error-bit-locations. Then we
calculate the brute-forcing cost again based on the numbers
of candidate locations instead of (n − 1) in the combination
formula, as results are presented in Table 4.

IV. COUNTERMEASURE
In this section, we propose a novel global shuffling LIM
against our attack. As analyzed in Section III-A, the vul-
nerability of the carry propagation process is caused by the
if-statement for the selection of entry s which suffices s ≥
i from random permutation vector P whereas i increases
from 1 to 2l − 1. Hence, in our proposed countermeasure,
as described in Alg. 11, the if-statement is removed. In detail,
Step 12-21 in Alg. 3, we refer this as the original process,
is substituted by Step 12-32 in Alg. 11. In the following,
we describe the core idea for the selection of s without the
if-statement considering the value of i in the original process
and then present power consumption traces, which have the
same patterns for different execution of LIMs, of the practical
implementation of our proposed countermeasure.

First, for the case i = 1 in Alg. 3, the selection of s is
not necessary since all 2l − 1 entries of P are required hence
the carry propagation process for this case is represented
separately as Step 12-18 in Alg. 11.

Also for the case i = 2l − 1, the selection is not required
since this case means the processing of most significant word
of the result register by addition with the last carry. Hence,
the process can be simplified as Step 32 in Alg. 11.

Consider the remaining case where 2 ≤ i ≤ 2l − 2.
The number of required entries within a permutation vector P
where i increases for the original process is 2l−i, denoted by q
in Step 16 in Alg. 11, since entries with the value smaller than
i are not selected. Instead of selecting required entries, our
proposed countermeasure deploys a rearrangement method
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Algorithm 11 Global Shuffling Long Integer Multiplication
With Countermeasure Against Our Attack

Input: x = (xl−1, . . . , x0)2w , y = (yl−1, . . . , y0)2w
Output: LIM (x, y) = x × y
1: γ = (α, β) ←a permutation vector where α, β are
random permutations in [0, l − 1]
2: P←a random permutation in [1, 2l − 1]
3: for i = 0 to 2l − 1 do
4: ri = ci = 0
5: end for
6: for h = 0 to l2 − 1 do
7: (a, b)← γh
8: (uv)2w ← ra+b + xa × yb
9: ra+b← v
10: ca+b+1← ca+b+1 + u
11: end for
12: for j = 1 to 2l − 1 do
13: s← Pj
14: (uv)2w ← rs + cs
15: rs← v
16: cs+1← cs+1 + u
17: cs← 0
18: end for
19: for q = 2l − 2 to 2 do
20: t ← (q+ 1)− s // s is last used entry of Pj
21: for j = 1 to q do
22: s← (Pj + t)− (q+ 1)
23: s← s+ N × (q+ 1) // N is negative flag
caused by Step 11
24: s← s+ (2l − 1)− q
25: (uv)2w ← rs + cs
26: rs← v
27: cs+1← cs+1 + u
28: cs← 0
29: Pj← s
30: end for
31: end for
32: rs← rs + cs
33: Return r

which changes the permutation vector to have required entries
in the first q positions iteratively, consequently accompanies
no selection process.

The core idea can be described as follows. First calculate
the difference t between the value of entry in the last position
in the original permutation vector and the value q + 1. Next
add t for the all entries then apply mod (q + 1), now the
entries in the first q positions have the values from 1 to q
where still placed in random positions and zero in the last
position. Then, since required value of the entries in the
original process ranges from i to 2l − 1, add the difference
i − 1 = (2l − 1) − q for entries in the first q positions in
the derived permutation vector. Hence we can use the first
q entries from the derived permutation vector for the carry

propagation process. To derive the next permutation vector,
consider the first q entries of the derived permutation vector
as the original permutation vector.

The process of above description is presented as Step 19-31
in Alg. 11. Note that the modulus operation is actually done
in Step 22-23 utilizing the negative flag value of the status
register of target processor after subtraction with q + 1.
If naively implemented, the modulus operation can cause
an SPA-leakage. For example, the modulus operator % in
C language can be compiled to a division instruction in
assembly language of target processor which has variable
execution cycles depending on the input value if an exact
instruction for modulus operation do not exist. Considering
mod(q + 1) operation, the result of subtraction with q + 1
is negative for the inputs with the value lower than q + 1
where for such inputs modulus reduction is not necessary
hence compensating the result by addition with q + 1 is
required. On the other hand, if the result of subtraction is
positive, no compensation is required. Since the negative flag
value is set as one for the former case or zero for the latter
case, multiplying the value of the negative flag with q + 1
and then adding to the result perform such compensation and
the correct result for the modulus operation can be acquired
without SPA-leakage.

To demonstrate the practical effectiveness of our counter-
measure, we implemented 128-bit version of Alg. 11 for the
same target and setting from our attack experiment introduced
in Section III-C. Fig. 5 presents 256 power consumption
traces of our proposed global shuffling LIM in the same
manner depicting Fig. 1. It can be observed that there are no
differences in patterns of power traces hence revealing the
random permutation vectors from SPA is not possible.

V. CONCLUSION
We present the first practical results of a combined single
trace attacks on software implementations of global shuf-
fling LIM by analyzing the vulnerability of the algorithm’s
carry propagation process which is exploitable by SPA and
performing collision-based single trace attacks with power
consumption subtraces of unit carry propagation operations
after revealing permutation vectors. Since the vulnerability of
global shuffling LIM is caused by the if-statement for selec-
tion of proper entries from the permutation vector, we propose
a novel countermeasure which eliminates such selection with
a permutation vector rearrangement method utilizing simple
addition and modulus operation and achieves regularity in
power trace patterns consequently providing security against
SPA.We also provide a practical result of implementation our
countermeasure.
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