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ABSTRACT Evaluating the potential productivity of the terrestrial ecosystem is extremely important to
ascertain the threshold of vegetation productivity, to maximize the utilization of regional climate resources,
carbon sequestration and to mitigate climate warming caused by rising CO2 concentrations. However,
most previous studies neglected the optimum state of natural vegetation without human intervention and
regional change trend of vegetation under future climate change. In this study, variations in spatio-temporal
distributions of climate potential productivity (CPP) over China from 1980 to 2018 are analyzed with
the synthetic estimating model. A comprehensive regionalization method (Principal components analysis,
PCA) based on standardized precipitation evapotranspiration index (SPEI), and statistical analysis methods
are adopted to assess CPP and its response to the climate change in different regions of China. The
results demonstrate that the global temperature rising and precipitation decreasing have obvious effects
on the productivity of terrestrial ecosystem and its spatio-temporal distribution in different sub-regions
and ecosystems. Among them, precipitation is the dominant factor, and temperature significantly affects
some regions such as Tibetan Plateau (TP) and Northeast China (NE) with high-altitude or high-latitude.
The optimum temperature for the CPP in Xinjiang (XJ) region and Northwest China (NW) is 7.5◦C and
8◦C, respectively. With regards to the ecosystems, the CPP of grassland shows complex trends in XJ,
Southwest China (SW), NE, and TP; especially in XJ (NE), the CPP shows a decreasing (an increasing)
trend when the temperature is more than 7.5◦C (0◦C). Linear correlations occur between farmland CPP and
temperature in each sub-region except for XJ. The same situation also exists at forest CPP, especially in TP,
NE and NC regions. However, under the temperature increasing and precipitation decreasing, there are slight
adverse impacts on the CPP of vegetation at the national scale, indicating that drier and warmer climate are
detrimental for vegetation growth.

INDEX TERMS Climate potential productivity (CPP), synthetic model, SPEI, spatio-temporal variation,
climate change.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

I. INTRODUCTION

Climate change leads to variations in the global distribution of
surface temperature and precipitation, which has a profound
influence on regional resource allocation, carbon and water
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cycles of terrestrial ecosystems [1]–[3]. Many studies point
out that climate is the most critical factor that determines the
distribution pattern and structural characteristics of terrestrial
vegetation types. And some of them show that a shrinking
natural resource is suffering from climate change [4]–[7].
Optimumutilization of regional climate resources is an urgent
need for ecosystem protection and management under the
background of climate change. Climate potential productivity
(CPP) represents the vegetation can make full use of the
climate resources, such as light, heat and water when other
factors are in the optimum state, which can obtain the maxi-
mum biological or economic yield produced by photosynthe-
sis per unit area and per unit time [5], [8]–[10]. Therefore,
understanding the CPP of vegetation can not only reveal
the relationship between productivity and climate factors but
also predict the future development of vegetation production
capacity according to the trend of global climate [11]–[14].

Generally, CPP defined as the maximum regional net pri-
mary productivity (NPP) is difficult to estimate, which is
just affected by climate factors. Many endeavors have been
devoted to using meteorological factors as driving parameters
for simulating CPP, such as Miami model [10], Thornth-
watiteMemorial model [10] and Chikugomodel [15]. Studies
have shown that these statistic models have their respective
applicability in different regions and that they are all suitable
for the eco-environment with abundant water and flourishing
vegetation [16]. For example, Li et al. [17] and Li [18] used
Miami model and Thornthwatite Memorial model simulated
CPP of Yunnan Province and Central Asia, respectively,
which showed that the warm and wet would be beneficial for
production in the future. Guo et al. [19] calculated CPP of
springmaize and found that adjusting cropping systems could
dominantly contribute to utilization efficiency increases of
agricultural climatic resources in Northeast China in the
future. However, there are many uncertainties of CPP estima-
tion in the arid and semi-arid regions, where CPP tends to be
overvalued [20]. Besides, the increasing studies on estima-
tion of NPP are based on remote sensing data and process-
based models, such as the BIOME-BGC [21] and light use
efficiency (LUE) models, i.e., CASA model [22], [23]. How-
ever, studies show that these models are more suitable for
estimating actual regional NPP. The process-driven models
always require complicated parameters, such as soil prop-
erty and physiological parameters. Hence, the climate-based
synthetic model runs mainly by annual average temperature
and precipitation data, which conquers the data deficiency
and parameterization problems, especially in the data scare
regions.

There are various climatic zones in China: cold temper-
ate, middle temperate, temperate, subtropical, and tropical
zones extending from north to south, with numerous vegeta-
tion types [24]. Interactions between vegetation and climate
changes vary in different climate zones and vegetation types.
Regional CPP assessment can adequately reflect the differ-
ences in trends and spatiotemporal characteristics of regional
vegetation responses to climate change. CPP of terrestrial

ecosystems may be influenced by droughts directly related
to temperature increase and precipitation decrease [25], [26].
Therefore, studying the trend of vegetation change in the
area according to drought conditions can well reflect the
response of vegetation to water and heat condition. The
SPEI (standardized precipitation evapotranspiration index)
is developed to monitor droughts, which considers both
the sensibility of droughts to temperature and the effect of
precipitation [27], [28]. Consequently, regionalization based
on SPEI can effectively reflect the temperature and pre-
cipitation effects in different regions and ecosystems. Gen-
erally, the SPEI values at different timescales (3-month,
6-month, 12-month and 24-month scale) have different sen-
sibilities to the dry/wet condition. For example, 3-month
time scale can reflect the meteorological drought, 6-month
time scale can reflect the agricultural ecological drought, and
12-month time scale can reflect the long-term hydrological
drought [29], [30]. The 12-month SPEI (SPEI-12) can main-
tain the characteristics of inter-annual variation, and avoid
the seasonal cycle [31], while the shorter time scales such as
3-month or 6-month scale are too vulnerable and the longer
time scales (24-month) may easily miss some serious drought
events [32]. Here, we divide the study area into several sub-
regions based on drought (SPEI-12) and then assess the CPP
and its responses to climate change at a regional scale.

Many previous studies have evaluated the responses of
the terrestrial ecosystem to climate change in existing
regions [33], [34], but have not assessed regional differences
in terms of the effects of temperature and precipitation on
drought. In addition, the threshold of vegetation productiv-
ity and the potential influences of the natural vegetation
on climate change have not been explored. To address this
challenge, this paper explores the spatio-temporal variation
of CPP in different sub-regions of China from 1980 to
2018 using SPEI based on PCA (Principal components anal-
ysis) methods. Furthermore, the responses of the terrestrial
ecosystem potential productivity to temperature and precipi-
tation are analyzed using trend analysis and correlation coef-
ficients analysis methods.

II. MATERIALS AND METHODS
A. STUDY AREA
China, the third-largest county in the world, locates in East
Asia and on the western shore of the Pacific Ocean (Fig. 1a).
Temperate monsoon climate, subtropical monsoon climate,
tropical monsoon climate, tropical rain climate, temperate
continental climate, and plateau mountain climate dominates
different regions in China, and the climate diversity results in
various vegetation types [24]. Meanwhile, China is divided
into the southeastern and the northwestern parts. The south-
eastern part belongs to the monsoon climate zone and its
vegetation reflects the zonal regularity. The tropical mon-
soon rain, evergreen broad-leaved, deciduous broad-leaved
in the warm temperate zone, broad-leaved, mixed coniferous
and coniferous are found successively from south to north.
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FIGURE 1. (a) DEM of China and the meteorological stations, the pink circles (90% of the total number of stations) are used to
interpolation and the blue triangles (10% of the total number of stations) are used to verify the accuracy of interpolation.
(b)The major three ecosystems used in this study.

There is a weak impact of northwestern monsoon on the dis-
tribution of grassland and desert. The topography in China is
high in the west and low in the east, complex and diverse. Dif-
ferent topography has a remarkable influence on the growth
and richness of vegetation.

B. DATA PROCESSING
The meteorological data, including daily temperature and
daily precipitation from 1980 to 2018 are used in the study.
All data are collected from theNationalMeteorological Infor-
mation Center (http://data.cma.cn/), and 664 meteorological
stations are selected from the whole country in the current
study. The meteorological data are used to drive the CPP esti-
mating model including yearly mean temperature and yearly
precipitation datasets. Additionally, monthly mean tempera-
ture, precipitation datasets and the latitude of every station are
employed to calculate the SPEI. These data are interpolated
to produce regular yearly and monthly raster data with 1km
spatial resolution.

Land use maps of China (2015) are derived from
the Resource and Environment Data Cloud Platform
(http://www.resdc.cn/). The datasets are classified into six
land cover classes based on Landsat 8 remote sensing images,
including grassland, forest, farmland, water area, residential
land, and unused land. The derived data are projected into the
same projection (Albers equal area projection). The grass-
land, forest, and farmland are the top three major vegetation
types, which are extracted to analyze the response of different
terrestrial vegetation ecosystems to climate change (Fig. 1b).

DEM data with 1km resolution are derived from
the Resource and Environment Data Cloud Platform
(http://www.resdc.cn/) (Fig. 1a), which is mainly used for
meteorological data interpolation as influencing factors of

temperature and precipitation. In-situ data are primarily
collected by the Distributed Active Archive Center For
Biogeochemical Dynamics (ORNL DAAC) Net Primary
Production database (http://daac.ornl.gov/NPP/npp_home),
which is especially helpful for modeling and testing
hypothesis [35].

C. METHODS
1) ESTIMATION OF CPP
According to the physiological and ecological characteristics
of plants and the regional evapotranspiration model based on
the energy balance equation and the water balance equation,
Zhou [20] and Zhang [36] established a synthetic model to
estimate NPP. The maximum regional productivity of the cal-
culated NPP result is identified as potential productivity [5].
The calculation formula is established mainly based on the
measured biomass data, which is from 125 stations connected
with natural mature and 23 stations related to natural vegeta-
tion NPP in China such as grassland, forest and desert. The
calculation formulae are as follows [20], [36]:

NPP = 100× RDI
rRn(r2 + R2n + rRn)
(Rn + r)(R2n + r2)

× exp(−
√
9.87+ 6.25RDI ) (1)

Rn = RDI × r × L (2)

RDI = (0.629+ 0.237× PER

− 0.00313× PER2)2 (3)

PER =
PET
r
=
BT × 58.93

r
(4)

BT =

∑
td

365
(5)

L = 597− 0.6Tm (6)
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where r is annual precipitation, Rn is annual net radiation,
RDI is radiant dryness, L is potential heat of evaporation,
PET is latent evapotranspiration, PER is probably evapo-
transpiration rate. Biological temperature (BT) is the average
temperature in the plant vegetative growth, generally between
0 and 30◦C. Mean daily temperature (td) and mean monthly
temperature (Tm) take 0◦C when it is lower than 0◦C and
30◦C when the temperature is above 30◦C. The unit of NPP
calculated by the above formulas is g DW · m−2 · a−1.
Thus, the final result needs to multiply a conversion factor
(0.475) [37] in China from dry matter (DW) to carbon content
(g C · m−2 · a−1).

2) CALCULATION OF SPEI
In this study, the SPEI at 12-month timescales (SPEI-12) as an
indicator of regional division is selected to depict the different
wet and dry conditions in different regions from 1980 to
2018 over China. The calculation formulae are as follows:

Dj = Pj − PETj (7)
X12
t,j =

∑12

l=1+j
Di−1,l +

∑l

l=1
Di,j if j < 12

X12
t,j =

∑j

l=j−12+1
Di−1,l if j > 12

(8)

F(X) =
[
1+

(
∂

X − γ

)ρ]−1
(9)

p = 1− F(x) (10)

w =

{√
−2 ln p if p ≤ 0.5
√
−2 ln(1− p) if p > 0.5

(11)

SPEI=
2.515517+ 0.802853w+0.010328w2

1+ 1.432788w+ 0.189269w2 + 0.001308w3−w

(12)

where Dj is the difference between precipitation (Pj) and
potential evapotranspiration (PETj). PETj is calculated by
Thornwaite method due to the readily accessible parame-
ters [38]. X12

i,j is the aggregated Dj at 12-month scale in the
jth month of the ith year. The process of SPEI is the aggre-
gation and normalization of Dj at 12-month scale according
to Eqs. (8)-(11). α, β,and γ are the scale, shape and origin
parameters, respectively. The normalization process is based
on the log-logistic distribution. Positive SPEI value repre-
sents the wet condition, and a negative value indicates the dry
condition [27], [39].

3) PRINCIPAL COMPONENTS ANALYSIS
Principal component analysis (PCA), a dimension reduction
method, is used to classify the sub-regions of wetness /
dryness based on SPEI values [40]. This method can extract
structural information with homogeneous variance character-
istics [29]. By calculating the covariance matrix with cor-
responding eigenvalues and eigenvectors, most of the total
variances in the original data can be explained by some
linear uncorrelated principal components (PCs) [32]. The
normalized eigenvectors also called ‘‘loadings’’, represent the

correlational relationship between the original data and the
corresponding PCs, and refer to the weights of the original
variables in the calculated PCs. The PCs need to check the
adequacy of the samples through Bartlett’s test p-value of
sphericity and the Kaiser-Meyer-Olkin (KMO) test so that
we can ensure the refined PCA calculation. The number of
PCs depends on the proportion of the cumulative variance
explained by the PCs. The hypothesis value is satisfactory
in the rage of 60 - 70% and the extracted principal compo-
nents should account for at least 5-10% of the data variance.
In addition, to identify a more robust localized classification,
the Varimax rotation method [41] is adopted in this study.
This method is usually used for variance maximization of
correlation coefficient (r2) between the Rotated Principal
Components (RPCs) and the variables, which simplifies the
spatial patterns of parallel temporal disparities [27]. The
Varimax rotation attempts to de-noise the column of loads
so that each component is explained by a finite set of vari-
ables [39], [40], [43]. We found that the threshold value of
RPCs from 0.5 to 0.6was reasonable for spatial division of the
sub-regions experiencing similar wetness / dryness changes
during the study period [44], [45].

4) STATISTIC ANALYSIS
To provide an extensive explanation of climate change
impacts on plant growth and the response of CPP to climate
factors, the climate trend rate is used in this study. Climatic
trend rate is computed using the following formula:

X = b0 + b1t (t = 1, 2, 3, · · ·n) (13)

where X represents temperature, precipitation and CPP
respectively, b1 is the slope of linear regression trend. Since
average temperature and total precipitation change little every
year. The climatic trend rate of meteorological elements is
expressed as 10 times of b1 [46]. However, the change of car-
bon every year can be more than 100 g C/m2/a. Consequently,
the slope of CPP can be used the unit of ‘‘g C/m2/a2’’ [47].

Besides that, F test is used in this study to test the signifi-
cance of the linear regression trend. The spatial distribution of
correlation coefficients between CPP and temperature or pre-
cipitation is calculated using the following formula:

rxy =

n∑
i=1

(CPPi − CPP)(yi − y)√
n∑
i=1

(CPPi − CPP)2
n∑
i=1

(yi − y)2
(14)

where yi is the climate factors, that is, precipitation (mm)
and temperature (◦C) in ith year, and y is the mean values of
climate factors over 39 years. If the correlation coefficients
pass the significance test, then indicating that there exists an
extremely significant (p < 0.01) or significant (p < 0.05)
linear correlation. If rxy is larger than zero, it means there
exist a positive relationship between x and y variables, and
vice versa.

VOLUME 8, 2020 11141



D. Cao et al.: Regional Assessment of CPP of Terrestrial Ecosystems and Its Responses to Climate Change

FIGURE 2. The eight different regions; (a) represents the 8 principal components according to RPCs loadings (Numbers 1-8), every
sub-region is according to the ANUSPLIN (version 4.2) interpolation based on the RPCs loadings of every station. (b) is the
different RPCs Loadings. Loading1 represents that this region is with a threshold value of RPCs loadings from 0.5-0.6 in the first
principal component, and so on. (PC is a principal component with non-rotation. RPC is a principal component with Varimax
rotation). (c) Average SPEI on 12-month scale in China.

5) VALIDATION
In order to validate the reliability and accuracy of the results,
we also use the cross-experiment method to analyze the accu-
racy of the model in terms of data input, as well as the com-
parative analysis method with others’ results, which provides
a basis for further analysis of CPP and its spatio-temporal
dynamic changes over China in last 39 years. We use the
cross-experiment to compare with ANUSPLIN (version 4.2)
and Kriging interpolation methods, respectively. 90% of the
total number of stations are used to interpolation and 10%
for validation. Additionally, we use a comparative analysis
method to compare the estimated CPP of the synthetic model
with current in-situ data and literatures.

III. RESULTS AND DISCUSSION
A. PCA REGIONALIZATION
In order to reveal the characteristics of CPP influenced by
the climate factors at a sub-regional scale, the study area is
divided into 8 sub-regions based on SPEI12 using the PCA
and the Varimax rotation methods. The validation results
show that the Bartlett’s test p-value is very low (<0.001)
and the KMO test is 0.60, meaning that the SPEI12 time
series is well propitious for the PCA regionalization analysis.
Eight principal components with a cumulative percentage
of 64.11% are selected at station scales (Fig. 2b). The spatial
patterns of these first eight components series are charac-
terized by mapping the loading matrix. As shown in Fig. 2,
the eight major regions includes Loading1, Southern China
(SC); Loading 2, Northwestern China (NW); Loading 3,
the Xinjiang (XJ); Loading 4, middle part of China (MC);
Loading 5, Northern China (NC); Loading 6, Southwestern

China (SW); Loading 7, Northeastern China (NE); Loading 8,
Tibetan Plateau (TP).

B. TEMPORAL AND SPATIAL VARIABILITY OF CLIMATE
FACTORS
1) TEMPORAL VARIABILITY OF CLIMATE FACTORS
Fig. 7 confirms that the increase in average temperature and
decrease in annual precipitation are already evident over
China during the last 39 years (p<0.01). However, various
trends in climate change occur in different regions. Regions
that show an opposite tendency variation of temperature and
precipitation are mainly distributed in the MC, NC, NE and
SW regions, as well as a certain degree of warming and
drying phenomenon, especially in SW region (Table1). Sim-
ilar increasing trends of temperature and precipitation are
observed in other regions, such as XJ, NW, SC and TP. These
climate change patterns are the determinant factors to affect
the growth of terrestrial vegetation at different sub-regions.

2) SPATIAL VARIABILITY OF CLIMATE FACTORS
The spatial distribution of average annual temperature in
China during 1980-2018 has obvious regional differences
(Fig. 8a), showing a piecemeal increasing trend from north-
west to southeast. The TP and NE are governed by relatively
low temperatures, mainly due to the combined influence of
altitude and latitude. The temperature in most regions of
China shows a significant increasing trend, especially in the
MC, SC and most areas of NWwhere the climate change rate
can reach up to 0.2◦C - 0.4◦C/10a. However, the tempera-
ture in TP and northwest of NE has a slight decline during
the study period. The total annual precipitation decreases
gradually from the Southeast coast to the Northwest
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TABLE 1. Characteristics of climate factors in different sub-regions from 1980 to 2018.

FIGURE 3. (a) Spatial distribution of annual CPP, (b) the variation tendency of vegetation CPP, and (c) the
significant level in the study area from 1980 to 2018. (d) Annual variation of CPP from 1980 to 2018.

inland (Fig. 8d). The average annual precipitation in the
South and Southeast Coastal areas of the Yangtze River is
generally over 1300 mm, mainly due to the monsoon climate.
Fig. 8e & f show that China’s annual precipitation trends
present spatially patchy variation from 1980 to 2018. Nation-
wide, there is a little change in precipitation with a rate of -
12mm/10a, andmost regions of China show an insignificantly
decreased tendency except for some part of the TP and SW.

Additionally, the mild increase appears in the region of north
TP and northwest of NE during the study period.

C. TEMPORAL AND SPATIAL VARIABILITY OF CPP
1) TEMPORAL VARIABILITY OF CPP
In the last 39 years, the CPP of vegetation in China
presents highly fluctuated. The average annual CPP of veg-
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FIGURE 4. Spatial distribution of correlation coefficient (a, b) and significant level (c, d) of
CPP and climate factors.

etation in the past 39 years is 546.58 g C · m−2 · a−1

at the national scale. The minimum and maximum val-
ues appear in 1986 (504.35g C · m−2· a−1) and 1998
(595.60 g C · m−2 · a−1), respectively (Fig. 3d). Accord-
ingly, we validate the trend of 1980-1986, 1986-1998 and
1998-2018. A significant decreasing level is found dur-
ing 1998 to 2018 (r = -0.45, p<0.05), while insignificant
trends appear during 1980-1986 and 1986-1998. A noticeable
increase of CPP in 1998 because La Niña events caused a
significant increase in precipitation [48]–[50].

2) SPATIAL VARIABILITY OF CPP
As is shown in Fig. 3a, CPP distribution differs among
different zones, showing a gradually increasing trend from
northwest to southeast. Annual vegetation CPP as usually
higher than 600 g C · m−2 · a−1 appears in SC region,
where productive evergreens are widely distributed with
abundant precipitation, warm climate, and abundant ground-
water [51]. Annual CPP in Northwest of China such as
most areas of the NW, NE, TP and XJ is lower than
200 g C ·m−2 · a−1, where the climate is dominated by a rel-
atively lower temperature and less rainfall than other regions
[52]. Overall, the maximum values of CPP during a 39-year
period (1980-2018), appear in the southwest, southern China,
and Taiwan regions. High CPP is found mainly in areas,
i.e., the southern tropical humid regions and the southeastern

margin of the Yangtze River, Yunnan-Guizhou Plateau, and
north of Nanling Mountains with annual CPP more than
800 g C · m−2 · a−1. Likewise, the median CPP values with
annual average CPP between 500 and 800 g C · m−2 · a−1

are found mainly in areas with crops harvested two or three
times every year, or three harvest times every two years [53],
e. g., middle reaches of the Yangtze River Basin, most regions
of Sichuan, southeastern Tibet, and Huang-Huai-Hai Plain.
The low-value areas mainly distribute in Inner Mongolia,
Xinjiang, Tibetan Plateau, Gansu, and Ningxia provinces
with annual CPP between 200 and 400 g C · m−2 · a−1,
primarily in grassland and one season or two seasons
crops or arid crops with less water availability [53]. Fig. 3b &
c show that a significant CPP increase and positive vegetation
growth response appear in some parts of China, such as the
most area of NW and some part of XJ (p < 0.01). The CPP
loses mainly occur in some regions of the TP and SW, while
the decreases in other regions are not significant (p > 0.05).

D. RESPONSE CHARACTERISTICS OF CPP TO CLIMATE
CHANGE
1) RESPONSE CHARACTERISTICS IN DIFFERENT
SUB-REGIONS
Fig. 4 illustrates the positive correlation between CPP and
precipitation predominated in the whole area (p< 0.01). The
average correlation coefficients can reach 0.92 at national
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FIGURE 5. The relationships between annual CPP and annual temperature at different sub-regions of vegetation ecosystems over
China (a. grassland ecosystem, b. farmland ecosystem and c. forest ecosystem). Mainly sub-region distributions of each ecosystem are shown in
FIGURE a, b and c. FIGURE d-g represent the responses of CPP to temperature in four special sub-regions with significant level (1000 grid cells are
selected for correlation analysis at each region).

scale. Only the NW region has average correlation coeffi-
cients (r = 0.78) lower than that of any other regions. More-
over, some arid regions with increasing vegetation growth
responses indicate that the precipitation is helpful to the
growth of vegetation in drought areas, especially in the most
area of NW and some part of XJ. In contrast, the temperature
response to vegetation CPP has obvious spatial heterogene-
ity. Regions displaying an insignificant negative correlation
are mainly distributed in NC, MC, SW, and SC regions
(Fig. 4a & c). Only in the regions of NW, XJ, northern NC,
and the eastern and south fringe of TP, significant positive
correlations are observed, indicating that warmer tempera-
tures can promote the increase of vegetation CPP in these
regions.

Overall, precipitation is the predominant factor controlling
the spatial distribution of CPP, especially in the semi-arid
regions in North China, which is in good accordance with
others’ studies based on the field observations [54]. Temper-
ature variations may have a significant impact on the CPP

at a regional scale [55], such as TP and NE regions with
high-altitude or high-latitude, where ecosystems are more
vulnerable and more sensitive to climate change.

2) RESPONSE CHARACTERISTICS IN DIFFERENT
ECOSYSTEMS
Fig. 5a illustrates that grassland in China mainly distributes
in XJ, NW, NE, and TP regions. A low linear correlation
between CPP of grassland ecosystem and temperature occur
in NW and intricate correlations in XJ and NE. CPP shows
a decreasing tread when the average temperature is greater
than 7.5◦C. In a country scale, the CPP of the grassland
ecosystem mostly concentrates on 200-500 g C/m2/a where
CPP accounts for 81.6 % of the total amounts and the cor-
responding temperature is between −10◦C and 10◦C. CPP
shows an insignificant decreasing trend with the increase of
temperature in this temperature range (r = −0.07, p > 0.05).
When the annual average temperature is higher than 10◦C,
the grassland CPP increases significantly with the increase
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FIGURE 6. (a) The average vegetation CPP of different regions and the average change rate. Different
colors of column represent the different significances and ∗∗ indicates the slope passed the
0.05 significance test. (b) The proportion of significant variation of vegetation CPP in different regions.
The column from left to right is, forest, grassland and farmland. Different colors of column represent
the different significances.

of temperature. However, the frequency (18.4%) of CPP of
grassland ecosystem in this temperature range is less than that
in the range of -10−10◦C. Therefore, the results also demon-
strate that the grassland vegetation ecosystem is restrained
by the rising trend of temperature in most regions. In terms
of farmlands, the CPP is found to be a significant positive
linear correlation with temperature except for XJ where CPP
shows a decreasing tread when temperature is greater than
7.5◦C (Fig. 5b). A slight decrease is observed in NW when
the average temperature is higher than 6.2◦C. Spatially, these
regions are located in the arid regions where crop growth
is restricted by the drought. Fig. 5c illustrates that forest in
China mainly distributes in NE, SW, SC, and MC, where
the linear positive correlations between CPP and temperature
appear in each sub-region, especially in TP, NE and northeast
of NC with high-altitude or high-latitude.

The above results show that the relationship of ecosystem
CPP and temperature has high regional differences, especially
in XJ, NW,NE and TP regions. Consequently, random sample
selection is carried out in the four regions with significant
correlations, and 1000 grid cells are selected for correlation
analysis in each region. Fig. 5d & e show that the effect
of temperature on vegetation CPP increases first and then
decreases with the increase of temperature in XJ and NW.
The optimum temperatures for vegetation in the two regions
are 7.5◦C and 8◦C, respectively. When the average annual
temperature in these two regions is lower than the opti-
mum temperature, the CPP of vegetation increases with the
increase of temperature, and vice versa. These two regions

are mainly concentrated in the arid areas of Western China,
where the annual temperature is 7.5◦C and 6.2◦C, respec-
tively (Table 1). Thus, the current temperature in XJ and NW
is suitable for vegetation growth. The CPP of vegetation is
lower than 250 g C/m2 in TP and NE regions (Fig. 5f & g)
with an average annual temperature lower than 0◦C, where
the temperature has no significant influence on CPP change.
However, the annual average temperature is - 0.1◦C and 1.4◦C
in these two regions, and the climate change rate increases by
0.3◦C and 0.5◦Cper decade, respectively, which can conclude
that the rise in temperature has no significant positive effects
on the overall change of vegetation for the moment.

IV. DISCUSSION
A. DISCUSSION ABOUT THE RELIABILITY OF THE
SYNTHETIC MODEL
Because of the uneven distribution of meteorological stations,
there may be some uncertainties during the interpolation pro-
cess. In addition, the interpolation method is also a weakness
in detecting mutation rather than gradual heterogeneity in
data [35]. The cross-experiment method is used to analyze
the accuracy of the model in terms of data input. Fig. 9 shows
that the interpolation results of input data have a good con-
sistent with the validation results, especially for the Anus-
plin interpolation method with a high correlation (R2

temp =

0.85, R2
prec = 0.95). Herewith, we choose the Anusplin

interpolation method to process the input data in this study
because this method takes into account the DEM information.
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FIGURE 7. Annual variation of the precipitation (a) and temperature (b).

FIGURE 8. (a) Spatial distribution of annual average temperature, (b) climate tendency rate of temperature, and (c) the significant level of
temperature. (d) Spatial distribution of annual mean precipitation, (e) climate tendency rate of precipitation, and (f) the significant level of
precipitation.

These results not only guarantee the accuracy of the input data
but also provide a basis for the follow-up research results.

Additionally, we use a comparative analysis method to
compare the estimated CPP of the synthetic model with
current observed data and literatures. Only two observed
NPP stations are collected in China (Fig. 1 and Table 2).
The results show that the error between the measured data
and the simulated value in this study is larger in Ulan-
hot than in Xilinhot. This may be due to the CPP in our
study shows the maximized NPP. The total CPP of China
simulated in our study is 2.47Pg C (1Pg C = 1015 g C).

This is within the range of published experiments of
1.95-6.13 Pg C [35], [52], [56], [57]. Therefore, the syn-
thetic model can assess the potential productivity of terrestrial
ecosystems.

B. DISCUSSION ABOUT THE SIGNIFICANT OF CPP
RESPONSES TO CLIMATE CHANGE
The potential trends and significant variation levels of
three vegetation ecosystems in various regions are differ-
ent. Fig. 6 shows a slight increasing trend of CPP (slope
= 0.19 g C · m−2 · a−2, p>0.05) in a national scale.
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FIGURE 9. Validation of interpolation methods. Temp is the abbreviation of Temperature and Prec is the abbreviation of
Precipitation.

TABLE 2. Validation of simulated CPP compared with observation data.

However, the slope of the CPP and the significance test both
demonstrate that the changes in vegetation ecosystems are
heterogeneous. An increasing trend toward CPP and positive
vegetation growth responses are shown in SC, XJ, NC and
NE regions, especially XJ (slope = 1.16 g C · m−2 · a−2,
p<0.05) (Fig. 6a). Meanwhile, an insignificant decreasing
trend occurs in the region of TP, MC and SW. The signifi-
cant increase of forest CPP in different regions is relatively
greater than grassland and farmland ecosystems. Specifically,
the proportion of increasing trends of CPP is greater than
that of decreasing in SC, XJ, NC, NE, NW, and MC regions.
This could be closely related to the implementation of a
series of national-level ecological projects and policies in the
central and western regions of China in the late 1990s and
early 2000s [58]. For example, the Grazing Withdrawal
Program (GWP) launched in 2003, particularly emphasized
on relieving grazing pressure and reestablishing the degen-
erative land through appropriate grazing, planting trees and
grassland, or other suggestions and measurements in the
western and central regions of China [5]. Whereas, as shown
in Fig. 6b, the proportion of decreasing trends is greater
than that of increasing in TP due to the worse environmental
conditions. The same relationships are also observed at farm-
land and forest CPP in SW, which is consistent with Shang’s
study [53]. The presumed main reason for these phenomena

is that the decrease of the average annual precipitation may
also lead to a decrease in CPP.

C. UNCERTAINTIES
In this study, CPP represents the vegetation can make full use
of climate resources. However, vegetation CPP is influenced
by different climate factors, such as CO2, radiation, and wind
speed, etc. The synthesis model takes less factors into account
and is relatively simple. There are large uncertainties because
the real situation is not entirely the same as the simulation.
Many studies have reported that spatial-temporal variations
are obvious among different vegetation types, e. g., forest,
grassland, and farmland ecosystems [37], [53], [56], [59].
Additionally, the limitation of the spatial resolution of remote
sensing image data, a large number of mixed pixels are gen-
erated in the image, which affects the simulation results of
CPP. As for the multi-year CPP average, the uncertainty in
simulated CPP is also resulted from climate input data such
as the differences in temperature, precipitation, topography
and other aspects at the station scale through interpolated
tools. These deficiencies may address in future works. How-
ever, the reports have indicated that this method has better
advantages in various regions [5], [15], [46]. The accuracy
of the extraction results is acceptable. Accordingly, our study
provides new insight into the large-scale and long-time series
CPP evaluation.

V. CONCLUSION
This study used the synthetic method and statistical analy-
sis to evaluate the spatial and temporal distribution of CPP
in different terrestrial ecosystems and different sub-regions
over China from 1980 to 2018. Meanwhile, we analyzed
the responses of CPP in different sub-regions to the climate
parameters, i.e., temperature and precipitation. The CPP of
terrestrial vegetation shows a gradually increasing trend from
northwest to southeast of China. The overall tendency of CPP
presents a slightly increasing trend over recent 39 years, with
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an increased rate of 0.19 g C · m−2 · a−2. The climatic
trend rate in annual average precipitation and temperature
are −21 mm/10a and 0.4 ◦C/10a, respectively. The positive
correlation between CPP and precipitation is more obvious
than that of temperature, indicating that precipitation is the
most important climatic factor determining the productivities
of vegetation in the whole country. The optimum tempera-
ture for CPP in XJ and NW is 7.5◦C and 8◦C, respectively.
Additionally, grassland CPP shows complex trends in XJ,
SW, NE and TP regions, especially in XJ, a CPP-decreasing
trend when the temperature is more than 7.5◦C, whereas
in NE, an increasing trend when the temperature is more
than 0◦C. Linear correlations are shown between farmland
CPP and temperature in each sub-region except for XJ. The
similar relationships also appear on forest CPP, especially
in TP, NE and northeast of NC with high-altitude or high-
latitude. However, under the trend of increasing temperature
and decreasing precipitation, there are negative effects on the
CPP of vegetation over China, whether in some sub-regions
or different ecosystems, indicating that drier and warmer
weathers are detrimental for vegetation growth.

APPENDIX
See Figs. 7–9.
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