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ABSTRACT Energy is a vital resource for human activities and lifestyle, powering important everyday
infrastructures and services. Currently, pollutant and non-renewable sources, such as fossil fuels, remain the
main source of worldwide consumed energy. The environmental impact of their exploitation has boosted
research and investments in alternative, clean and renewable sources, including photovoltaic and wind-
based systems. As a whole, buildings are one of the major energy consumption sectors. Hence, improving
energy efficiency in buildings will result in economical and environmental gains. In the case of households,
home energy management systems are mainly used for monitoring real-time consumption and to schedule
appliance operations so that the energy bill could be minimised, or according to another specific criterion.
This work aims to survey the most recent literature on home energy management systems, providing an
aggregated and unified perspective in the context of residential buildings. In addition, an updated literature
list regarding commonly managed household appliances and scheduling objectives are included. Physical
and operational constraints, and how they are addressed by home energy management systems along with
security issues are also discussed.

INDEX TERMS Energy efficiency, home energy management systems, household appliance models, load
management, optimal scheduling, smart homes, security.

I. INTRODUCTION

Energy is an essential resource to life and all living organ-
isms. In current days, electrical energy plays a vital role in
human lifestyle, powering key infrastructures and services.
Fossil fuels still account for the production of the majority
of worldwide consumed electricity. According to the United
States Energy Information Administration [1], in 2018, fos-
sil fuels ensured 62% of primary electricity production in
the United States. Unlike clean and renewable alternative
sources such as wind or solar, fossil-fuel exploitation has
a strong environmental impact as a result of green house
gas (GHG) emissions, global warming and health hazards.
In addition, its current consumption surpasses natural regen-
eration, resulting in an inevitable depletion of resources,
if other sources or options are not exploited.
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These concerns have fostered not only the search for
alternative, renewable and clean energy sources, but also
the awareness regarding energy efficiency and sustainability.
In the last few years, the traditional power grid has been
reshaped into an intelligent, highly reliable and fully auto-
mated infrastructure, paving the way to the so-called ““smart”
grid paradigm. This new power grid model supports the
deployment and integration of distributed generation and stor-
age resources, namely of renewable nature. It relies heavily
on smart appliances and two-way communication channels
linking the utility and consumers. This makes possible real-
time coordination and dynamic optimisation of grid operation
and resources [2].

At demand-side, smart homes incorporate digital sens-
ing and communication devices, which allow for continuous
consumption monitoring, intelligent appliance control and
communication with the utility and grid. Smart homes are
a key element to the operation and effectiveness of smart
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grids, not only by supporting optimised management to grid
resources and infrastructures, but also by contributing to
energy efficiency. Buildings are responsible for around 40%
of worldwide energy consumption [3], which is expected to
significantly increase over the next few years [4]. As such,
efficiency improvements, implemented at global scale, can
mitigate this trend, reducing energy consumption, wastage,
costs and environmental hazards associated with generation.

In the last few years, there has been a growing interest in
home energy management systems (HEMSs). They provide
the means for automated and intelligent control of smart
home appliances. HEMSs target efficient energy manage-
ment, contributing to preserving finite fossil fuel resources,
while lowering energy consumption, wastage and costs.
The conceptualisation of HEMSs involves several aspects,
including their definition, characterisation and overall archi-
tecture, as well as their underlying purpose in household
environments. Optimisation-based techniques are extensively
employed within HEMSs. They enable appliance alloca-
tion under dynamic objectives and constraints. In [5] this
trend is highlighted, calling for further research to address
HEMSs specific needs, in particular concerning scalability,
model complexity and uncertainties. Intrinsically linked to
the characterisation of HEMSs are: (i) their in-operation
goals, including minimising the overall energy bill, reducing
carbon emissions, or achieving a given target load profile,
just to name a few; (ii) the strategies employed to achieve
such goals, in particular how to schedule individual appli-
ances or deciding upon which unnecessary loads should be
turned off; (iii) managing household appliances; (iv) how they
are individually modelled.

This paper provides a comprehensive review with respect
to HEMSs, including an outlook on these systems and
closely-related topics. Approaches aiming at household
appliance modelling, scheduling strategies, operational and
residential objectives and constraints are discussed. In addi-
tion, the incorporation of residential load uncertainties into
HEMSs is also covered. Two main contributions are provided
in this work. Firstly, a thorough review on recent HEMS
developments is presented, including operational goals and
strategies to meet them, household appliance management
policies, incorporation of uncertainty in HEMSs’ decision
making, performance metrics, and common attack targets
and corresponding counter-measures. Secondly, an updated
literature list on HEMSs is included, which to some extent
can be regarded as gateway to the most relevant and updated
bibliography on the field.

The remainder of this paper is organised as follows.
In Section II HEMSs are defined, characterised and contex-
tualised within the smart grid digital paradigm. Centralised
and distributed energy management schemes are discussed,
as well as the most recent advances regarding the integration
of plugged-in electric vehicles on the digital grid. Section III
introduces the main approaches to energy saving in build-
ings. Section IV presents a literature categorisation regarding
household appliances included in HEMSs infrastructures.
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Common managed appliances are presented, along with
adopted strategies to model their behaviour and dynamics,
including in-operation dynamics and uncertainties. Section V
is devoted to appliance scheduling, being discussed common
techniques, scheduling criteria and constraints. Section VI
focuses on cyber attack vectors and counter-measures for
HEMSs, while Section VII describes some of the challenges
this field is facing, along with prospective research directions.
Finally, Section IX concludes the survey.

Il. HOME MANAGEMENT SYSTEMS

Smart buildings represent a branch of ubiquitous computing
that comprises the incorporation of Internet of Things (IoT)
technologies into buildings for comfort, healthcare, safety,
security and energy efficiency [6], [7]. They are an integrating
part of ongoing technological advancements in power grids,
boosting the deployment of smart sensors and other advanced
metering devices, which make remote communication, mon-
itoring and actuation on household appliances possible.

Among different types of buildings, smart homes have
been the subject of great research interest, particularly from
the energy efficiency point of view. Smart homes offer bet-
ter quality of life and efficiency by taking advantage of
remote monitoring and self-adaptive context-aware mecha-
nisms, in order to identify needs and preferences of resi-
dents, and also to coordinate appliance operation. Wired and
wireless sensor and actuator networks are deployed on smart
homes, being collected sensor data and contextual informa-
tion stored in a central platform. This entity is also responsible
for processing acquired information, enabling an optimised
management and actuation of household appliances, for the
sake of residents’ comfort and energy efficiency.

Distributed power generation has also been boosted, par-
ticularly from renewable sources such as hydro, solar and
wind [1]. Furthermore, individual households are also becom-
ing players in the production of their own electricity, via
local (micro) solar and wind systems. When power generation
exceeds local demand, the resulting surplus can be used to
charge local batteries, for subsequent domestic use, or inject
into the grid with a given profit. Grid power injection requires
a bi-directional interaction between the grid and local micro-
generation systems, propped up on a two-way communica-
tion network, so as to ensure grid safety and stability. Taking
advantage of advanced metering infrastructures (AMI) and
remote control and automation systems, grid information can
also be considered in managing power resources at house-
hold level. This is particularly valuable for utility and grid
companies, as it allows them to predict future demands with
superior accuracy, reducing electricity waste and decreasing
generation costs.

From a demand-side perspective, HEMSs are in-line with
the smart grid paradigm shift. A HEMS has the ability to
interact with household devices and the utility, allowing
appliance schedules to be adjusted, in order to cope with
constraints and taking into account external information,
such as updated grid prices or meteorological forecasts [8].
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FIGURE 1. HEMS architecture’.

This is usually achieved by turning devices on or off, reducing
the overall demand and considering periods of low electricity
price and higher power generation.

A. HEMS COMPONENTS
Figure 1 presents the general architecture of a HEMS, which
comprises the following components:

(a) Sensing and measuring devices — used to mea-
sure physical quantities, such as temperature, humid-
ity or light, or to detect motion or room occupancy, just
to name out a few. Smart meters are commonly used
by HEMSs, collecting detailed energy consumption of
individual appliances and other human activities-related
information. Smart meters also facilitate two-way com-
munication between HEMS and the utility.

(b) Smart appliances — consist of typical household devices
(e.g., dishwasher, refrigerators or air conditioning units),
enhanced with computing and communication capabil-
ities. Energy generation devices such as photovoltaic
(PV) panels and wind turbines are also considered. Smart
appliances communicate with a central platform, which
handles all measured data and coordinates appliance
uses.

ITcons taken from https://www.flaticon.com.
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(c) User interface — a device via which residents can interact
with the HEMS. Interfaces can be used to display infor-
mation, such as current consumption or energy expenses,
and for specifying residents preferences, including appli-
ance priorities, comfort parameters or scheduling goals.
Touch screen or mobile application interfaces are very
common, although other less user-friendly options, e.g. a
computer terminal, can also be considered.

(d) Central platform — aims at managing and optimising
energy usage. It receives smart meter information and
adopts a scheduling mechanism, usually computed via
an optimisation approach, assuming a given performance
index. Energy bill is a common choice, along with com-
fort, peak reduction and GHG emissions.

In a HEMS, sensors are continuously collecting infor-
mation regarding household activities. Usually, individual
appliance consumption signals are collected, although disag-
gregation techniques such as NonIntrusive Load Monitoring
(NILM) [9] can be applied to extract individual appliance
consumption. Collected data is then dispatched to the cen-
tral platform, where it is stored and processed. It should
be pointed out that billing data and weather forecast can
also be retrieved and used in the optimisation stage. Fur-
thermore, in a fully designed HEMS, the central platform
complements residents’ specifications and preferences with
sensed and inferred information. A scheduling strategy is then
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employed to determine appliance operation times that meet
user-defined preferences, under physical constraints. Proper
communication protocols between the central platform and
the underlying smart appliances ensure the implementation
of computed optimal scheduling.

B. CENTRALISED VS DISTRIBUTED MANAGEMENT
Although HEMSs are often deployed to reduce electricity bill
at demand-side, they can never operate in complete isolation
from the grid and customers. The reason is related to the
fact that the grid needs to ensure adequate supply to mul-
tiple customers under a dynamic load demand, namely by
deploying additional generators. Furthermore, a HEMS needs
to be aware of the demand required by other buildings, so that
high demand stress on the grid is avoided, in particular during
unexpected periods of time. If, for example, households start
shifting many loads to night periods, the grid infrastructure
may not be able to match demands within feasible time. This
could result in power outages and blackouts, and therefore
coordinated energy management is imperative.

Two approaches can be considered, namely centralised and
distributed [10]. Centralised HEMSs implement methodolo-
gies for coordination of consumption and generation on a
platform, which is located at the utility level. In this context,
the central platform, mentioned in Section II-A, no longer
handles appliance scheduling. It strictly assumes sensor data
aggregation, processing and inference tasks. Under this topol-
ogy, buildings should send to the grid consumption related
information, including sensor data, appliance operation needs
and constraints, just to name out a few. Next, taking this
information into account, the grid centralised management
platform schedules demand-side electricity and generator
operations in order to optimise specific criteria, for instance
operational costs, or peak-to-average ratio. This leads to a
massive constrained optimisation problem, with the corre-
sponding heavy computational burden.

Unlike centralised methodologies, distributed-based
approaches rely on several independent decision-making
entities to plan demand-side and grid operations. Commonly,
they cooperate with one another and the grid to find a mutual
agreement feasible solution that maximises individual goals,
without compromising other decision-makers’ goals or power
supply stability. As grid resources are managed in a dis-
tributed way, the underlying computational burden is shared
among all players, resulting in a significantly lower individual
computational overhead. This makes distributed strategies
very appealing, particularly in smart grid scenarios where
many different assets need to be coordinated. In order to
reach a global consensus, it demands frequent communica-
tion among participants. Despite the inherent increase in the
volume of transmitted data over communication networks,
sensitive information is typically not exchanged as much
as for centralised-based scheduling. For example, instead
of transmitting individual appliance operation needs and
constraints, decision-makers should only provide the mini-
mum required power level [11]. Decision-makers are mainly
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modelled by intelligent agents in game-theory and multi-
agent-based techniques [10]-[12], or even mathematical
optimisation-based approaches [13]-[15].

It should be mentioned that, although distributed energy
management-based techniques are applied to groups of build-
ings [10], [11], [13], they can also be used for energy man-
agement at individual buildings level [14]. In such cases,
agents are assigned a single appliance and are responsible for
managing its operation.

C. ELECTRIC VEHICLE INTEGRATION

Throughout this review, an electric vehicle (EV) is any vehi-
cle in which electricity accounts for some or all driving
energy, which is ultimately supplied through a rechargeable
battery [16]. In the last few years, EVs have attracted con-
siderable interest from academia and practitioners alike [17].
They are set to play a major role in reducing global pollu-
tion, being a more efficient and less polluting alternative to
conventional internal combustion engines [18].

A large-scale adoption of EVs raises important challenges
for current and future power grids. As these vehicles require
substantial electricity, customer demand is expected to sig-
nificantly increase over the next few years. This results in
higher demand stress and generation capacity needs from the
grid infrastructure [17]. Furthermore, when the grid is not
able to generate or provide the required demand of electricity,
additional measures need to be adopted. In [19], [20] it is
argued that there are two main approaches to address the
challenges posed by EV charging: (i) to reinforce the grid
infrastructure and build additional networks to accommodate
substantial peaks; (ii) to develop and implement enhanced
charging management strategies capable of controlling EV
charging, while taking into account supply constraints of
the grid. It should be mentioned that, based on the flow of
electricity between the grid and a vehicle, charging can be
classified as unidirectional or bidirectional [17].

1) UNIDIRECTIONAL EV CHARGING

In unidirectional charging, EVs are handled as any other
electrical appliance, in the sense that an unidirectional flow of
electricity moves from the grid to the vehicle while charging
its battery. This category can be further split into uncon-
trolled or controlled charging. Uncontrolled or “dumb”
charging follows traditional appliance use and charging
behaviour, since a EV is plugged-in when it needs to be
charged and unplugged by the owner, either when the bat-
tery is full or the vehicle is requested. The grid has no
prior knowledge regarding EV’s charging cycles, which
implies that when a significant number of EVs is simulta-
neously plugged-in, unexpected demand peaks may occur.
When the density of EVs served by a power grid is small,
the network infrastructure can still be capable of support-
ing increased demands [17]. However, in the case of large-
scale scenarios, peak-to-valley difference and the risk for
network losses are significantly increased, overloading the
infrastructure and causing undervoltage effects [21]. As for
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controlled or smart charging techniques, energy used in
EV charging and demanded by other on-site appliances is
safely balanced, thus allowing an efficient EV charging, while
minimising demand peak and grid stress.

Two approaches for EV charging can be found in the litera-
ture, including centralised and decentralised topologies [17].
In decentralised methodologies, each vehicle is equipped
with its own charging management system, which controls its
charging cycles and communicates with other vehicles. As for
centraliased charging schemes, a single entity is used to coor-
dinate individual charging cycles, while taking into account
global demand. Centralised solutions can be further split
into [17] (i) aggregator-based, (ii) distributor system operator
(DSO) based, and (iii) multi-agent-based. For both aggregator
and DSO-based strategies, a single entity manages several
vehicles from users with common interests. In aggregator-
based schemes, an aggregator is adopted, whereas for the
other approaches each distribution company ensures this ser-
vice. As both aggregators and DSO managers deal with large
electricity purchases, they have a stronger negotiating power
than if EVs were considered individually, which results in
lower bills.

Depending on the network topology, multi-agent systems
can also be considered. As discussed in Section II-B, groups
of independent decision-makers coordinate their demands,
in this case EVs charging, looking for a mutual agreement
that maximises individual goals without minimal impact on
each decision-maker preferences or power supply stability.

2) BIDIRECTIONAL EV CHARGING

Bidirectional EV charging considers that electricity can flow
not only from the grid to a vehicle, but also from a vehicle to
the grid. This allows EVs to be used as both mobile energy
storage systems and generators. As such, if EVs are capable
of not only demanding power from the grid, but also injecting
it in the grid through their own batteries as a source, then
they can be exploited to accommodate the highly dynamic
generation and demand in modern grids. When grid produc-
tion exceeds current demands, not fully charged EVs parked
at appropriate locations can accommodate overproduction,
while when demand suddenly peaks and the grid needs to
increase its generation, EVs can be used as local generators
supplying the required demand. As such, proper billing mech-
anisms are thus needed in this dual interaction with the grid.
Furthermore, EVs electricity supply needs to be carefully
managed, avoiding EV battery drainage and weighing the
impact on batteries lifetime.

Three bidirectional approaches are discussed in [17]:
(i) vehicle-to-grid (V2G), (ii) vehicle-to-building (V2B) and
(iii) vehicle-to-home (V2H). V2G is focused on tempo-
rary EV battery discharges to accommodate peak demands,
and for general power regulation. Aggregator-based unidi-
rectional approaches can also be considered, being several
EVs managed by an aggregating unity, which coordinates
charging and discharging cycles, taking into account the grid
needs. Both V2B and V2H are variants of V2G, where local
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generation, usually from renewable sources, is balanced
between building/home supply and EVs batteries charging.
As renewable production is uncertain, power surplus can
be partially stored in EV batteries. When demand exceeds
current grid generation capacity, batteries can then be used
to account, at least in part, for extra power demand. This con-
tributes to power generation flattening and grid infrastructure
optimisation.

D. SUMMARY

HEMSs provide automated and intelligent control of smart
home appliances, propped up on IoT and smart grid
paradigms. These management systems aim to improve effi-
ciency, promoting renewable energy use and bill cut. They
rely on smart sensors, appliances and AMI for continuous
monitoring.

Commonly, HEMSs operate by scheduling domestic con-
sumption loads, requiring two-way communication between
the grid and other customers to coordinate load demands in
order to avoid grid infrastructure overloading. This coordina-
tion can be achieved via centralised or distributed approaches.
Centralised management-based approaches carry out all
required operations on a single entity, which implies
having access to sensor data, appliance operation needs,
constraints and additional relevant information. This raises
several issues, such as sending private information over the
grid or dealing with the heavy computational burden associ-
ated to solving large-scale non-linear constrained optimisa-
tion problems. On the other hand, because all environment
information is available, the optimality of solutions is gen-
erally guaranteed. As for distributed approaches, they rely
on several independent decision-makers that cooperate with
one another to plan demand-side and grid operations. Even
though communication is more frequent than in centralised
methodologies, decision-makers commonly do not exchange
confidential data. Also, since information is generally incom-
plete, only suboptimal solutions are commonly obtained.

EVs are efficient and less polluting alternatives to con-
ventional transportation. The wide-spread of these vehicles
raises important challenges in terms of charging manage-
ment, for current and future power grids alike. In unidirec-
tional charging, EVs are handled as any common appliance,
considering only grid consumption, while in bidirectional EV
charging vehicles’ batteries are used as additional storage
units or generators. Bidirectional strategies rely on EVs to
mitigate the effects of dynamic grid behaviour, in particular
the unpredictability of renewable generation. In this context,
V2G has attracted considerable attention, motivating variants
for buildings (V2B) and households (V2H).

Ill. MANAGEMENT IN BUILDINGS

In a nutshell, household energy efficiency and bill reduction
can be achieved mainly in two ways: by reducing total energy
consumption, or deferring the operation of certain devices,
taking advantage of local production and off-peak tariffs. This
can be categorised as consumption reduction or consumption
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shifting [22]. Consumption reduction refers to reducing the
overall energy consumption, usually by increasing consumer
awareness, shutting down appliances not in use, purchasing
energy-efficient devices, or improving building construction
and design. Consumption shifting is, on the other hand,
focused on deferring certain loads over time, usually to
off-peak periods. Naturally, these two alternatives are not
mutually exclusive and can be employed together. Nonethe-
less, consumption reduction is less popular within residential
buildings, since it requires deeper, time-consuming and costly
interventions. Furthermore, determining optimal load shifting
times is also not a trivial exercise. In addition to physical and
preference constraints, load shifting is also conditioned by the
adopted billing scheme, local energy production, if available,
and baseline demands.

In short, demand-side load regulation can be addressed
through demand-side management (DSM) and demand
response (DR) programs. Despite being often used inter-
changeably, these are not synonyms, as they comprise distinct
techniques and strategies in order to achieve energy efficiency
and bill reduction at consumption-side.

A. DEMAND-SIDE MANAGEMENT

Demand-Side Management comprises a collection of
techniques to improve energy efficiency and reduce the over-
all energy bill at consumption-side [23]. DSM is a broad-
spectrum field, encompassing and extending concepts such
as energy efficiency and load management. Owing to the
fact that DSM related literature is somewhat disperse, there
is no general consensus regarding the classification and
categorisation of the underlying techniques.

DSM techniques can be categorised based on their tim-
ing and customer impact [23]: (i) Energy Efficiency (EE),
(i) Time of Use (TOU), (iii) Demand Response, and
(iv) Spinning Reserve. EE accomplishes permanent energy
optimisation by promoting the adoption of energy-efficient
appliances and improving building design and construction.
Also considered within this category are end-user aware-
ness and behavioural changes towards a more efficient usage
of energy appliances. TOU and DR techniques share simi-
larities, as both promote energy efficiency and grid stabil-
ity by coordinating and shifting appliances operation, thus
balancing demands throughout the day. While TOU bills
demanded energy at different prices, conditioned by the time
of the day, DR promotes changes in electricity use as a
response to smart grid events, which can be, for instance,
grid price updates. As for spinning reserve techniques, they
aim to support traditional energy providers by adjusting loads
on demand-side according to the grid frequency, either by
increasing or decreasing demand. They also support commu-
nication among demand-side devices in order to promote fair-
ness in grid incentives, and contribute towards grid stability.

A different categorisation has been subsequently proposed
in [24]. The underlying techniques are split into (i) Energy
Efficiency, (ii) Demand Response, and (iii) Strategic Load
Growth (SLG). Comparing to the one proposed in [23], its
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main novelty concerns the inclusion of SLG techniques. Load
growth programmes are implemented aiming at changing the
load shape, by imposing increases or decreases in consump-
tion in certain periods of the day. This approach can be used
to foster consumption from renewable sources.

B. DEMAND RESPONSE

Demand response refers to changes in electricity use from
normal consumption patterns exhibited by demand-side
resources, as a result of changes in the price of electric-
ity or induced by incentive payments, aiming at lowering
electricity use when wholesale market prices are high, just
to name out a few [3]. Moreover, the ability to change appli-
ance schedules in real-time allows the accommodation of
unexpected grid demand peaks, while contributing to demand
flexibility. This is particularly important in addressing the
variability of energy production from renewable sources, both
at demand and supply sides. From a practical point of view,
DR has been shown to cut peak demands, helping with the
integration of renewable sources and supporting short-term
balancing of the grid [25].

As for DR-based techniques, there is also no consensual
categorisation. One of the proposals [23] considers splitting
DR into market and physical techniques. Market DR tech-
niques are directly focused on energy billing by means of
load shifting, taking into account static or dynamic billing
methods or financial incentives. On the other hand, phys-
ical DR is centred around the smart grid and underlying
infrastructure, consisting of signals sent out by the utility
to reduce or remove demands due to maintenance or failure
events.

Another more exhaustive categorisation is proposed
in [24]. Here, the authors split DR techniques into the follow-
ing six categories (Figure 2): (i) frequency-based, (ii) direct
control over utility equipment, (iii) direct control over
end-use equipment, (iv) price-based, (v) market-based, and
(vi) model-based. Frequency-based techniques use frequency-
based mechanisms to control devices on the demand-side,
switching them on or off, performing load shedding and
restoration. Direct control over either utility or end-use equip-
ment aims to control grid assets, such as transformers and
feeders, or demand-side appliances. For utility equipment,
the adoption of voltage reduction and protection relays is
reported, while protection fuses and clock-based controllers
can be considered at demand-side. In price-based techniques,
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indirect load control is carried out via tariffs such as TOU,
real-time pricing (RTP) or critical-peak pricing (CPP), while
in market-based demand-side resources are explicitly incor-
porated into electricity markets. Finally, model-based tech-
niques focus on coordinating devices and resources at both
demand and supply sides, in order to optimise energy use
and billing. The authors focus their discussion on model-
based predictive control (MPC), but alternative methodolo-
gies, such as machine learning-based techniques, can also be
considered.

Recently, two additional categories were considered in [3]
and [26], namely price-based and incentive-based tech-
niques. Both categories, in essence, are focused on schedul-
ing devices to minimise energy bill. Price-based techniques
adjust loads to dynamic grid prices, while incentive-based
techniques rely on deterministic and time-invariant policies,
such as direct load control and interruptible loads, to pro-
mote load reduction. Customers of incentive-based programs
should agree to reduce operative loads during specific peri-
ods. If they comply with this requirement a financial incentive
is awarded, otherwise a penalty is applied.

In recent years, renewable energy and storage systems,
both at demand and supply-side, have been increasingly inte-
grated on power grids. On the other hand, AMI, dynamic
billing policies, as well as automated DSM and DR also need
to be properly incorporated. In addition, demand-side load
adjustment should not be considered just to improve just a
single criterion. The utility, smart grid and customers often
have distinct and conflicting objectives. This has motivated
extensive research on multi-objective optimal resource man-
agement, notably MPC [27], [28], linear programming (LP)
and non-linear programming (NLP) [4], [29], [30] as well as
evolutionary algorithms (EAs) [31]-[34].

C. ENERGY BILLING SCHEMES

In the past, utility companies commonly used to consider
flat rate-based pricing, being customers charged according
to a given static rate per energy consumed unit. Recently,
owing to technological advances on smart metering, dynamic
billing schemes have become increasingly preponderant.
Five main billing approaches can be found in the literature
(see e.g. [35], [36]), namely:

(a) All-in-rate — billing is carried out at a given static rate,
which remains unchanged throughout the day.

(b) TOU - splits a given day into several periods. For each
period, energy is billed at a fixed rate. Periods usually
change over time, as well as the underlying billing rates.
Periods and energy prices can depend on the season of
the year, day of the week, or any other criterion.

(c) CPP — defines a peak rate at which customers are billed
during critically overloaded periods. These periods are
defined by the utility, based on a threshold regarding the
total consumption for a customer. In the remainder of the
time, this approach is exactly as TOU.

(d) RTP — energy tariffs are updated at a given rate, usually
on hourly or daily basis.
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(e) Inclining Block Rate (IBR) — IBR considers a unit elec-
tricity rate, which increases with consumption in blocks
of several hundred kWh. By considering higher demands
more expensive, this billing scheme promotes load distri-
bution over time.

D. SUMMARY

Under the smart grid paradigm, DSM and DR have emerged
as the two most dominant programs for automated load
management at demand-side. While DSM-based approaches
focus on reducing energy consumption and improving the
overall efficiency, DR-based techniques adjust electricity use
in response to grid price changes. The adoption of these
programs can be beneficial for both end-users and utility
companies.

DSM is categorised into energy efficiency, strategic load
growth and demand response techniques. Energy efficiency
techniques encourage energy-efficient appliance usage,
building construction and design methods improvement,
along with end-user awareness and behavioural changes.
Load growth programmes are implemented for changing the
load profile shape, in order to increase or decrease consump-
tion at certain periods of time. DR techniques include the fol-
lowing standard categories, namely frequency-based, direct
control over utility equipment, direct control over end-use
equipment, price-based, market-based and model-based tech-
niques. These categories were recently extended by including
incentive-based and price-based techniques.

Further research on scheduling strategies, namely in terms
of optimisation techniques, is required to balance exploita-
tion of local production for self-consumption and grid injec-
tion. Uncertainties associated with appliance operation needs,
energy consumption, local production and grid prices must
also be addressed for the sake of robustness.

IV. HOUSEHOLD APPLIANCE MODELS

Buildings, both residential and non-residential, include a
multitude of electrical devices, each with its own specific
characteristics in terms of energy consumption and usage
profile. In order to address the increasing heterogeneity of
devices, HEMSs need to be adaptive and flexible enough to
cope with changing requirements and to accommodate new
challenges.

A. APPLIANCES CATEGORISATION

From a load scheduling point of view, household appli-
ances can be categorised based on how they are managed
by HEMSs. In [37] appliances are distinguished between
controllable, according to which appliance operations can be
scheduled over a given time horizon, and non-controllable
appliances, for which scheduling is not available. Only the
ability to define appliances’ start time is possbile, while inter-
rupting their operation or reducing their energy consumption
are not available. A broader categorisation is proposed in [8],
comprising the following six classes aiming to model differ-
ent groups of devices:
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(a) Uncontrollable loads — they cannot be changed or
re-scheduled by a HEMS. This class considers loads that
provide an added value to residents, sometimes com-
pletely controlled by users. Examples include, but are not
restricted to, entertainment equipments such as tv sets,
computers or sound systems.

(b) Curtailable loads — energy consumption can be adjusted
mid-operation, usually with no significant impact to res-
idents’ comfort. Such adjustments restrict energy con-
sumption by changing the underlying settings, with no
subsequent compensation. One example concerns dim-
ming indoor artificial illuminance during day-time as a
function of daylighting.

(c) Uninterruptible loads — once started, they should run a
complete cycle. Hence, the underlying HEMS, or resi-
dents, are only able to schedule the corresponding start-
ing time. Dishwasher, clothes washing or dryer machines
are typically included in this category.

(d) Interruptible loads — can be interrupted at any time, and
subsequently resumed, with little impact on their oper-
ation. Appliances included in this category are usually
modelled as equipments with constant consumption, eas-
ing the formalisation of underlying scheduling problems.
Examples include plug-in hybrid electric vehicles and
other rechargeable devices.

(e) Regulating loads — appliance operation states remain
as close as possible to a given reference, which is
defined by residents or a HEMS. Heating, ventilation and
air conditioning (HVAC) systems are exmaples of this
class.

(f) Energy Storage — comprise appliances such as external
batteries that store energy for subsequent use.

It should be stressed that no household appliance cate-
gorisation scheme is currently globally accepted. Different
terms are used to characterise identical concepts. As an
example, in [26] household appliances are classified as
schedulable or non-schedulable based on deferment flexi-
bility, while in [37], [38], the classes controllable and non-
controllable are analogous, even as elastic and inelastic
loads in [35]. The latter work also suggests a new class for
smart loads, further categorised in elastic and inelastic loads,
resulting from their ability to adjust power consumption
mid-operation.

It should be pointed out that even among authors follow-
ing the categorisation proposed in [8], a consensus has not
been reached yet on which appliances are assigned to each
category. Refrigerators, for instance, are such an example
due to their relatively short cycling characteristics. At hourly
resolution, consumption cannot be adjusted, and thus they
are regarded as uncontrollable devices [39], [40]. For lower
time resolutions, consumption can in principle be adjustable,
allowing them to be classified either as interruptible [41], [42]
or uninterruptible loads [38], [43]. Finally, loads can also be
categorised as thermostatically controlled, in the case they
are related to maintaining indoor temperature close to a given
reference value.

5706

TABLE 1. Common controllable household appliances referenced in the
literature.
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B. TYPICAL CONTROLLABLE APPLIANCES

Table 1 presents the most common controlled appliances in
the context of HEMSs found in the literature. As can be
observed, there is a clear predominance for some types of
appliances. Washing, dryer machines, dishwasher and charg-
ing of electric vehicles appear on the top of this list, with
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over 20 references each. Indoor temperature management is
also common, and associated to heating or cooling systems.
This finding is, to some extent, expected, as these appliances
are responsible for a high share of overall household energy
consumption. In comparison to other appliances equally
important for comfort and lifestyle, such as phone chargers,
personal computers, tv sets or entertainment systems, those
devices are more prone to external management, making them
top candidates for HEMS-based supervision.

C. RESIDENTIAL LOAD UNCERTAINTIES

In household environments, accurate predictions of electricity

demand and local micro generation are difficult. If tariffs are

fixed, utility grid prices can be determined, otherwise they
can only be estimated, with a certain degree of confidence.

These uncertainties have an impact on computed load sched-

ules, which ultimately compromise energy bill and may lead

to breaches of contracted power limits or even impacting
residents’ comfort level.

The main sources of uncertainty in HEMSs are: (i) appli-
ance operation needs, (ii) appliance consumption, (iii) local
micro energy production, and (iv) utility grid prices. A way
to address uncertainties on forecasts is to remove pre-
dicted data from the decision-making process, and solely
relying on past and present data. In such cases, it is
suggested to consider heuristics and game-theory-based
approaches, or when uncertainty is explicitly included,
stochastic, robust, chance-constrained, (stochastic) dynamic
programming and (stochastic) fuzzy optimisation approaches
are recommended [8].

(a) Stochastic optimisation — uncertainties are modelled
as random variables and explicitly included in both
the objective function and constraints [44]-[46], being
the optimisation carried out for the expected value
of the objective function. If statistic distributions and
corresponding parameters are known, a simple approach
consists in replacing each random variable with the
underlying expected value. In the case of finite uncer-
tainty realisations, the expected value can be determined
by computing the objective function value for all possible
realisations and taking its expectation. For other cases,
an approximation of the set of possible realisations can
be computed via Monte Carlo sampling, assuming a
stochastic model, or based on field observations [44],
[47]-[49]. Finally, in some particular problems, decisions
need to be obtained based on a sequential methodology,
commonly via two-stage or multi-stage-based stochastic
optimisation approaches [8], [50].

(b) Robust optimisation — no assumptions regarding the
underlying uncertain variables are made, being them
modelled them based on intervals of values [47], [51].
These methods address uncertainties by considering real-
isations with stronger (worse) impact on problem solu-
tions. For instance, minimisation of household electricity
bill under uncertain non-schedulable demands consid-
ers non-controllable demands to be as high as possible.
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A generic formulation for a robust optimisation problem
is as follows [50]:

min max F(x, w

min max . o) M
where €2 is the uncertainty set and y is the space of
decision variables.

(c) Chance-constrained optimisation — not as strict as robust
alternatives, since optimisation is conducted for the
worst-case scenario with a predetermined confidence
interval, which is represented by a parameter «:

min _F(x, )
XeEX ,weR
subject to

P (hi(x,w)>0) >p
i=1,---,m )

In short, this method ensures that the probability of
matching one or more constraints is above a given thresh-
old. Therefore, it restricts the feasible region in order to
guarantee a high confidence level on computed solutions.
Unlike robust optimisation methods, chance-constraints
can use unbounded distributions of uncertainty [8].

(d) Stochastic dynamic programming — relies on the estima-
tion of a state-space model, such that for each state a
finite set of actions can be taken with a given proba-
bility, thus resulting in transitions to other states. This
method is applied recursively from the end nodes to
the initial node. As a finite set of states must be
defined, a rather simplistic and often incorrect model
may be obtained. Since a significant number of states
may emerge when modelling complex systems, stochas-
tic dynamic programming-based problems can become
NP-hard. Nevertheless, some approximations can allow
solutions to be achieved in polynomial time [8].

(e) Stochastic fuzzy optimisation — consider fuzzy logic the-
ory, such that truth values are in the interval [0, 1]. When
dealing with forecasts, uncertainties can be replaced with
non-crisp values, which enable HEMSs to make quick
decisions that lead to approximate optimal schedules,
within a certain level of confidence [8].

D. SUMMARY

HEMSs allow continuous monitoring and management of
household appliances based on user defined criteria, such
as the overall electricity bill or residents’ comfort, just to
name out a few. A clear lack of consensus concerning a
unified categorisation of household appliances, from a HEMS
management perspective, is noticed. Nevertheless, household
appliances can broadly be categorised into appliances sup-
porting remote HEMS control and management, and those
not available for management. Controllable appliances can
be further categorised based on how HEMSs regulate their
operation: curtailable and regulating loads, where energy con-
sumption is adjusted during in-operation stages; uninterrupt-
ible loads, which cannot be managed in any way after being
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started; interruptible loads, which can be interrupted and
subsequently resumed at any point during execution; energy
storage systems, allowing extra storage for later use. Some
appliances are more appealing than others with respect to
smart management and scheduling. This is the case of wash-
ing machines, electric vehicles and HVAC systems, in part
due to their significant consumption and support for external
management, with smaller impact on residents’ comfort and
lifestyle. HEMSs define appliances in-operation schedules
over a future time horizon, based on appliance requirements,
in terms of consumption and local generation, which are typi-
cally not known. As such, scheduling techniques need to deal
with uncertainties. In this context, stochastic and robust meth-
ods, chance-constrained optimisation and stochastic variants
of dynamic programming and fuzzy optimisation methods
were discussed.

V. SCHEDULING

In order to improve energy efficiency and residents’ com-
fort, HEMSs monitor household consumption and coordinate
appliance operations. This can be achieved via consumption
reduction or consumption shifting, with the latter far more
popular in residential buildings. Consumption shifting relies
on scheduling techniques to find optimal operation timing for
household appliances. Prior to their adoption and deployment
in real-world scenarios, critical choices need to be made
concerning the devices to be managed, scheduling criteria,
operational constraints, and the scheduling techniques to be
considered. This section is devoted to discussing dominant
scheduling techniques, criteria and constraints.

A. TECHNIQUES

In the context of consumption shifting, the choice of a par-
ticular scheduling technique involves a number of issues.
Scheduling is conducted over a future time horizon, for which
household demands and electricity generation cannot be per-
fectly predicted. As such, adequate and representative con-
sumption profiles are required. In addition, the incorporation
of uncertainties for future demands and generation should
also be considered.

More strongly linked to the optimisation strategy is the
process of modelling appliances by a HEMS and the under-
lying time domain representation. Its discretisation into
equal-length slots is widely employed, namely hourly-based
slots [57], [59], [86]. In some cases, time domain discretisa-
tion helps the specification of constraints related for instance
to appliance models or comfort parameters, just to name out
a few. Such representations, however, lead to a larger num-
ber of variables, increasing the corresponding computational
burden. In such cases, the underlying problems should be
reformulated to reduce the number of variables and con-
straints [87]. Continuous time domain representations can
also be considered (see e.g. [88]-[90]), improving scheduling
flexibility, as appliances in this case are not constrained to
fixed slots.

5708

A wide variety of methods and techniques have been
suggested to improve energy usage through load schedul-
ing [8], [35], [91]-[93]. These methodologies can generically
be grouped into five categories: i) mathematical optimisa-
tion; ii) heuristic and metaheuristic methods; iii) model-based
predictive control; iv) machine learning; v) game theory
approaches.

1) MATHEMATICAL OPTIMISATION

HEMSs define appliance operation schedules over a given
predefined time horizon, so that some particular criteria are
optimised, while taking into account underlying constraints.
A common approach to find feasible solutions relies on deter-
ministic optimisation-based methodologies. The correspond-
ing problem formulation can be grouped into the following
categories:

(a) Linear Programming (LP) problems — the objective
function and constraints are strictly expressed by linear
relationships, being binary programming [4], [94] and
mixed-integer linear programming (MILP) [30], [39],
[43], [46], [55] the most predominant methods. LP prob-
lems are appealing due to their relatively low compu-
tation burden and the availability of specific software
packages. Algorithms such as branch and bound, sim-
plex or interior point can be employed. Commercial and
non-commercial solvers with support for linear program-
ming problems are also available, namely GLPK [95],
CPLEX [96] or GAMS [97].

(b) Non-Linear Programming problems — either the under-
lying criteria or constraints, or even both, are expressed
by non-linear functions. These techniques are more
powerful than LPs, but on the other hand the com-
putation burden is larger. Common solvers with sup-
port for non-linear problems include SCIP [98], [99],
GAMS or LINGO [100]. Mixed-integer non-linear pro-
gramming (MINLP) problems are commonly formulated
in the context of HEMSs [29], [56], [101].

(c) Convex Programming problems — consider convex objec-
tive functions, linear equality constraints and concave
inequality constraints. Convex programming problems
can be solved by least squares, conic programming, geo-
metric optimisation and Lagrange multiple methods [35].

(d) Dynamic Programming — the optimisation problem is
structured into multiple stages, being scheduling deci-
sions made sequentially, one at a time, and not indepen-
dently at each time interval [102], [103].

A drawback of deterministic formulations, in the context
of HEMS scheduling, is the lack of precise knowledge con-
cerning demand, local micro generation or grid prices over
the scheduling horizon. Although scheduling could be found
by solving LP or MILP problems, by considering demand and
production forecasts, optimal solutions can only be found if
future uncertain realizations match forecasts. For uncertainty
sources modelled by probability distributions, a stochas-
tic optimisation approach can be used [70], [71], [104].
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This methodology was followed in [44], leading to household
energy bill cuts of around 41%, when compared to tradi-
tional deterministic optimisation approaches, with uncertain-
ties were considered for household appliance consumption,
operation times, and with respect to renewable electricity
generation.

2) HEURISTICS AND METAHEURISTICS

For large problems, mathematical optimisation methods are
computationally expensive, being heuristics and metaheuris-
tics approaches a valuable alternative. They rely on high-level
procedures to search for admissible solutions, resulting in a
lower computational burden than mathematical optimisation
methodologies. They are particularly attractive for problems
where it is typically easier to find one suboptimal solution,
but extremely difficult and time-consuming to find a global
solution.

In this class of methods, genetic algorithms (GA)
[31]-[34], [52], [92] and differential evolution (DE) [68]
have stood out in the context of HEMSs, along with
swarm intelligence-based algorithms, namely particle
swarm optimisation (PSO) [33], [72], [79], [83] and tabu
search [53], [54], [84].

3) MODEL PREDICTIVE CONTROL

HEMSs scheduling can be regarded as a receding-horizon
optimal control problem, such as MPC. At current discrete
time k, a horizon-dependent optimal control sequence is
computed based on current states sampled from the system,
being only the first control action implemented on the sys-
tem. At next time step k + 1 this procedure is once again
repeated. MPC supports dynamic modelling and disturbance
prediction [57], [71], [92], [105], useful to address problem
uncertainties. One of the drawbacks of MPC-based tech-
niques is related to the stability of the underlying closed loop
system and the sub-optimality of the corresponding control
system. Nevertheless, MPC has been reported to achieve a
satisfactory performance regarding the energy management
of buildings, outperforming other control schemes, such as
in the case of heating [106], [107], cooling [108], [109]
and ventilation [110]. However, MPC-based methodologies
involve very often significant modelling costs, as they require
a detailed plant model, rely on data acquisition from the
plant, along with the implementation of required observers,
expert monitoring and deployment. This has been pointed
out as a limitation regarding the application of MPC-based
technologies in medium to large buildings [92].

4) MACHINE LEARNING

Traditionally, utility companies have heavily relied on con-
trol systems, physical modelling and numerical calculations
to monitor and manage grid infrastructures [111]. With the
recent technological advances in IoT and smart grid technolo-
gies, a new generation of digital sensors equipped with com-
puting and communication capabilities is being deployed.
This results in the collection of massive data volumes, which
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need to be subsequently processed. On the other hand, renew-
able energy generation increases both the complexity and
uncertainty of grid management. As this new set of challenges
is not fully addressed by traditional strategies, the application
of machine learning and data science-based techniques have
been suggested in the context of building and grid manage-
ment [93], [111], in particular for: (i) appliance scheduling,
and (ii) forecasting building energy consumption.

5) APPLIANCE SCHEDULING

Artificial neural networks (ANNSs), as a class of univer-
sal approximators, can learn to solve scheduling problems
by means of supervised training. Among ANN topologies,
feedforward architectures are commonly chosen, while con-
sidering as inputs, for instance, future demands and gen-
eration forecasts, time of day and occupancy information.
When multiple devices need to be simultaneously managed,
two strategies can be followed. One considers training an
individual ANN for each appliance [112], while the other
approach considers training a single ANN to control multiple
devices [113].

Reinforcement learning (RL) has evolved around the con-
cept of an intelligent agent in a dynamic environment. This
agent iteratively learns how to best act while performing a
given task. At each iteration, the agent observes and eval-
uates the current environment state, takes an action from a
previously defined set and receives a reward as a result of the
conducted action. The goal of an agent is to either maximise
rewards or their expected values [114].

6) BUILDING ENERGY CONSUMPTION

Predictive models can be used to estimate electricity con-
sumption, either for the entire building or for some spe-
cific uses, including eating, cooling, washing and dryer
machines [115]. They can also be used to predict micro
generation for sources such as solar or wind [116]-[118].
In essence, this problem can be regarded as time-series fore-
casting, for which machine learning-based approaches can be
considered [93], [111], [116], [119]:

(a) Statistical and conventional regression methods, such
as time-series decomposition, ARMA, AIRMA, mul-
tiple linear regression [120] or ordinary least squares
regression [121] offer a balance between simplicity
and performance. However, for non-linear time-series
the underlying prediction error tends to be unaccept-
able [119] unless an online parameter adjusting mecha-
nism is implemented.

(b) Artificial neural networks, including multilayer
perceptron and feedforward neural networks [122], con-
volutional neural networks (CNNs) [111], [123], recur-
rent neural networks (RNNs) [111], [124] and restricted
boltzmann machines (RBMs) [111], [125]. Concern-
ing RNNs, long short-term memory (LSTM) architec-
tures are effective in dealing with a variety of high
complex problems [124], [126]. The incorporation of
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additional layers within deep ANN architectures signif-
icantly improved generalisation performance, both for
short and long terms. The main drawback of these high
complex topologies is the training computational burden.

(c) Capsule networks rely on the concept of a capsule, which
is capable of learning implicit features over a limited
domain of input deformations [127], [128]. They have
also been considered to forecast time-series data, namely
to building energy forecast [129], [130].

(d) Support vector machines (SVMs) [131] are intrinsi-
cally adapted to solve regression problems, under the
so-called support vector regression (SVR) modelling.
Furthermore, they provide satisfactory results even
when few data samples are available [119]. The appli-
cation of SVR-based techniques to building energy
forecast has been suggested in a number of works
(see e.g. [132]-[134]), being the underlying prediction
performance superior to traditional techniques and even
to some ANN-based data-driven models.

(e) The joint application of segmentation and regression
techniques rely on the concept of shape-similar data
clustering. Instead of using all available data to train
a machine learning-based model, it adjusts models to
capture data patterns assigned to a given cluster. In [135]
a K-means clustering algorithm was used to segment
electricity readings on a hourly basis, along with a
CNN model used to approximate each cluster, while
in [136] household electricity loads are predicted by
using classification and regression trees, together with
self-organising map data clustering.

(f) Gaussian process regression (GPR) is a non-parametric
method based on gaussian processes (GPs) [137].
GPs represent time-series as a collection of jointly mul-
tivariate gaussian random variables, and they are com-
pletely specified by a mean and covariance function.
Given a training data set, they can be regarded as defining
a set of functions that pass through the observations
and are otherwise normally distributed, in log marginal
likelihood sense [138].

(g) Ensembles of several models combine different tech-
niques, while taking advantage of their individual
strengths. They have, in the last few years, gained consid-
erable interest in building energy consumption modelling
and forecast. In some cases, they have shown to outper-
form regular single models, although their adoption has
been hampered, in part due to implementation complex-
ity and computational burden. Examples include random
forests and boosting decision trees [119].

7) GAME THEORY

Game theory-based approaches are usually employed within
amulti-agent framework, where each agent chooses a strategy
to maximise an individual utility function. Agents’ utility
functions are defined according to the underlying operation
objectives, and conditioned by other agents’ strategies [35].
Two main categories can be found, namely cooperative and
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non-cooperative games. The former considers communica-
tion among agents, acting as a group to reach a common goal,
while in the latter category agents are self-interested and do
not communicate with one another, unless for self-enforcing
purposes.

For a single household, cooperative games are not the
most appropriate techniques, as they target scenarios with
multiple customers, which coordinate behaviours in order
to minimise the overall consumption, optimise grid resource
usage or maximise social welfare [139]-[142], just to
name out a few. In the case of multiple households,
cooperation principles should be incorporated within DSM
programmes [143]. From the utility company point of
view, balancing demands from individual households in a
given supplied region enables flattening energy consumption
throughout the day, which leads to a sustainable and more
efficient use of grid resources.

Although customer coordination could be centralised and
implemented based on heuristics and mathematical opti-
misation techniques, it implies a significant computational
burden, in particular when the number of agents is large.
In these cases, distributed DSM-based approaches are supe-
rior to traditional DSM strategies, which solely focus on
utility-consumer interactions, enabling peak-to-average ratio,
energy costs and customers’ daily charges to be reduced.

B. CRITERIA
In the following, some of the criteria commonly considered
for scheduling appliances are listed [35]:

1) Electricity bill — is the most common objective, as the
main motivation of residential consumers is to minimise
the underlying bill, while taking into account available
tariffs and renewable micro-generation [13], [46], [49],
[58], [59], [69], [73], [741, [144], [145].

2) Distribution system losses — due to Joule effect in
power lines and other equipment deployed along the grid
network, namely transformers, a fraction of generated
power is lost. A common approach to deal with this
problem includes deploying generation sources along
the power line, regulated by an optimal dispatch strat-
egy [601, [751, [76].

3) Peak load — utility companies encourage customers to
minimise peak load demand or even to achieve a partic-
ular load profile, which benefits grid management [46],
[80], [82], [146], [147]. By defining individual target
loads, utility companies promote a balanced use of
power grid resources, expressed as peak-to-average load
ratio (PALR). The closer this ratio is to one, the flatter
consumption load is throughout the day [38], [61].

4) Carbon emission — taking into account the environmen-
tal impact of energy consumption, HEMSs can incor-
porate carbon and other GHG emissions as additional
criteria [77], [148]. Penalty fees can also be charged to
consumers based on GHG emission levels, as consid-
ered in [147], where pollutant emissions are indirectly
reduced through electricity cost minimisation.
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5) Customer comfort — the solution to the underlying
scheduling problem provided by HEMSs can take into
account customers’ comfort and preferences, commonly
under the form of constraints. If considered as an objec-
tive function, they are complemented by additional cri-
teria, such as energy bill. In [85] appliance usage and
customer comfort were taken into account in managing
air-to-water heat pumps connected to a residential floor
heating system, while in [58] a multi-objective mixed
integer non-linear programming model was developed
for optimal energy use in a smart home, ensuring a
meaningful balance between energy saving and comfort-
able lifestyle.

6) Social welfare — can be regarded as the balance between
consumer grid benefits and their associated costs [35].
As such, HEMS considering this goal aim to improve
social welfare of a community of consumers, at a global
scale [13], [62], [149].

C. SCHEDULING CONSTRAINTS

The household energy management problem includes the

following two main groups of constraints: appliance con-

straints and comfort constraints. Appliance constraints are
related to how household appliances are modelled. In this

context, average non-varying consumption [59], [63]-[65],

[69], [78] is often adopted instead of individual consump-

tion profiles assigned to each operation cycle phase [43],

[63], [66], [67], [94]. This is mainly due to model simplicity

and lack of detailed consumption profile data for control-

lable appliances. Other constraints include household con-
tracted power, energy generation and availability of external
batteries.

Evaluation of customer comfort is a very complex task,
in part due to the perception and subjectiveness of individ-
ual’s comfort. Customer comfort can be assessed in terms
of [8], [35]:

(a) Inconvenience due to timing — is related to discomfort
perception resulting from scheduling appliances outside
their preferred time window.

(b) Inconvenience due to appliance use — considers any
discomfort stemming from a load that was prematurely
stopped, whose intensity was reduced or not even per-
formed at all. Examples include premature stop of a
clothes dryer load and lowering indoor reference temper-
ature for HVACs, resulting in a deterioration of indoor
thermal comfort.

(¢) Inconvenience due to appliance priorities — refers to any
precedence and priority of certain appliances over others.
A common example is related to clothes washing and
dryer machines operation, as laundry needs to be previ-
ously washed before being dried out. User-defined prior-
ities concerning household appliances are also addressed
here. For instance, a customer can specify which clothes
washing loads should be given preference over dish-
washing. Failure to comply with such priorities can be
modelled by a HEMS through discomfort penalties.
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Constraints are not all equally processed by HEMSs. Some
need always to be met at the risk of major household impact,
while others may only be partially met. The degree to which
a constraint is not satisfied distinguishes hard from soft con-
straints, being for instance the capacity of external batteries
and contracted power common examples of hard constraints.
It should be mentioned that the majority of comfort con-
straints can be incorporated as soft constraints, since a lower
comfort lever can be perfectly acceptable if it leads to a mean-
ingful energy bill reduction. Constraints can be addressed in
two different ways, either by including them as part of the
objective function within an unconstrained multi-objective
framework or by explicitly formulating the scheduling prob-
lem as a constrained optimisation problem [150].

1) MULTI-OBJECTIVE TRANSFORMATION

Multi-objective transformation addresses constrained opti-
misation problems by regarding constraints as additional
objectives, leading to an unconstrained multi-objective
problem (MOP). MOPs can be solved by computing a rep-
resentative approximation of the set of pareto optimal solu-
tions, using commonly heuristic and metaheuristic-based
techniques, mostly in the form of EAs [151]-[158]. However,
a more common approach transforms the MOP into a single-
objective problem (SOP), usually by means of a weighted
sum of the underlying objectives [4], [159]-[162].

Bounded objective and physical programming methods are
common alternatives to single-objective problem transforma-
tion via weighted sum [8]. As for bounded objective methods,
they consider all but one objective as constraints, within
an acceptable range. This implies that the chosen objective
is more relevant to the problem, otherwise it would had
been taken as a constraint. Concerning physical programming
methods, a deeper knowledge of the underlying problem is
required, as they rely on explicitly functions to model trade-
offs between objectives.

A HEMS can, thus, come up with an optimal schedul-
ing programme by combining its operational objectives and
constraints into a single objective function, associating a
scalar weight to each objective and constraint. An alternative
approach explicitly considers all constraints, as described
in Section V-C.2.

2) EXPLICIT CONSTRAINT HANDLING

The way constraints are handled by HEMSs strongly depends
on their scheduling strategies. Current frameworks for MPC,
LP or NLP typically provide native support for hard con-
straints, ensuring the feasibility of computed solutions.
On the other hand, soft constraints can also be considered,
usually by relaxing the constraint specification by means of a
user-defined infeasibility degree or by removing the original
constraint and penalising deviations from it.

Heuristic optimisation methods intrinsically allow to solve
unconstrained problems [163]-[165], which implies the
selection of constraint-handling techniques (CHTSs). These
techniques are categorised into early CHT (up to year 2000)
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and current techniques (2000s-2010s) [165]. Although they
have been designed for heuristic-based methods, some of
them can also be employed in other scheduling techniques.

3) EARLY CONSTRAINT-HANDLING TECHNIQUES
All CHTs present similar shortcomings, namely in terms of
generalisation capacity, parameter fine-tuning and premature

convergence. They can be grouped into the following subcat-
egories [163], [164]:

(a) Penalty functions — constraints are replaced with an addi-
tional term on the adopted criteria function f(x), which
penalises the evaluation of a given solution, according
to its degree of constraint violation. This term is usually
represented by means of a penalty function, ¢(x), being
a solution evaluated as eval(x) = f(x) + ¢(x).

Penalty functions of different types have been consid-
ered, namely: (i) static penalties [164], [166] which
define fixed-value penalisations, (ii) dynamic penal-
ties [167]-[171] computed based on information from
the evolutionary process, namely infeasibility degree,
generation number or best fitness in the population [164],
and (iii) less popular alternatives derived based on co-
evolution [172] and segregated GA [173] principles.
Penalty functions are extensively adopted, mostly due to
their simplicity, ease of implementation and integration
with existing optimisation-based scheduling strategies,
but they require proper tuning, in particular in terms of
optimal penalty values. As such, it has been suggested
adopting the minimum penalty rule [164], according to
which penalisation should be kept just above the limit
below which infeasible solutions become optimal. The
most tricky aspect of the penalty function approach is
how to find appropriate penalty parameters in order to
guide the search towards a constrained optimum.

(b) Special operators — in evolutionary and genetic algo-
rithms, crossover and mutation operators are used
to maintain population genetic diversity. As infeasi-
ble individuals may be generated, tweaks have been
proposed to preserve the feasibility of candidate solu-
tions [174]-[178]. Some examples include GENO-
COP [163], GENOCOP III [179], decoders [180], [181]
and repair algorithms [182]—[184], just to name out a few.

(c) Separation of objectives and constraints — treating objec-

tives and constraints separately, unlike penalty functions.
Examples include co-evolutionary techniques [185],
[186], optimising objectives and constraints in two
distinct populations, and multi-objective optimisation
[187]-[189].
Feasibility rules [190] consist of a set of rules that govern
comparisons between individuals, assuming an explicit
preference for feasible solutions over infeasible alterna-
tives [191]-[193]. A drawback of this methodology is a
poor exploration of infeasible regions, which can lead
to a premature convergence to a solution, resulting in a
suboptimal solution.
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4) CURRENT CONSTRAINT-HANDLING TECHNIQUES

The so-called current CHTs consist mostly in modifica-
tions to existing techniques, split into the following main
approaches [165]:

(a) Feasibility rules — widely employed in heuristic and
metaheuristic methodologies considered in the context of
GA [194], [195], DE [196]-[199], PSO [200]-[202] and
artificial bee colony (ABC) [203], [204].

(b) Stochastic ranking (SR) — this technique was origi-
nally proposed to address the shortcomings of penalty
functions, resulting from poor tuning [205]. SR has
been widely applied together with evolutionary strate-
gies [205], DE [206], [207] and ant colony optimisa-
tion [208], [209]. It is based on the definition of a penalty
function, which quantifies the degree of constraint viola-
tion of a candidate solution, implementing an adaptive
ranking of candidate solutions, taking into account the
underlying objective and penalty function values. Pairs
of feasible solutions are compared based on the objective
function, whereas for pairs with one or both infeasi-
ble solutions a user-defined probability Py determines
whether comparisons are carried out using the objec-
tive or penalty functions. Other ranking-based techniques
can be found in the literature, namely adaptive rank-
ing mutation operator [210] and multiple ranking [211],
[212]. The popularity of these techniques is mainly due to
simplicity and ease of integration with population-based
heuristic and metaheuristic algorithms.

(c) e-Constrained method [213] — the objective function is
employed in comparing pairs of feasible solutions, being
candidate solutions considered infeasible if and only if
they exceed a user-defined degree of infeasibility € € R.
This parameter has a strong influence on the selective
pressure of feasible solutions [165]. Larger values allow
deeper infeasible regions to be explored, while smaller
values increase selective pressure, which results in fewer
feasible solutions. Hence, a careful tuning of this param-
eter is required, being a constant value is commonly
adopted, although a dynamic conditioning version of €
can also be found in the literature (see e.g. [214]).

(d) Penalty functions — despite their shortcomings, they still
remain a popular CHT, in particular those embedding
adaptive features [165]. New penalty functions have
explored co-evolution and multi-population concepts,
such as in [172], [215], [216]. Heuristic and metaheuris-
tic algorithms, such as DE [172], [216], GA [217],
PSO [218] and artificial immune systems [219] take
advantage of this approach.

(e) Special operators — despite the active research interest,
the inherent problem-dependency of specialised opera-
tors hinders a proper categorisation of published works.
Furthermore, as specialised operators are developed
for nature-inspired heuristic algorithms, their adoption
and incorporation with other techniques can be quite
challenging [165].
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(f) Multi-Objective Optimisation — in recent years, highly
competitive constraint-handling techniques based on
MOPs were developed [165], implemented within frame-
works such as evolutionary [220], [221] and pareto dom-
inance [152], [222], just to name out a few.

(g) CHT Ensembles — motivated by the no-free-lunch
theorem [223], multiple CHTs can simultaneously be
applied to the same problem, exploring individual
strengths and mitigating shortcomings. CHT ensembles
result in a high computational burden, which have ham-
pered their extensive use. Some examples include ensem-
bles of feasibility rules, penalty functions, e-constrained
and SR [224]-[226].

Constraint metamodelling [227] is another group of
techniques focusing on the development of metamodels for
constrained optimisation problems. They can be particularly
useful in black-box scenarios, where constraint boundaries
are not explicitly provided. Metamodels can be used in fea-
sibility checking and prediction, constraint estimation and
repair of infeasible mutations [228].

D. SUMMARY

Mathematical optimisation-based scheduling techniques are
the most popular choice for small and medium-sized
scheduling problems addressed by HEMSs. For large
enough problem instances, less computational demanding
methodologies such as heuristic-based techniques have been
favoured. Machine learning-based approaches have also
been successfully applied to building energy management
problems, both for scheduling appliances and forecasting
household demand, along with micro generation. Among
residential consumers, electricity bill remains one of the
most selected criteria, followed by customer comfort and
carbon emissions. On the other hand, distribution losses, peak
load and peak-to-average load reduction are more aligned
with utility’s goals. Scheduling constraints can be addressed
differently by HEMSs, namely by including them in the
objective function or by considering explicitly constraint
devoted methodologies. As for explicit constraint-handling,
penalty functions have remained popular over the years,
in particular adaptive penalty methodologies. Feasibility rules
are also another popular choice, in particular for heuristic
optimisation-based scheduling. In the last few years, the trend
on CHTs has been more oriented to problem specialisation
based on existing techniques than to the synthesis of novel
formulations.

V1. SECURITY

Grid infrastructures are inevitably exposed to threats, such
as related to information privacy or equipment and transmis-
sion failures, just to name out a few, which may threaten
the stability of power generation and supply, with possi-
ble severe socio-economic impact. As such, improving the
resilience of grid infrastructures has attracted considerable
interest from academia, governments and industries [229].
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Security challenges emerge at both physical and cyber spaces
of HEMSs and smart grids [230]. At the physical level,
power system security measures focus on the coordination
of distributed power generation and energy storage, in order
to ensure a stable power supply, particularly in addressing
time-variance and uncertainties associated with renewable
energy resources [231]. At the cyber level, the main chal-
lenges concerns the lack of embedded security features in
most field devices, which can be exploited by attackers to
gain unauthorised access to the overall system, or launching
remote coordinated attacks [230].

The identified critical vulnerabilities of HEMSs and smart
grids fostered the development of counter-measures to these
attack vectors. In the following, prominent HEMSs and smart
grid attack vectors and counter-measures are discussed. The
reader is referred to [229], [230], [232], [233] and references
therein for a thorough discussion on this subject.

A. ATTACKS ON SMART GRID
Smart grid attack schemes can be grouped into the following
subcategories [230]:

(a) Generation systems — power generators are man-
aged by automatic generation control (AGC) sys-
tems, which employ load-frequency control (LFC)
and distribution mechanisms to maintain a desirable
generation-supply balance with minimum operational
costs. False data injection [234], [235] and control
signal adulteration [236] attacks are commonly aimed
to damage generators and power lines, being respon-
sible for interrupting power supply and for power
swinging.

(b) Transmission systems — interdiction of transmis-
sion lines and tripping of transformers, generators,
buses or substations are common attack vectors carried
out by manipulating commands or due to false data
injection [230]. Alternatively, attackers can gain unau-
thorised access to system topology information, identify-
ing strategically vulnerable components as future attack
targets [237].

(c) Customer-side — customer-side equipments generally
lack built-in security features, which attackers may
take advantage for energy theft [238], information leak-
age [239] and denial-of-service [240] attacks. It should be
noted that, even though isolated single-building attacks
have a very insignificant impact on grid stability, syn-
chronised attacks over large clusters of consumers can
severely damage transmission lines and cause large-scale
power outages [230].

(d) Electricity market — this kind of attack exploits higher
prices in dynamic pricing schemes, such as RTP, during
periods of higher demand stress, for illegal profit based
on the price margin between on-peak and off-peak tariffs.
The scheme is propped up on buying additional electric-
ity at lower prices to be sold at higher rates during a
subsequent attack [230].
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B. COUNTER-MEASURES

Counter-measures to the aforementioned attack vectors can
be categorised into three distinct classes, namely protection,
detection and mitigation [230]. Mechanisms implemented
for protecting the overall system aim to avoid external
attacks before they could occur. They compromise sev-
eral strategies, such as secure communication channels and
protocols, re-configuration of topological information and
preservation of critical information, being the latter strictly
shared on a “‘need-to-known” basis. When protection mech-
anisms fail to prevent an attack from occurring, the second
defence level is used to detect malicious activities through
intrusion detection systems (IDSs) and intrusion preven-
tion systems (IPSs) [241], physical watermarking of con-
trol inputs [242], model-based [243], game-theoretic [244],
kalman filters [245] or machine learning-based techniques,
namely ANNs [246]. Using information provided by detec-
tion mechanisms, mitigation counter-measures are subse-
quently employed to accommodate ongoing attacks, relying
on optimisation-based approaches [247], [248] and game-
theory techniques [249]-[252].

C. SUMMARY

False data injection and information manipulation, along
with interception, are the most prevalent vectors of attack
in HEMSs and smart grids. These attacks aim to steal
confidential information and feed monitoring entities with
false/erroneous information, thus inducing, as a response,
a wrong reactive behaviour, which ultimately can lead to
power supply infrastructure damage and compromise the
underlying stability. Counter-measures to these attacks are
focused on three distinct levels: protection mechanisms act as
primary filters that prevent malicious attackers from gaining
access to the system and subsequently deploying attacks;
detection mechanisms identify malicious activities related
to attacks; mitigation systems aim to accommodate ongoing
attack events.

VIl. CHALLENGES AND RESEARCH OPPORTUNITIES
In the following, some relevant challenges in the context of
HEMSs and smart grids are discussed:

(a) Grid infrastructure reliability — in the last few decades,
energy demand has been increasing at a global scale,
a trend expected to further accelerate with exponential
growth of plugged-in electric vehicles in the next few
decades, as a result of their impact in terms of consump-
tion patterns. As such, actions should be taken on the
grid infrastructure side, in order to accommodate this
increasing demand. On the other hand, load manage-
ment algorithms for balancing customers’ demand and
reduce peak-to-average ratios are required to be more
efficient, which is expected to foster new computational
paradigms.

(b) Consumption coordination —Load scheduling algorithms
addressing heterogeneous and uncertain information
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are required, being decentralised solutions favoured,
as they bring more flexibility to the coordination
of clusters of customers or sections of the grid.
Besides, data mining-based algorithms can be exploited
in scheduling consumption, modelling and forecast-
ing demand-side loads, thus providing tools for inte-
grating automatic context discovery, artificial context
awareness and human-in-the-loop interaction, leading
to improved self-adaptive and self-reconfigurable
management algorithms.

(c) Distributed energy resources — Coordination among all
grid generators is crucial for a stable supply, in par-
ticular regarding renewable generation units, due to
uncertainty and intermittent power output. This implies
further investigation on optimal placement of energy
resources. Finally, improved management of plugged-in
electric vehicles resources is also required, taking into
account their dual profile, namely as consumers and
generators.

(d) Security and privacy — Securing sensitive information
and protection against cyber attacks are paramount in
the context of HEMSs and smart grid systems. The main
potential sources of attack these systems face, following
the trend in the industrial sector, are related to indus-
trial espionage for obtaining competitive advantages
in a liberalised market, cybercriminals launching mass
attacks, or cyberwarfare from a hostile State. Improving
the overall resilience in such a dynamic environment
requires continuous monitoring and follow-up of poten-
tial threats and vulnerabilities, using the best practices
and developing sophisticated frameworks to deal with
these challenges.

VIIl. SIMILAR WORKS

Several surveys focusing on energy management and HEMSs
have been published in the last few years. In Table 2 the major
similarities and differences with the present work are listed,
considering the last 5 years.

The present survey aims to provide a comprehensive
update on HEMSs literature, focusing on: (i) appliance
scheduling approaches [8], [26], [35], [91], [92]; (ii) con-
strained scheduling problem in terms of goals and con-
straints [8], [26], [35] and SOP and MOP formulations [8];
(iii) categorisation models of appliances, which are typically
considered on HEMSs [5], [8], [26], [35]; (iv) cyber-security
in terms of vulnerabilities, attack vectors and counter-
measures [230], [233]. A recent survey worth to be mentioned
for its thorough and clear review on energy management
solutions, performance metrics and optimisation objectives
to improve consumption-side energy usage is that of [253],
but it lacks in addressing issues concerning to distributed
energy resources in new generation smart power grids. These
issues, in terms of smart grid techniques and their contri-
butions to rational energy usage are covered in the present
survey, being their shortcomings and research directions
discussed.
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TABLE 2. Comparison between previous surveys and the present work.

Reference  Year  Description

[91] 2014 This work reviews the goals and challenges of smart home energy management systems.

[92] 2014 Intelligent control systems applied to improve energy and comfort management in smart buildings are reviewed.
Building energy and comfort-related trends and future research directions are also provided.

[8] 2015 It provides a comparative analysis of the literature on HEMS, with focus on modelling approaches and the
underlying impact on HEMS operations and outcomes.

[26] 2016 It presents an overview on smart HEMS infrastructures, architectures and supported appliances, being some
home appliance scheduling strategies reviewed.

[230] 2016  This work presents a comprehensive and systematic coverage regarding critical threats and attack vectors within
the smart grid, and present common and effective defence strategies.

[35] 2017  The state-of-the-art of behind-the-meter energy management systems is discussed, being literature on BTM
energy management systems classified into three main categories: technology layer, economic layer, and
social layer, including an overview on enabling technologies and standards for communication, sensing, and
monitoring.

[93] 2017  The application of data science techniques to building energy management is reviewed, with special focus on
load forecasting, economic analysis, operation monitoring and fault detection.

[3] 2018 It reviews measures to improve load flexibility in commercial and residential buildings, and presents a
framework for systematic evaluation of buildings’ demand flexibility.

[253] 2018 It discusses key concepts of DSM schemes regarding consumers’ demand management. DSM schemes under
various categories and home energy management based DSM are also discussed, along with DSM performance
metrics, optimisation objectives, and solution methodologies.

[233] 2019  This work presents a thorough overview on cyber attack vectors in traditional and smart metering networks, as
well as common defence and mitigation strategies in order to accommodate this type of events.

This survey 2019  This work presents a thorough review on HEMSs, including operation goals and strategies to meet them,

household appliance management, incorporation of uncertainties on HEMSs-based decision-making and
performance metrics. Cyber-attacks targeted to HEMSs and smart grids are also addressed. Finally, an updated
literature list on HEMSs is provided and some prominent challenges in the field discussed.
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IX. CONCLUSION

Home energy management systems make possible real-time
monitoring of household electricity consumption, remote
control and planning of appliance operation. These sys-
tems enhance traditional homes with “smart” capabilities,
playing an active role in the new power grid paradigm.
In this context, the present survey presents a thorough review
on HEMSs, including in-operation goals and strategies to
meet them, along with household appliance management,
uncertainties in HEMSs’ decision-making and performance
metrics. Security issues and resilience to cyber attacks
are also discussed. In addition, this work presented the
readers with insights on the current challenges these sys-
tems are facing, namely regarding dynamic infrastructure
management, dynamic scheduling in the context of dual dis-
tributed energy sources and consumer clustering, and cyber-
physical resilience. Addressing these issues will imply further
research on automatic and dynamic context discovery and
identification of behavioural changes, self-adaptation, self-
reconfiguration, artificial awareness, uncertainty modelling
and outlying pattern detection.
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