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ABSTRACT The purpose of sentiment classification is to determine whether a particular document has
a positive or negative nuance. Sentiment classification is extensively used in many business domains
to improve products or services by understanding the opinions of customers regarding these products.
Deep learning achieves state-of-the-art results in various challenging domains. With the success of deep
learning, many studies have proposed deep-learning-based sentiment classification models and achieved
better performances compared with conventional machine learning models. However, one practical issue
occurring in deep-learning-based sentiment classification is that the best model structure depends on the
characteristics of the dataset onwhich the deep learningmodel is trained;moreover, it is manually determined
based on the domain knowledge of an expert or selected from a grid search of possible candidates. Herein,
we present a comparative study of different deep-learning-based sentiment classification model structures
to derive meaningful implications for building sentiment classification models. Specifically, eight deep-
learning models, three based on convolutional neural networks and five based on recurrent neural networks,
with two types of input structures, i.e., word level and character level, are compared for 13 review datasets,
and the classification performances are discussed under different perspectives.

INDEX TERMS Sentiment classification, deep learning, convolutional neural network, recurrent neural
network, word embedding, character embedding.

I. INTRODUCTION
With the rapid growth of online shopping, competition
has become increasingly intense as both new players and
traditional offline players, such as department stores and
supermarkets who have opened online stores, are constantly
entering the market [1], [2]. In this e-commerce industry,
millions of people express their opinions regarding purchased
goods or services on popular review sites or on their personal
media, such as blogs or social network services [3]. There-
fore, consumers are easily affected by the online reviews of
other customers when purchasing goods and services [4], [5].
Consequently, online review analysis has become a major
research topic in retail businesses to discover perceptions
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based on review texts, which will aid in determining the
appropriate managerial strategies to retain a competitive
advantage against other players in the market [6]–[10]. As the
volume of customer reviews is increasing significantly, it is
impossible to analyze them manually; therefore, machine
learning algorithms are utilized to analyze the vast amounts
of customer review data [8], [11]. In machine learning, senti-
ment analysis generally refers to the classification of the sen-
timent of reviews (positive or negative); however, it generally
implies the quantitative extraction of opinions, feelings, and
subjectivity of texts, such as sarcasm, emoticons, and fake
news detection [12], [13].

Sentiment analysis can be categorized into the following
three strategies: lexicon-based, machine learning-based, and
deep learning-based models. Lexicon-based models deter-
mine the sentiment of a document based on the number of
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sentimental lexicons of each class used in the document.
If more positive sentiment lexicons than negative ones exist
in a document, it is classified as positive. Hence, a sen-
timent lexicon dictionary must be prepared prior to senti-
ment classification. Several previous studies [14]–[17] used
existing sentiment lexicons, such as SentiWords [16], MPQA
lexicon [18], and SentiWordNet [19], for sentiment anal-
ysis. Machine-learning-based models train a model using
labeled documents. A label can be either a binary (pos-
itive or negative) or an ordinary value, such as a rating.
The model performance generally depends on the employed
algorithms, label correctness, and number of labeled docu-
ments. The algorithms used for sentiment analysis include
naïve Bayes and support vector machine (SVM) [20]–[22].
Recently, deep-learning-based sentiment classification algo-
rithms, especially those based on either convolutional neu-
ral networks (CNNs) or recurrent neural networks (RNNs),
have demonstrated excellent performances and significantly
outperformed classical lexicon-based or other machine-
learning-based sentiment classification models in several
studies [23]–[26].

Although deep-learning-based sentiment classification
models have demonstrated outstanding performances,
an optimal structure for different domains and datasets does
not exist; therefore, it is difficult for practitioners when
they must select an appropriate deep-learning structure for
their datasets. Hence, we herein present a systematically
designed empirical study comparing various deep neural
network structures for sentiment analysis to investigate the
relationship between classification performance and model
structures/dataset characteristics. Consequently, eight struc-
tures, three of which are CNN based and the remaining five
are RNN based, were considered. For each model, the word-
level and character-level inputs were compared based on
13 different sentiment classification datasets. We conducted
a comparative study to answer the following three primary
research questions. First, how does the performance of sen-
timent analysis differ depending on the characteristics of
the review dataset? Second, how do the basic structures,
i.e., CNNs and RNNs, affect the sentiment classification
performance? Third, how does the input unit, i.e., word-level
and character-level inputs, affect the sentiment classification
performance? Although some of the aforementioned appli-
cations, such as sarcasm or fake-news detection, are critical
in understanding writer sentiment, datasets that are publicly
available are insufficient for training complex structures
of deep-learning-based models [27], [28]. Because polarity
classification is the most fundamental but widely used task
in the sentiment-analysis domain [29], we first addressed
this specific task (i.e., classifying a document into either a
positive or negative class) and focused on comparing the per-
formance with respect to different deep-learning structures.

The remainder of this paper is organized as follows.
In Section 2, we briefly review related studies focusing
on traditional and deep-learning-based sentiment analyses.
Section 3 describes the eight selected deep learning-based

models, the datasets, and the experimental design. The exper-
imental results are discussed in Section 4. Finally, we con-
clude our study with future studies in Section 5.

II. RELATED WORK
A. EARLY HISTORY OF SENTIMENT ANALYSIS
Sentiment analysis studies in the early days were primarily
based on cognitive psychological studies that explore human
intelligence quantitatively [30]; however, the majority of
current studies focused on building statistical or machine-
learning models based on a large labeled dataset aided by
an easy access to massive review texts with ratings for var-
ious products and services through the Internet [31], [32].
For example, Nasukawa and Yi [31] proposed a sentiment
classification model of online web pages based on the results
of natural language processing, such as syntactic parsing and
sentiment lexicon extraction. Yu and Hatzivassiloglou [32]
developed a model that predicted not only the sentiment of
a document, but also that of each sentence in the document
for online news. Certain studies attempted to enhance the per-
formance using handcrafted features [33] or applying various
machine-learning models in online reviews [34].

B. DEEP LEARNING FOR SENTIMENT ANALYSIS
As deep-neural-network-based classification models have
demonstrated significant results that outperformed con-
ventional models in several domains, such as computer
vision [35]–[38] and natural language processing [39], [40],
they are currently adopted for sentiment analysis tasks.
CNNs and RNNs are two typically used primary structures.
CNNs assumes the form of a matrix or tensor as an input
instead of a vector in a feedforward neural network. In a
convolution operation, a fixed size submatrix known as a
receptive field is used and produces a scalar value by adding
the element-wise products between the receptive field and
the convolution filter. This convolution operation is repeated
from the top-left to the bottom-right of the input matrix/tensor
by striding the filter. The size of the convolution, i.e., the num-
ber of convolution filters, and the stride of the convolution
are hyperparameters. Pooling is another main building block
of CNN that reduces the output size of the convolution layer
by calculating the average or maximum value of a certain
area [41]. The CNN was originally developed in the com-
puter vision field; however, recently, it has been employed
in text analytics [42]. Several recent studies have demon-
strated that the CNN can learn the hierarchical structure of
a language and efficiently handle variable lengths [43]–[46].
Kalchbrenner et al. [44] designed a network with two con-
volution and pooling layers and conducted an experiment
with the Stanford Sentiment Treebank (SST) and Twitter
sentiment datasets. Experimental results showed that the pro-
posed CNN structure yielded better performance than regular
feedforward networks and the SVM. Other studies, such
as [43], achieved improved performances by adding more
convolution and pooling layers and employing appropriate
regularization techniques, such as dropout [47].
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It has been demonstrated that the performance of CNNs
can be improved when the number of layers is increased,
provided that the designed architecture facilitates the gradient
flow from the loss function to the input matrix/tensor [36].
However, Kim [45] showed that a shallow-and-wide
CNN architecture that contains only one convolution layer
and hundreds of filters can perform well for sentiment anal-
ysis; it achieved an average of 80 to 90% accuracy on online
movie, SST, and product review datasets. Le et al. [48]
conducted additional experiments and demonstrated that the
shallow-and-wide structure could outperform networks with
deep structures. The aforementioned studies used words as
a basic unit to form the input matrix. The width of the
input matrix is associated with the word vector size, while
the height of input matrix is associated with the number
of words in a document. In this representation, the ith row
corresponds to the ith word in the document. Zhang et al. [49]
presented the first study to use a character-level input on
CNNs instead of a word-level input. Kim [45] classified
the sentiment of a sentence using one convolution layer and
one fully connected layer, while Zhang et al. [49] extracted
text features using six convolution layers and classified a
document through three fully connected layers. They used
the news articles from the AG corpus,1 Sogou News [50],
DBPedia [51], Yelp Review, Yahoo! Answers dataset, and
Amazon reviews [52] to evaluate the performance of the
proposed model. The experimental results showed an error
rate of 5% on average for the binary classification tasks, such
as Yelp Review and the Amazon reviews. Conneau et al. [53]
analyzed the sentiment of text through a CNN with a deeper
layer than those used in previous studies. They employed a
CNN structure with 29 layers, which was originally proposed
by Simonyan and Zisserman [35], to construct a model. The
experimental results based on the same datasets used by
Zhang et al. [49] showed that the proposedmodel achieved an
error rate of 4.5% on average for binary classification tasks.

The RNN is a deep-learning model that specializes in
processing sequential data [41]. Because text is inherently
sequential data, i.e., a sentence or document is a sequence
of words, the RNN is typically used in text analytics. How-
ever, the recurrent structure of the RNN for processing a
sequence causes challenges in learning long-term depen-
dency in a text caused by either a vanishing or exploding
gradient problem [54]. Hochreiter and Schmidhuber [55] and
Cho et al. [56] resolved these problems by inserting a gate
unit, i.e., a long short-term method (LSTM) cell or gated
recurrent unit (GRU) cell. LSTM and GRU demonstrated bet-
ter performances than the vanilla RNN, which has nomemory
cell, according to [57]; however, their performances did not
differ significantly. The GRU is a special case of LSTM,
i.e., it is a simplified LSTM that reduces the number of param-
eters for learning by combining the input and forget gates
of LSTM [58]. Many studies employed either LSTM or the

1http://www.di.unipi.it/Ëoegulli/AG_corpus_of_news_articles.html

GRU for sentiment analysis tasks and constantly demon-
strated favorable performances [59]–[62].

C. COMPARATIVE STUDIES ON SENTIMENT ANALYSIS
BASED ON DEEP LEARNING
Although many studies proposed their own deep neu-
ral network structures based on the CNN or RNN for
sentiment classification tasks, only a few studies have sys-
tematically compared the performances of various deep-
learning-based sentiment classification models. Hu et al. [63]
demonstrated that deep-learning-based models outperformed
traditional algorithms such as dictionary-based algorithms,
the SVM, or naïve Bayes, on sentiment analysis. How-
ever, they did not provide quantitative performance param-
eters such as F1 scores or accuracy. Yin et al. [64]
compared the sentiment-classification performances of the
CNN, LSTM, and GRU. However, their experimental results
were of limited value because they did not consider suffi-
cient model-structure variations, and their conclusion was
derived from experimental results on only a single dataset.
Ouyang et al. [43] and Singhal and Bhattacharyya [65]
compared basic CNN and RNN structures, but they did
not consider variations in terms of input type and model
architecture. Katić and Milićević [66] evaluated CNN and
LSTM performances on an Amazon review dataset. How-
ever, it was difficult for readers to derive practical guidelines
because their experimental setup was not described suffi-
ciently. Zhang et al. [13] presented nine studies that employed
deep-learning structures, including the CNN and RNN, but
performance comparisons were not provided. Hence, we con-
ducted a systematically designed comparative experiment
using eight model architectures with two input types (word
and character levels) based on 13 online review datasets
obtained from various domains.

III. MODELS
In this section, we briefly describe the eight benchmarked
models: three CNN-based models and five RNN-based
models.

A. CONVOLUTIONAL NEURAL NETWORK (CNN)-BASED
MODELS
1) ONE-LAYER CNN
The first model that we selected was a CNN model with
only one convolution layer, which was proposed in [45],
as shown in Figure 1a. It uses a one-dimensional instead of
a two-dimensional convolution filter for image processing.
When extracting local features from images using convo-
lution, both horizontal and vertical spatial information are
important; consequently, a square convolution operation is
repeated by sliding the receptive field from the left to the
right and from the top to the bottom. However, as each
row of the input matrix for text processing is a distributed
representation of a word or character, only the vertical spa-
tial relationship is informative. Hence, a rectangular-shaped
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FIGURE 1. Architecture of convolutional neural network (CNN)-based models.
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FIGURE 2. Difference between input forms in CNN-based model.

convolution filter whose width is the same as the width
of the input matrix was used. As the width of the con-
volution filter and input matrix are identical, only verti-
cal striding is necessary. In this structure, the length of
an input sentence n is a fixed variable and represented
as

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn, (1)

where⊕ is the concatenate operation, and xi is the ith word in
the sentence. If the sentence is shorter than the fixed length,
then zero pads are added to the end of the input matrix.
The feature c is created by a convolutional operation using
consecutive h words and a filter. For example, the feature c1
is generated as

c1 = f (w· x1:h + b), (2)

where b is a bias term; w and f (·) represent the weight of
the convolution filter and nonlinear function, respectively.
The set ci constitutes the feature map c = [c1, c2, · · · , ci].
For each feature map, max pooling is applied to c to obtain
the maximum value of the feature map, ĉ = max{c},
to extract the most important words for each convolution fil-
ter. Kim [45] used only one convolutional layer with various
filter sizes. Specifically, three filter sizes, i.e., 3, 4, and 5 with
100 feature maps each, were used. Once the max pooling
operation has completed, a 300-dimensional vector was gen-
erated, and it was fully connected to the output layer with
two nodes: positive and negative. Between the last hidden
layer and the output layer, dropout was applied to effec-
tively regularize the model complexity. While considering
the input matrix, Kim [45] used four different strategies for
word vectors. In the CNN-rand model, word vectors were
randomly initialized and trained together with other network
parameters during training. In the CNN-non-static model,
word vectors were fine-tuned after initialization using the
word2vec method, while pretrained word vectors were not
modified in the CNN-static model. Because the experimental
results did not show a significant difference among the three
models, we adopted the CNN-rand model to compare the
benchmarked architectures based on an end-to-end learning
scheme.

2) NINE-LAYER CNN
Zhang et al. [49] used a CNN architecture with six convo-
lution layers followed by three fully connected layers for
sentiment classification, which was much deeper than that
used by Kim [45], as shown in Figure 1b(b). The key module
in this architecture is the temporal convolution. Assuming
that a discrete input function g(x) ∈ [1, l] and a discrete
kernel function f (x) ∈ [1, k] exist, the convolution h(y)
between f (x) and g(x) is defined as

h(y) =
k∑

x=1

f (x) · g(y · d − x + c), (3)

where c = k (kernel size)−d (stride)+1 is an offset constant.
In equation 3, f (x) is a weight function, and g(x) and h(y)
are the input and output features, respectively. It eventually
performed the same role as the one-dimensional convolution
used by Kim [45]. They used a rectified linear unit (ReLU) as
an activation function and performed max pooling between
convolution layers. Additionally, they used dropout with a
probability of 0.5 for the last three fully connected layers.

Another main difference between this model and that
used by Kim [45] is that the input level was changed
from word to character. Each character was represented by
a 70-dimensional one-hot encoding vector (26 English letters,
10 digits, the new line character, and 33 other characters),
and the maximum length of an input sentence was limited to
1,024 characters. Sentences with more than 1,024 characters
were trimmed, while those with less than 1,024 characters
were zero padded.

Although Zhang et al. [49] only used the character-level
input for the CNNmodel for sentiment classification, we used
both word- and character-level inputs to this model to com-
pare the effect of the input level for the same architecture.

3) TWENTY-NINE-LAYER CNN
Conneau et al. [53] demonstrated that deep-learning archi-
tectures for natural language processing (NLP) were rela-
tively shallower than those used for vision tasks. Furthermore,
they discovered that many NLP approaches using words as
basic units were limited in representing complex semantic
information of text. Hence, Conneau et al. [53] proposed
another deep neural network called very deep CNN, which
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comprised 29 layers of convolution blocks. This architecture
was based on the visual geometry group network; therefore,
only 3 × 3 convolution operations were used. The convo-
lutional block comprised two convolutional layers followed
by a batch normalization layer and ReLU activation. The
overall model structure is shown in Figure 1c(c). The authors
hypothesized that without various filter sizes, the model can
learn how to best combine ‘‘3-gram features’’ through deep
structures and considered both short- and long-span relations.
In addition, they used the optional shortcut proposed by
He et al. [36] to train the model more effectively. Similar to
the nine-layer CNN, the input length was fixed to 1,024 such
that longer sentences were trimmed and shorter sentences
were zero padded.

B. RNN-BASED MODELS
Although the RNN is highly flexible for input–output map-
ping according to task type, e.g., many-to-many for transla-
tion or one-to-many for image captioning, we only considered
many-to-one mapping for sentiment classification. Hence,
each word or character was sequentially provided, and the
sentiment class was determined after the final token in the
sentence was provided. In addition, we compared the per-
formances of the vanilla RNN, LSTM, and GRU to identify
if different types of RNN cells affected the sentiment clas-
sification results. A bidirectional RNN method [67], which
is known to improve the performance of RNNs, was also
considered.

1) VANILLA RNN
The hidden state vector of the vanilla RNN first combines the
current input vector, previous hidden state vector, and bias
term with their corresponding weight matrices and performs
a nonlinear transformation to produce the output vector,
as shown in equation (4):

ht = tanh(xtU+ ht−1W+ bt ). (4)

Contrary to the CNN architectures discussed above, this
recurrent structure of the RNN allows the model to pre-
serve the sequence information. However, with the vanilla
RNN architecture, this memory function does not perform
well for a long sequence because of the gradient vanishing/
exploding problem.

2) LONG SHORT-TERM MEMORY
To resolve the long-term dependency and vanishing/exploding
gradient problem, LSTM uses the cell state to adaptively
adjust the amount of historical memory and the currently
provided new information [55]. LSTM comprises two state
vectors: hidden state hi and cell state Ci, and three gates:
forget gate ft , input gate it , and output gate oi. Each state
and gate is computed as follows:

ft = σ (Wf · [ht−1, xt ]+ bf ); (5)

it = σ (Wi · [ht−1, xt ]+ bi); (6)

C̃t = tanh(Wc · [ht−1, xt ]+ bc); (7)

Ct = ft × Ct−1 + it × C̃t ; (8)

ot = σ (Wo · [ht−1, xt ]+ bo); (9)

ht = ot × tanh(Ct ). (10)

Both the forget gate ft in Eq. (5) and the input gate it in
Eq. (6) consider the previous hidden state vector ht−1 and the
current input vector xt and use the sigmoid as an activation
function. The only difference between them are the weight
matrices Wf and Wi, which are learned during training. The
forget gate determines the amount of previous information
that should be preserved, whereas the input gate determines
how much new information computed using Eq. (7) should
be added when computing the current cell state, as shown
in Eq. (8). Additionally, the output gate considers ht and
xt to compute the current hidden state vector, as computed
using Eq. (10). By introducing the cell state, which is rep-
resented as a red line in Figure 3, LSTM demonstrates bet-
ter memorization ability for long sequences than the vanilla
RNN [55], [68].

3) GATED RECURRENT UNIT
Although LSTM has proven its better performance when
compared to the vanilla RNN, its computational complexity
is significantly higher owing to additional weight matrices.
The GRU cell was introduced to reduce the computational
complexity of LSTM by combining the input and forget
gate of LSTM into a single update gate and combining the
hidden and cell states into a single hidden state, as shown
in Eqs. (11)–(14) [56]. Each gate and state of the GRU was
computed as follows:

zt = σ (Wz · [ht−1, xt ]+ bz); (11)

rt = σ (Wi · [ht−1, xt ]+ br ); (12)

h̃t = tanh(Wc · [rt × ht−1, xt ]+ bc); (13)

ht = (1− zt )× ht−1 + zt × h̃t , (14)

where zt , rt , and ht are the update, reset, and hidden states,
respectively.

4) BIDIRECTIONAL MODEL
To overcome the shortcoming of the one-directional RNN,
which only considers previous context, a bidirectional RNN
(BDRNN), which can consider both past and future context,
was proposed by Schuster and Paliwal [67]. The BDRNN
uses a concatenated forward hidden state

−→
h and backward

hidden state
←−
h , as shown in Eqs. (15) and (16), to produce

the hidden state at time t .

−→
h = σ (xtU+

−→
h t−1W+ bt ) (15)

←−
h = σ (xtU+

←−
h t+1W+ bt ) (16)

In this study, bidirectional LSTM and bidirectional GRU
models were used for comparing sentiment classification
performances.
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FIGURE 3. Architecture of the overall recurrent neural network (RNN)-based models and description of each cell.

FIGURE 4. Difference between input forms in the RNN-based model.

IV. EXPERIMENTS
A. DATA
To derive a generally accepted empirical conclusion, we used
13 review datasets collected for various products and ser-
vices, as listed in Table 1. The first and second columns
denote the expanded and shortened dataset names, respec-
tively. All datasets were divided into training, valida-
tion, and test datasets in the proportion of 50%, 20%,
and 30%, respectively. The number of reviews in the
total/training/validation/test sets are listed in the third, fourth,
fifth, and sixth columns of the table, respectively. The aver-
age length, vocabulary size, and positive/negative ratio are
provided in the subsequent columns. The first 10 datasets
are product review datasets for different categories provided
by Amazon.2 The 11th dataset is associated with Amazon’s
food. The 12th dataset is a hotel review dataset provided by
Carnegie Mellon University, 3 and the final dataset is a movie
review dataset provided by Stanford University.4

2http://jmcauley.ucsd.edu/data/amazon
3http://www.cs.cmu.edu/~jiweil/html/hotel-review.html
4https://ai.stanford.edu/~amaas/data/sentiment

Those datasets were composed using five satisfaction rates
(1: very negative, 5: very positive). We considered ratings
4 and 5 as positive and ratings 1 and 2 as negative. Review
texts with rating 3, which is neutral, were removed from the
dataset.

The datasets present different positive/negative ratios rang-
ing from 1.06 (SST-Fine) to 13.14 (Sports and Outdoors),
indicating that (1) positive reviews generally outnumber
negative reviews and (2) many datasets are highly imbal-
anced. As model training can be difficult when the class
imbalance is severe, we sampled the same number of pos-
itive and negative reviews for every mini-batch training
dataset. More specifically, we set the mini-batch size to
128 with 64 positive reviews and 64 negative reviews. Con-
sequently, individual negative reviews instead of individ-
ual positive reviews were used more frequently to train the
model.

B. SENTIMENT CLASSIFICATION MODELS
In this study, we compared three CNN-based and five
RNN-based models, as listed below, for sentiment
classification:
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TABLE 1. Data description.

TABLE 2. Hyperparameters for our experiments.

TABLE 3. Number of parameters in each model.

1) one-layer CNN:CNNwith one convolutional layer [45]
2) nine-layer CNN: CNN with six convolutional layers

and three dense layers [49]
3) 29-layer CNN: CNN with 26 convolutional layers and

three dense layers [53]
4) Vanilla RNN: Vanilla RNN with two hidden layers
5) LSTM: LSTM cell with two hidden layers [55]
6) GRU: GRU cell with two hidden layers [56]
7) LSTM-bidirection: Bidirectional LSTM with four hid-

den layers
8) GRU-bidirection: Bidirectional GRU with four hidden

layers
We used word- and character-level inputs for the eight models
above to investigate the effect of input type on sentiment
classification performance. The hyperparameter settings used
in this study are listed in Table 2. According to Cui et al. [69],
increasing the number of RNN layers did not guarantee
a performance improvement. If the number of hidden lay-
ers is greater than two, then the computational complex-
ity is significantly increased, while the performance is only
marginally improved or even decreased occasionally. Hence,
we used two hidden layers for a unidirectional RNN and four
(two for forward and two for backward) hidden layers for a

bidirectional RNN. Because the main purpose of our study
is to investigate how structural differences between deep-
learning models affect sentiment analysis, we used the same
set of hyperparameters to prevent variations in performance
and focus on the effects of structural differences. Table 3
lists the numbers of parameters used in each model. It is
noteworthy that the parameters for the look-up table for
word/character-level embedding were excluded to compare
the complexities of different deep-learning models. During
training, we used the Adam [70] optimizer for CNN-based
models and RMSProp [71] for RNN-based models.

C. EXPERIMENTAL RESULTS
Tables 4 and 5 list the area under the receiver operating
characteristics curve (AUROC) of each model with word-
and character-level inputs, respectively. The last row shows
the number of datasets for which each model yielded the best
performance. When the word-level input was used, the RNN-
based models outperformed the CNN-based models, as supe-
rior performance was reported for 11 datasets of the bidirec-
tional LSTM, GRU, and bidirectional GRU models, while
only two datasets of the CNN 1-layer model demonstrated
superior performance. However, when a character-level input
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TABLE 4. Area under the receiver operating characteristics curve (AUROC) of each model with word-level input.

TABLE 5. AUROC of each model with character-level input.

was used, it was difficult to determine the best structure
as the CNN-based models yielded superior performance for
seven datasets, while the RNN-basedmodels yielded superior
performance for six datasets.

1) PERFORMANCE COMPARISON BY DATASET
CHARACTERISTICS
The model performance corresponding to the training dataset
volume is shown in Figure 5. The x-axis is the shortened
dataset name in ascending order of the training dataset vol-
ume, and the y-axis shows the average performance of the
CNN-based models as a solid blue line and the RNN-based
models as a dashed orange line. The difference between
Figures 5a and 5b is based on the input data level, i.e., word-
level input for the former and character-level input for the lat-
ter. Generally, sentiment classification accuracy is improved
when a greater number of examples are trained, irrespective

of the input data level. Between the model structures, if the
other conditions are identical, then the RNN-based models
outperforms the CNN-based models in general for both input
data levels; furthermore, the difference becomes more signif-
icant when word-level inputs are used.

The model performance for different input data levels with
regard to the vocabulary size, i.e., number of unique words in
the training dataset, is shown in Figure 6. In contrast to the
training dataset volume, a consistent trend corresponding to
the vocabulary size for both RNN- and CNN-based models
does not exist, except for the SST-Fine dataset, which has a
relatively small vocabulary size (16,173 words).

2) PERFORMANCE COMPARISON BY INPUT LEVEL
As the word-level input yielded a higher sentiment classifica-
tion performance than the character-level input, we conducted
an in-depth analysis to investigate the performance difference
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FIGURE 5. Average performances of CNN- and RNN-based models on each dataset (ordered according to dataset volume).

FIGURE 6. Average performances of CNN- and RNN-based models on each dataset (ordered according to vocabulary size).

at the individual model level. Figure 7 shows the differ-
ence in AUROC values between the word- and character-
level inputs (AUROC of word-level input − AUROC of
character-level input) for each dataset. As shown in Figure 7,
the input level affects the performance of the individualmodel
structure. The CNN-based models reacted differently to the

input level according to the depth of the convolution layers.
With the shallow structure, the word-level input yielded a
higher performance than the character-level input (all datasets
except three resulted in a higher AUROC with a word-level
input when compared to the character-level input for the
one-layer CNN). Conversely, if the model structure becomes
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FIGURE 7. Performance differences between word-and character-level inputs.

deeper, the character-level input resulted in a better classifica-
tion performance. All datasets reported higher AUROCs with
character-level inputs than with word-level inputs for the 29-
layer CNN. As repeated convolution and pooling processes
can include a wider area in image recognition, a deeper
CNN model can include a long sequence in text processing.
As the character-level input is significantly higher than the
word-level input, increasing the layers can aid the model
in understanding the long-range relationship within the text,
which consequently results in improved performance.

In contrast to the CNN-based models, the performance
differences between the word- and character-level inputs for
RNN-based models are consistent; the word-level inputs out-
performed the character-level inputs. In particular, the perfor-
mance difference between the two input levels are obvious for
the vanilla RNN structure; the word-level input significantly
outperformed the character-level input and the difference is
at least greater than 0.1. As the character-level input has a
significantly longer input sequence than the word-level input
for the same sentence or text, most information provided
in the beginning portion of the text is lost with the vanilla
RNN, and the classification result is highly dependent on the
ending portion of the text; consequently, the performance can
become degraded as the sequence length increases. As LSTM
andGRU have amechanism to adaptively forget or remember
the historical information inside the hidden state, important
information in the beginning portion of the text can be deliv-
ered to the last hidden state to prevent performance degener-
ation. As the long-term memory module does not function

for both LSTM and GRU, the word-level input yielded a
higher performance than the character-level input; however,
the difference between the two input levels are not as obvious
as that with the vanilla RNN.When the bidirectional structure
was adopted, the long-term dependency problem was alle-
viated considerably; however, the performance improvement
from using the word-level input over the character-level input
was not comparable to that with forward-directional LSTM
and GRU.

3) PERFORMANCE COMPARISON BY MODEL
Figure 8 shows the performance improvements of the nine-
layer CNN and 29-layer CNN over the one-layer CNN for the
word-level input (a) and character-level input (b). When the
word-level input was used, increasing the number of layers
did not improve the sentiment classification performance,
as shown in Figure 8a. Consequently, both the nine- and
29-layer CNNs resulted in lower AUROCs than the one-
layer CNN. However, we could not conclude that the number
of CNN layers and the sentiment classification performance
exhibited a consistent trend. The nine-layer CNN yielded the
worst performance among the three CNN models, followed
by the 29-layer CNN and the one-layer CNN. When the
character-level input was used, the nine-layer CNN showed a
similar tendency for the word-level input; moreover, the sen-
timent classification performance deteriorated significantly.
Conversely, the 29-layer CNN yielded a higher AUROC
than the one-layer CNN for eight datasets among the 13
(61.5%). To summarize, if the CNN is adopted for text
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FIGURE 8. Performance differences between each CNN-based model and the one-layer CNN.

FIGURE 9. Performance differences between each RNN-based model and the vanilla RNN.

classification because of its computational efficiency or abil-
ity for parallelism, either a shallow CNN with a word-level
input or a deeper CNN with a character-level input should be
considered.

Figure 9 shows the performance improvement of LSTM,
bidirectional LSTM, GRU, and bidirectional GRU over the
vanilla RNN for word-level inputs (a) and character-level

inputs (b). Generally, increasing the structural complexity
of the RNN-based models is effective for improving the
sentiment classification performance. First, employing the
LSTM or GRU module aids in improving the classification
performance, especially for character-level inputs. As the
AUROCs of the vanilla RNNwith character-level inputs were
significantly lower than those with word-level inputs for the
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same dataset, the magnitude of performance improvement
was significant for character-level inputs. However, the abso-
lute AUROCs of word-level inputs with LSTM and GRU
were generally higher than those of character-level inputs
with LSTM andGRU. In addition, we could not conclude that
either LSTM or the GRU was more effective than the others
in our experiment. Next, employing the bidirectional struc-
ture yielded additional performance enhancement in most
datasets, although the improvements were marginal at times
when compared with the improvement in LSTM/GRU over
the vanilla RNN.

V. CONCLUSION
In this study, we conducted a comparative experiment on
various deep-learning-based sentiment classification models.
Based on previous studies, we selected three CNN structures
and five RNN structures. They were compared in terms of
AUROC using 13 datasets. Furthermore, we investigated the
effects of two different input levels (word and character lev-
els) on the classification performance.

Based on the experimental results, the conclusions are
as follows. First, sentiment classification performances
improved in accordance with the training dataset volume,
irrespective of the model structure; the larger the dataset size,
the better was the classification performance. Next, the input
levels imposed different effects on the CNN-based and RNN-
based models. Primarily, the word-level input yielded a better
classification performance than the character-level input for
the same model structure. However, we observed that the
character-level input with a deep CNN structure occasionally
yielded the better performance among the CNN structures
with two input levels. Nonetheless, this was not applicable
to the RNN-based models; the word-level input always out-
performed the character-level input. Subsequently, increas-
ing the model complexity yielded different effects on CNN-
based and RNN-based models. For the CNN-based models,
we could not conclude that increasing the model complex-
ity would consistently improve or degenerate the classifi-
cation performance. However, for the RNN-based models,
increasing the model complexity always improved the per-
formance. Employing an LSTM/GRU unit improved the per-
formance; furthermore, the bidirectional structure provided
an additional improvement to the forward-directional RNN.
Among the individual model and input-level combinations,
the bidirectional LSTM with word-level inputs yielded the
best performance for five out of 13 datasets, followed by the
GRUwithword-level inputs (three datasets) and the one-layer
CNN with word-level inputs (two datasets).

Although the experimental results provided certain practi-
cal implications for building a sentiment classificationmodel,
certain limitations existed in the current work, which moti-
vated us to plan for future research directions. To com-
pare the fundamental performance of deep-learning models,
words and characters were randomly initialized and trained
together with network parameters in our study. However,
certain pretrained word vectors, such as bidirectional encoder

representations from transformers, reported the best perfor-
mance in many NLP tasks; furthermore, comparing the per-
formances between word vectors trained from scratch and
pretrained word vectors would be beneficial.
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