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ABSTRACT In this paper, a vehicle type classification approach is proposed by using an enhanced feature
extraction technique based on Sparse-Filtered Convolutional Neural Network with Layer-Skipping strategy
(SF-CNNLS). To extract rich and discriminant vehicle features, we introduce Three-Channels of SF-CNNLS
(TC-SF-CNNLS) as the feature extraction technique. Local and global features of vehicles are extracted from
three channels of an image which are, luminance and chromatic components. This technique is inspired by
how human eyes differentiating objects that share almost similar features. TC-SF-CNNLS is tested with a
benchmark dataset that provides frontal-view images to classify vehicle types of the bus, passenger car, taxi,
minivan, SUV, and truck with Softmax Regression as a classifier. This test aims to observe the ability of this
technique in differentiating vehicles with almost similar features but different classes. A test is also conducted
with the self-obtained dataset (SPINT) to observe the effectiveness of this technique. The results are observed
based on accuracy, precision, recall, and f-score, whereby, TCSF-NNLS has successfully recognized all the
classes with an average accuracy of 0.905, precision is between 0.8629 to 0.9548, recall is between 0.83 to
0.96 and f-score is between 0.8564 to 0.9523. In addition, this technique is able to outperform other existing
techniques with an average accuracy of 93.% compared to only 89.2% when 5 classes of vehicles are tested.

INDEX TERMS Vehicle type recognition, convolutions neural network, deep learning, computational
intelligence.

I. INTRODUCTION
Vehicle type classification is one of the applications that
is able to increase the efficiency of road and transportation
infrastructure. This application can be implemented in vari-
ous related systems, for instance, Automatic Toll Collection
(ATC), Vehicle Counting System (VCS) and TrafficMonitor-
ing System [1], [2]. The systems can increase the efficiency
of many related things including traffic census, traffic surveil-
lance, traffic control, and forecast. The application can be
grouped into camera-based or sensor-based. This paper will
focus on the camera-based whereby a vehicle is classified
based on a processed vehicle image.

Nowadays, traffic surveillance cameras are provided
everywhere in big or medium cities to assist in the
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monitoring process. The process can be more efficient with
the implementation of Artificial Intelligence applications, for
instance, vehicle type classification. However, a vehicle from
the same class can appear in various appearances, and a
vehicle from a different class may have a similar appearance.
For instance, passenger car and taxi, as well as bus and
truck share almost similar features, especially frontal-view
images. These variations make visual recognition becomes
challenging.

In a vehicle type classification, classifying each vehicle
type according to the class that has been determined by the
road and transportation ministry is crucial in order to provide
an accurate result for further implementation. In Malaysia,
the determined vehicle classes are passenger car, taxi, SUV,
van, minivan, lorry, truck, and bus. However, due to the
challenges that have beenmentioned,most of the related stud-
ies provide a classification of general classes. For example,
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passenger cars and taxis are classified as sedan class, and
trucks and buses are classified as heavy vehicles.

The challenges are difficult to be solved by extracting
local and global features of a vehicle from a single image
component which is a grayscale image as implemented in
existing CNN techniques. This is because the extracted fea-
tures are limited and the unique features that differenti-
ate the intra-class vehicles are unable to be extracted. Due
to that, this paper proposes to enhance the feature extrac-
tion technique by implementing the three channels of an
image into the unsupervised and supervised CNN known as
TC-SF-CNNLS. This technique will extract local and global
features from the channels of an image. The channels are
based on luminance and two chromatic components. The
three channels implementation is inspired by how human eyes
are able to differentiate an object based on the shape, color,
and brightness [3]. This proposed technique aims to extract
richer and unique features of vehicles with the hypothesis
that the unique features are able to differentiate the vehicle
type based on the respective determined classes. Thus, it will
overcome the challenge mentioned above and produce an
accurate classification performance.

In the related works section, the related studies will be
discussed to show the trend of vehicle type classification
research, followed by the overview of proposed technique
that explains about the implementation of TC-SF-CNNLS
technique. Section IV is about the experiments and results,
and the last section is the conclusion.

II. RELATED WORKS
Vehicle type classification system based on surveillance
camera offers many benefits to the society, for instance,
enhancing the security, and road enforcement efficiency.
In order to do the classification, vehicle features can be
extracted from a grayscale image or color image from the
camera. It is believed that richer information of the vehicle
features can be gathered using a color image compared to the
grayscale image. Moreover, the vehicle types are divided into
various classes. Reported studies classify the vehicle type into
various classes. The classes are sedan car, minivan, truck, bus,
microbus, SUV, light vehicle, and heavy vehicle.

Numerous studies have revealed that there are various
techniques that have been implemented in order to develop
vehicle type classification systems. The most prevalent tech-
niques are based on the deep learning method that has a
significant advantage in extracting low-level and high-level
features from an image to improve object classification
and recognition performance [4]. Convolutional Neural Net-
works (CNN) is the most popular technique that has been
implemented in vehicle type classification due to its advan-
tages [5]–[8]. CNN can be implemented based on supervised,
unsupervised, semi-supervised, or a combination of them.

For example, Dong et al. [9], [10] extracted vehicle
features from grayscale images by introducing unsuper-
vised and semi-supervised CNN, respectively. They achieved
83% to 98% of accuracies based on vehicle classes of

the sedan, minivan, microbus, truck, and bus from their own
dataset, named BIT dataset. However, based on the provided
results, they classified all types of car and taxi as a sedan
and did not include certain cars such as cars with sunroof in
their experiment. This is similar to Bautista et al. [11] that
achieved 94.72% of accuracy performance when they used
the same technique to classify vehicle types into classes of
jeep, sedan car, bus, SUV and van based on grayscale images
from the low quality of surveillance camera. Rong and Xia
[12] utilized CNN, that is similar to Dong et al. [10] to extract
vehicle features from grayscale images. They classified vehi-
cle types into classes of car and van using a vehicle dataset
from Caltech that based on surveillance camera [13]. They
tested the accuracy performance using Softmax regression
and compared with SVM and DBN. Based on the results,
Softmax regression achieved the accuracy of 84% that sur-
passed other classifiers.

A multitask of region-based CNN (R-CNN) technique was
implemented by Huo et al. to classify vehicle types into
classes of sedan car, van, bus, and truck based on grayscale
images [14]. The multitasks in this study were defined by
the labels provided in the output layers. The aim was to
classify the vehicle into car, truck, bus, and van class with
a different angle (front, side, and rear). With this technique,
they achieved an accuracy performance of 83%which is quite
low. In addition, the false classification rate is quite high in
each class with 5% to 10%.

Another implementation of vehicle type classification
based on grayscale images from a surveillance camera is
done by Wang et al. that combined CNN with the extreme
learning technique (ELM) [15]. The vehicle features from
grayscale images were extracted using CNN, and additional
samples of a vehicle are trained in ELM to extract other
vehicle features. An adaptive clustering was used to classify
the extracted features into general classes of vehicle. The
classes are compact car, mid-size car (van) and heavy-duty.
In this study, they considered all types of cars such as SUV
as a heavy-duty vehicle, and taxi as in compact car class.
85.56% of the accuracy performance was achieved based on
a grayscale image of a vehicle with front and back angles.
Huttunen et al. [16] implemented CNN on grayscale images.
The CNN consists of a convolutional layer and a max pooling
layer with a support vector machine (SVM) as a classifier.
Based on only four classes of vehicle, namely, bus, truck, van,
and small car, the accuracy of over 97% is achieved.

The existing SF-CNNLS technique has been implemented
to classify three classes of vehicle type based on grayscale
images [17]. SF-CNNLS is an unsupervised and supervised
CNN that enhances the filter by using a layer skipping strat-
egy. The vehicles are classified into passenger car, taxi, and
truck class. The results are reasonably high with the accura-
cies are between 85% to 98%. However, the classes are too
limited, and the false positive is considered highwith between
8% to 11% for taxi class and passenger car class. It is due
to the consideration of cars with sunroof in the experiment.
Thus, it leads to misclassification as the taxi class.

14266 VOLUME 8, 2020



S. Awang et al.: Vehicle Type Classification Using an Enhanced SF-CNNLS

FIGURE 1. The conceptual framework of TC-SF-CNNLS technique.

Besides CNN, there is a study that implemented DBN
in the vehicle type classification based on grayscale images
[18]. They implemented processes of histogram equalization,
edge emphasis, binarization, geometric scaling, and resizing
the images and the DBN classifier with four parameters into a
grayscale image. The highest accuracy they have achieved is
89.53% when vehicle types of bikes, motorcycles, and other
vehicle classes are classified. However, there is no further
explanation on what is the vehicle type for the other vehicle
classes.

A recent study has implemented feature fusion convo-
lutional neural network (FFCN) to produce discriminative
features and to avoid interference caused by environmental
factors. However, this study does not exert with recognizing
the vehicles based on class types. The study is focused on
the recognition of vehicle models, make and year. The similar
focus has been implemented by Tian et al. [19] using iterative
discrimination CNN (ID-CNN).

However, apart from deep learning method, a simple and
straight forward approach has been implemented by Lin
and Zhao [20]. They implemented k-means clustering to
distinguish vehicles into small, medium, and large vehicle
class based on distance features of the grayscale vehicle
images.

Based on these existing studies, it can be concluded that
most of the studies have implemented CNN technique in
classifying the vehicle type based on grayscale images into
classes of passenger car or sedan car, SUV, van, bus, truck,
bikes, and motorcycles. However, none of the related stud-
ies has considered color images in classifying the vehicle
types into real and specific classes as determined by the
authority. Although there is a study to classify the specific
classes (car, taxi, and truck), the results are not promising,
and the classes are too limited. Hence, there is a need for
an optimal solution in the classification and differentiation
of the vehicle type using color images to the determined
classes.

III. OVERVIEW OF THE PROPOSED TECHNIQUE
An enhanced of SF-CNNLS is proposed by using three
channels of an image known as TC-SF-CNNLS technique
to classify the vehicle types to overcome the limitation of
the existing techniques, as explained in the previous section.
Local and global features of a vehicle will be extracted from
the luminance and chromatic components of color images of
the vehicle. The components are YCrCb that is efficient for
a recognition task [21]. Y is the luminance component that
has a grayscale color space, and it represents brightness. Cr is
the chromatic component known as chromatic red, and Cb is
chromatic blue. Based on the characteristics of YCrCb, richer
local and global features of the vehicle will be obtained, and
they are able to be used in discriminating the vehicle types.

Figure 1 presents the conceptual framework of
TC-SF-CNNLS technique. Generally, there are three com-
ponents of an image. In each component, there is unsuper-
vised and supervised CNN known as SF-CNNLS that is
implemented to extract the features. Each component requires
a set of optimized sparse filters (sparse filter stage 1 and
stage 2). These filters are used to extract the features from
the image. The extracted features from the 3 components are
concatenated prior to the classification process using Softmax
Regression classifier.

The detailed workflow of the proposed technique is
depicted in figure 2. The entire system consists of several
phases. The main phases are training and testing. The system
starts with the image acquisition phase; then, the acquired
images are divided into training and testing datasets to
be processed in the respective phases. Later, in the train-
ing and testing phase, the pre-processing phase is imple-
mented and followed by the feature extraction phase. For
the training phase, the feature extraction is done in unsu-
pervised and supervised training with several processes are
deployed. Subsequently, the extracted features will be stored
in a database. The features will be retrieved to be matched
with the extracted features from the testing phase during

VOLUME 8, 2020 14267



S. Awang et al.: Vehicle Type Classification Using an Enhanced SF-CNNLS

FIGURE 2. The workflow of the proposed technique.

FIGURE 3. Example of image from the video frame and the cropped
image.

the feature classification phase. In the end, the classification
result is obtained. The detail explanation about each process
is provided in the following sections:

A. IMAGE ACQUISITION
Videos which contain vehicles images are recorded using a
surveillance camera. A region in the video frame containing
a vehicle is manually cropped to ensure the classification
process is focused on the vehicle.

Figure 3 shows the illustration of the cropping procedure.
The cropped image size and aspect ratio is varied. It is due to
the vehicle size variations. Later, the cropped image is stored
into a training and a testing dataset.

B. PRE-PROCESSING PHASE
There are two processes in the pre-processing phase, the first
process is to resize the image with maintained aspect ratio.
The second process is to convert the RGB color space image
to the YCrCb color space image. Figure 4 depicts the pro-
cesses involved in the pre-processing phase. The first process
is implemented by fetching an input image from a dataset, and
resize it while maintaining the aspect ratio. Thus, the shape of
the vehicle remains consistent by implementing this process.

FIGURE 4. The process flow in the pre-processing phase.

After that, the image that is initially in RGB color space is
then converted to YCrCb color space. The conversion process
is done based on the standard conversion formula in the
study done by Bautista et al. [11]. Next, the YCrCb channel
image is split apart into three components. The advantages
of using YCrCb instead of RGB are Y is computed from
nonlinear RGB, Cr is storing a difference between red and
luma component, and Cb is storing a difference between blue
and luma component.

Also, YCrCb color space is luminance independent, thus,
it will give a better performance compared to RGB [11].
In contrast to RGB, YCrCb has separate components of lumi-
nance and chrominance that make it attractive to color image
segmentation and feature extraction.

The next processes in the pre-processing phase are
histogram equalization (HE), normalizing to zero-mean and
unit variance, and local contrast normalization (LCN) that
will be implemented on each image. HE process is imple-
mented on the luminance channel image followed by nor-
malization to zero-mean, and unit variance process on the
luminance image, the chromatic red image, and the chromatic
blue image. The LCN process is implemented in the lumi-
nance image. The purpose of implementing the LCN process
is to remove shading and illumination light to enhance the
vehicle component in the luminance channel. In the end,
the outputs from this phase are a set of luminance, chromatic
red, and chromatic blue images. These outputs will be used
as an input to the feature extraction process.However, HE and
LCN will not be implemented to the chromatic channel
images to protect the color information in this pre-processing
process [17].
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FIGURE 5. Overview of SF-CNNLS Technique.

C. FEATURE EXTRACTION PHASE
This section will explain how to extract the vehicle features
from the pre-processed image. The features are extracted
based on the processes in SF-CNNLS components, as shown
in figure 5. SF-CNNLS has two hidden layers and one post
hidden layer. The reason why we use two hidden layers is to
extract both local and global features of vehicles. Therefore,
for the first hidden layer, the aim is to extract local features of
a vehicle based on the optimized Sparse Filter that has been
generated from the pre-processed input image. The second
hidden layer is implemented to extract global features of a
vehicle based on the optimized Sparse Filter that generated
from the extracted features from the first hidden layer. Hence,
the post hidden layer is determined to process the extracted
features from the previous hidden layers before vectorizing
the features into a one-dimensional vector. In this section,
the process of the feature extraction in the training phase
will be explained. As mentioned before, the training phase
consists of unsupervised and supervised training. Features
of the images from the training dataset are extracted in
these two pieces of training. Therefore, the feature extraction
phase is explained based on the processes involved in the
unsupervised and supervised training as follows:
• Unsupervised Training: Unsupervised Training aims
to extract local features (e.g., point, edges, and corner
of the vehicle) from input images, and to generate opti-
mized sparse filters. Initially, input images which is the
pre-processed images are delivered into sparse filtering
function. This process aims to generate optimized stage
1 sparse filters. The optimized stage 1 sparse filters
are required to handle and learn the high-dimensional
local features. Therefore, the sparse filtering function
is used to generate the filters. The reason why we used

this function is because it has been tested as the fastest
filtering function in unsupervised training [17]. Once
the filters are generated, the pre-processed images are
delivered to the SF-CNNLS stage 1 hidden layer. After
that, a set of optimized stage 2 sparse filters is generated
by the sparse filtering function at stage 2 hidden layer.
These filters are generated using the produced output at
the SF-CNNLS stage 1 hidden layer. We will explain the
process of generating the optimized sparse filters prior
the explanation of each component is inside the layer.
Note that SF-CNNLS needs trainable filters to extract
the features. In this study, sparse filtering function is
implemented with several steps. Figure 6 shows the
process flow of the sparse filtering function. The steps
are implemented in two main phases, which are the
pre-processing phase, and the optimum sparse filters
production phase. The pre-processing is implemented
on the pre-processed image prior to the optimum sparse
filters are produced. This pre-processing has two sub-
processes. The sub-processes split the pre-processed
training images into small patches, and normalize the
patches by applying zero-mean and unit variance nor-
malization on each patch. The filtering function begins
with initializing the sparse filters with random normal
distribution number. The next process is vectorizing the
input patches, and after that Broyden-Fletcher-Goldfarb-
Shanno (BFGS) optimization algorithm is configured.
The BFGS optimization algorithm is used to mini-
mize the back-propagation objective function in order
to produce the optimized sparse filters. The BFGS
implementation is based on a GNU GSL package.
Several tests are conducted to get the optimum conver-
gence in determining the acceptable number of iteration.
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FIGURE 6. Process flow of sparse filtering function.

Based on the tests, the optimum convergence is achieved
when the iteration of 200 is met. After that, each sparse
filter is normalized into [−1, 1]. It is to avoid expo-
nent overflow in the next processes. Overall, there are
64 optimized sparse filters with the size of 9x9 each
are produced from each channel in stage 1. Another
9 optimized sparse filters with the size of 9x9 each are
produced from stage 2.
After that, the optimized stage 1 sparse filters are con-
volved with the pre-processed input images to extract
the features. The sigmoid activation function is imple-
mented subsequently to each of the convolved images
using equation (1) and (2). The output from this layer is
the extracted features that have a smaller size than the
input size. For instance, let the size of the input image
is 256 x 174 pixels, and convolved with 64 optimized
filters, therefore, the output is 64 local features.

xki = sig(x ⊗ fi) (1)

sig(x) =
1

1+ exp(−x)
(2)

where xki is optimized sparse filters, x is the
pre-processed image as an input image, fiis the extracted
features and sig(.) is sigmoid activation function.
Next, the Absolute Value Rectification (AVR) layer is
implemented. In this layer, the absolute value operation
is applied to the extracted features that have been pro-
duced from the previous component. Thus, the output
from this layer have absolute value elements and will be
an input to the next component.
Next, the LCN is applied to the input. Subtractive and
divisive operations in this LCN is similar to the LCN in
the pre-processing phase. However, the maximum value,
and the input in here are from the output of theAVR layer
[16]. Thus, the output here is a set of LCN normalized
features. The output has the same size as the input image
and will be used in the average pooling layer.

Then, the average pooling layer component is imple-
mented. This component is implemented to make the
extracted features less sensitive to variation in angle
and size of a vehicle. Hence, it is able to enhance the
competition amongst features. Average pooling does not
reject all of the features and retains more information
of the vehicles. Here, the input which is the extracted
features from the previous component will be convolved
with the average filtering. The objective of doing this
is to make the features become less sensitive to the
variation of angles and size of a vehicle. This layer also
will reduce the sensitivity towards geometric distortion.
The subsampling layer without zero padding is the last
component inside the stage 1 hidden layer. The process
is similar to the resize with a maintained aspect ratio
as implemented in the pre-processing phase except that
the input here is the extracted features from the average
pooling layer. As a result, the extracted features are
produced at the end of the stage 1 hidden layer for the
unsupervised training. The extracted features will be
used to generate the optimized stage 2 sparse filters in
the stage 2 hidden layer.

• Supervised Training: Supervised Training aims to
extract local features of a vehicle at stage 1 hidden layer,
and global features (e.g., contour, size, and shape of the
vehicle) at stage 2 hidden layer. Similar processes of
extracting the vehicle features as in the unsupervised
training are implemented during the supervised training,
as shown in figure 4. The input for this training is
the extracted features that have been generated at stage
1 hidden layer.
Initially, the optimized stage 2 sparse filters will be
convolved with the input at the first component of stage
2 hidden layer. In this stage, the optimized sparse filter
is trainable filters from the local features that have been
extracted in the hidden layer stage 1, as explained in
the unsupervised training. All the components inside the
stage 2 hidden layer are deployed accordingly with the
same process as in stage 1 hidden layer.
Note that the extracted local and global features from
both hidden layers are inputs to the post hidden layer.
The extracted local features from stage 1 hidden layer
are processed by the average pooling and the sub-
sampling layer with zero padding. At the same time,
the extracted global features from stage 2 hidden layer
are processed by the subsampling layer with zero
padding. After that, the output from the post hidden layer
will be concatenated at the fully connected component.
The concatenated features from each component will be
fully connected prior to the classification process.
Overall, the extracted features are gathered from three
components of the image channels, as mentioned earlier.
Figure 7 shows the example of the extracted features of
a taxi. In that figure, the luminance features consist of
local and global features that have been extracted from
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FIGURE 7. Example of extracted features of a taxi in three channel of image.

Y component. The features are almost similar when we
extracted from a grayscale image.Whereas, the local and
global features of the taxi have been extracted from the
chromatic red and blue component, respectively. Notice
that the local and global features in the chromatic red
and blue are richer compared to the luminance features.
The unique features of the vehicle, for instance, the taxi’s
sign is clearer compared to the local features that we
obtained in the luminance image.
Therefore, there is richer information about local
and global features are extracted to be classified.
Figure 8 shows the process flow of the algorithm that
we implemented for all the features in each component.
Based on that flow, the inputs are luminance image,
chromatic red image, and chromatic blue image. These
inputs are processed to extract low-level and high-level
features one by one. The reason we use this algorithm
is that we have transformed the original input image
into three channels of the image. Therefore, there will
be three processes to extract the vehicle features from
each of the image component. The process is started
with stage 1 hidden layer that is executed as shown
in figure 3 to extract the low-level features. After that,
stage 2 hidden layer is executed for each of the extracted
features to extract the high-level features. Once the exe-
cution of stage 2 hidden layer is completed, the low-level
and high-level of extracted features are being processed
in the post hidden layer. In the end, the output of that
algorithm is a fully connected 1-dimensional features
vector contains the extracted features. The extracted
features consist of low-level and high-level features from
luminance, chromatic red and chromatic blue image.

• Testing: Testing dataset consists of the pre-processed
images will be extracted the features in the feature
extraction phase as shown in figure 4. The feature extrac-
tion processes are similar to the feature extraction pro-
cesses in the supervised training phase. The output is
the extracted local and global features that will be con-
catenated in the fully connected features. The concate-
nated features will be used in the classifier to calculate

FIGURE 8. Process flow of the feature extraction algorithm for 3 channels
of image using TC-SF-CNNLS.

classification probabilistic in obtaining classification
results. The further processes of the testing phase will
be explained in the classification phase.
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D. FEATURE CLASSIFICATION PHASE
Softmax Regression is used as a classifier in the feature
classification phase. The extracted features from the feature
extraction phase are utilized in this classifier to classify the
vehicle class. Classifying the vehicle is done by executing
a standard calculation of Softmax Regression hypothesis in
equation (3), as shown at the bottom of this page, where, let
hθ ∈ <e is hypothesis for N vehicle classes. x ∈ <e is the
extracted vehicle features, e is number of elements in a vector
x, θn ∈ <e is weight for each class, dn ∈ <e is bias for each
class, q is actual result and HPtq(1 | x; θ, d) is probability of
q = n when feature x is given.

For instance, the Softmax Regression is trained to recog-
nize N = 3 types of vehicle class. The types of class are
car, taxi and truck, whereby, n = 1, 2, 3 represents car class,
taxi class, and truck class, respectively. Thus, 1-dimensional
vector of the extracted features denoted as x with a length
of e. Softmax Regression will have N number of trained
weights, θn, and N number of trained biases, dn since it
is trained with N classes. The hypothesis,hθ , for N vehicle
classes is 1-dimensional vector with a length ofN . hθ contains
a list of N probabilities for the vehicle classes. Therefore,
to identify n class that has highest probability, the probability
of actual result q equals to n class denoted as HPt = q =
n | x; θ, d is calculated. Later, the calculated probability
is divided by

∑N
j=1 exp(θ

T
j x + dn) to form it in [0.0-1.0].

Thus, only one n with the highest probability is selected. For

example, the hypothesis result is hθ =

0.1013
0.9203
0.0455

 therefore,

the feature x is classified as taxi class due to the second index
of the hypothesis has the highest probability, and the index

is n = 2 represents the taxi class. The explained classifica-
tion using the classifier is implemented based on the train-
ing phase, which is the supervised training, and the testing
phase. The classification process in each phase is explained
as follows:
• Supervised Training: Supervised Training trained
Softmax Regression to produce trained weights and
biases in the supervised training. The training pro-
cess is implemented by minimizing both negative
log-likelihood as in equation (4), as shown at the bottom
of this page, and Mean Squared Error (MSE) using a
gradient descent method as in equation (5), as shown at
the bottom of this page, The process of minimizing the
negative log-likelihood equation is similar to the process
of minimizing the Kullback–Leibler divergence [7], [8].
Equation (6) and (7), as shown at the bottom of this page,
are derivative equations for updating weight and bias.
where N is a number of vehicle classes, XT is training
features from N . x ∈ <e, n = 1, 2, 3, . . .K is the
extracted features, and e is a number of elements in x.
1{qi = n} is a function that returns 1 if qi is equal to n,
otherwise 0. θn ∈ <e, n = 1, 2, 3, . . .N is weight and
dn ∈ <e with n = 1, 2, 3, . . .N is biases. q is the actual
result and λ is a non-negative regularization parameter.
The equations (4) and (5) are calculated to minimize the
output of the negative log-likelihood. The aim of these
calculations is to update the θn and the dn iteratively. The
MSE equation is calculated for each end of the iteration.
It is to monitor the progress of the supervised training.
A non-negative regularization parameter for the Softmax
Regression is denoted as λ to control the generalization
performance. The trained weights and biases from this

hθ =


HPtq(1 | x; θ, d)
HPtq(2 | x; θ, d)

. . . . . . . . . . . . . . . . . . . . .

HPtq(K | x; θ, d)

+ 1∑K
j=1 exp(θ

T
j x + dn)


exp(θT1 x + d1)
exp(θT2 x + d2)

. . . . . . . . . . . . . . . . . . . . .

exp(θTn x + dn)

 (3)

L(θ ) = −
1
XT

[
XT∑
i=1

N∑
n=1

1{qi = n} logHPt (qi = n | xi, θ, d)

]
+
λ

2
JθK22 (4)

MSE =
1

N • XT

[
N∑
n=1

XT∑
i=1

HPt (qi = n | xi, θ, d)− 1{qi = n}

]2

(5)

h

θn

L(θ ) = −
1
XT

XT∑
i=1

[xi(1{qi = n} − HPt (qi = n | xi, θ, d))]+ λθn (6)

h

dn

L(θ ) = −
1
XT

XT∑
i=1

[1{qi = n} − HPt (qi = n | xi, θ, d)] (7)

HPt (qi = n | xi, θ, d) =
exp(θ (n)T x(i) + d (n))∑N
i=1 exp(θ (j)T x(i) + d (j))

(8)
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TABLE 1. Confusion Matrix, Accuracy, Precision, Recall and F-Score: TC-SF-CNNLS vs SF-CNNLS (3 Classes).

phase will be stored in a database to be loaded into the
classification phase in the testing phase.

• Testing: Testing procedure is started with the trained
weights and biases are loaded from the database and the
hypothesis in calculated for each class using equation
(3). The aim of this procedure is to obtain results of
the classification performance. The results are measured
based on predicted and actual classes in a confusion
matrix to observe an accuracy, a precision, a recall and an
f-score of the proposed technique. For the multi classes
of vehicle, Nj, there will be tpi is a true positive, fpi is
false positive, fni is a false negative, and tni is a true
negative. Thus, equations (9) to (12) below are used to
calculate the results.

Accuracy =
N∑
i=1

tpi + tni
tpi + fni + fpi + tni

(9)

Precission =

∑N
i=1 tpi∑N

i=1(tpi + fpi)
(10)

Recall =

∑N
i=1 tpi∑N

i=1 tpi + fni)
(11)

F−score =
2 ∗ Precission ∗ Recall
Precission+ Recall

(12)

IV. EXPERIMENTS AND RESULTS
A. DATASET AND SETTINGS
The experiment is conducted using a benchmark database
known as BIT vehicle dataset [7]. This database is selected
because it consists of variety of vehicle classes, for instance,
bus, car (passenger car), minivan, SUV, taxi, and truck
in which, other databases are not providing taxi images.
Furthermore, the angles of the vehicle are the top and frontal
view that suitable for our future system’s implementation, and
the images are captured during daylight with different illumi-
nation condition from a traffic surveillance mounted-camera.
However, the dataset does not provide a specific time when
were the images are captured. Figure 9 shows the example
of vehicle images. The total number of vehicle images in
this dataset is 9850 images. Car and SUV have the highest
number of images with approximately 5000 and 1300 images,
respectively. Taxi and minivan have the lowest number of
images with not more than 600 images each. Thus, to avoid
bias during the training and testing phases, 250 images are
randomly selected from each class as the training dataset, and
200 images as the testing dataset. For the parameter setup
during the experiment, the parameter value for training rate
is 0.001. The momentum rate is 0.9 and regularization is

FIGURE 9. Vehicle images in BIT dataset.

0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 for each test to observe which
regularization value that will produce the best result. The
results are observed based on two major experiments. The
first experiment is three classes of vehicle, and the second
experiment is six classes of vehicle. Next subsections consist
of the results that we obtained based on the testing dataset.

B. RESULTS FOR 3 CLASSES
The performance of TC-SF-CNNLS for three classes is
evaluated based on sedan car, taxi and truck vehicle type to
compare it with the performance of the existing technique
of SF-CNNLS [17]. In total, there are 750 images for the
training dataset and 600 images for the testing dataset. For
sedan car class, all types of the sedan car that consists of
the sedan car without sunroof and with sunroof are utilized.
Table 1 shows the obtained results in a confusion matrix
for both techniques. The table consists of an average accu-
racy, precision, recall and f-score for each technique. The
results represent the highest performance achieved when the
regularization value is 1.0 for both techniques.

Looking at table 1, the average accuracy of TC-SF-CNNLS
is 0.9833 compared to SF-CNNLS with only 0.5617. The
precision of TC-SF-CNNLS in each class is more than
0.995 compared to the highest precision in SF-CNNLS with
only 0.7396. It shows that TC-SF-CNNLS has a low false
positive rate compared to the later technique. Other than
that, the recalls and f-scores in TC-SF-CNNLS are higher
than in SF-CNNLS. The results show that the rate of cor-
rectly predicted in each actual class is high when we use
TC-SF-CNNLS.
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TABLE 2. Confusion Matrix, Accuracy, Precision, Recall and F-Score: TC-SF-CNNLS (6 Classes).

Note that, in SF-CNNLS, the sedan car with sunroof gives
a low performance. It is due to the features of the sunroof
share almost similar features as the taxi’s sign when appeared
on an image. Thus, one of the aims in this experiment is to
observe if the proposed technique able to give a better per-
formance when dealing with this vehicle features. Based on
the results, we can see that TC-SF-CNNLS able to correctly
recognized all the vehicle classes especially the taxi class.
Overall, we can conclude that our proposed TC-SF-CNNLS
outperforms the existing technique in this experiment.

C. RESULTS FOR 6 CLASSES
We test our proposed technique with more vehicle classes
to observe the technique performance when the determined
vehicle classes are involved. There are six vehicle classes
considered in this experiment. The classes are the bus, sedan
car, minivan, SUV, taxi and truck. We presented the results in
table 2.

We select the vehicle images randomly in each class,
whereby, 250 images are for training dataset and 200 images
for testing dataset. The total training dataset is 1500 images
and 1200 images in the testing dataset. Similar to the previous
experiment, various types of sedan car are used, including
cars with sunroof. Table 2 consists of the highest results when
the regularization value is 1.0.

Looking at table 2, the average accuracy is 0.905.Whereas,
the highest precision is from taxi class with 0.9548, and
the lowest precision is from the minivan class with 0.8629.
Based on these results, the classification is considered precise
because the proportion of the predicted positives to the actual
positive are consistently high in all classes. Other than that,
the recalls and f-score are higher with more than 0.83 and
0.8564, respectively. It shows that the rate of correctly pre-
dicted in each actual class is high. From this experiment,
we can see that this proposed technique has a promising per-
formance because the accuracy, precision, recall, and f-score
are paralleled consistent.

We also compare the results with the existing techniques,
which are, SF-CNNLS [17], and semi-supervised CNN [10].
Semi-supervised CNN [10] is selected as one of the tech-
niques to be compared because this technique has an almost
similar framework as our proposed technique and it achieved
the best accuracy performance as reported in the related
works. Furthermore, they used the same database which is
BIT in their experiment. Thus, this technique is suitable to
be compared in this experiment. The existing techniques are

re-implemented and tested to obtain the results that valid to
be compared. In addition, a taxi is classified as a sedan car
class in semi-supervised CNN [10].

A comparison graph in figure 10 shows the results
performance for each technique. Based on that figure, it is
clearly seen that TC-SF-CNNLS able to outperform other
two techniques in all results performance in terms of the
average accuracy, precision, recall and f-score. The aver-
age accuracy of TC-SF-CNNLS achieves 0.90, which sur-
passes semi-supervised and SF-CNNLS with not more than
0.79 and 0.60, respectively. Whereas, TC-SF-CNNLS preci-
sion is higher than the other two techniques in all the vehicle
classes with between 0.85 to 0.96, similar to the recall and
f-score with 0.80 to 0.96, and 0.85 to 0.95, respectively.
Therefore, we can see that the proposed technique is more
accurate, precise and less sensitive compared to the other two
techniques.

D. RESULTS FOR SELF-OBTAINED DATASET (SPINT)
In this experiment, TC-SF-CNNLS is tested with a
self-obtained dataset named as SPINT. This dataset is
obtained in Malaysia federal road during daylight within 1
week from 10am to 1pm, and 3pm to 6pm. The reason why
we test with this dataset is to measure the efficiency of
this technique when we test with the local vehicles. This is
because the local vehicles have different features compared
to the benchmark vehicles in certain vehicle classes. The
outcome of this experiment can be a significant input for
further improvement of this technique in order to implement
it in Malaysia transportation systems.

Figure 11 shows the example of vehicle images in this
dataset. There are 3500 vehicle images in total with 6 classes.
The classes are car or sedan car, taxi, minivan, SUV, bus
and truck. Car or sedan car, SUV, and minivan have the
highest number of images. Whereas, taxi and bus have the
lowest number of images which is not more than 400 images.
We randomly select 200 images from each class for the
training dataset and 200 images as the testing dataset.

Table 3 consists of the highest average accuracy, precision,
recall, and f-score that are obtained from this experiment.
The highest average accuracy is 0.9041. Whereas the highest
precision is from the taxi class with 0.9895, and the lowest
precision is from the minivan class with 0.8424.The recall
rate is between 0.85 to 0.95, which shows that the actual vehi-
cle class that correctly identified is high, as well as the f-score
values between 0.8486 to 0.9641. Based on these results,
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FIGURE 10. Performance comparison between 3 Techniques.

TABLE 3. Confusion Matrix, Accuracy, Precision, Recall and F-Score: TC-SF-CNNLS (6 Classes) Using Spint Data set.

FIGURE 11. Vehicle images in SPINT dataset.

the classification using this dataset is considered accurate,
precise and less sensitive in all classes. However, the results
are slightly low compared to when we test with the BIT
dataset. This is due to the quality of our images and the
number of samples that lower than BIT samples in the train-
ing dataset. Figure 12 is an example of the system imple-
mentation based on this proposed technique. The system is

FIGURE 12. Example of the system implementation.

implemented for vehicle census in Malaysia. In the figure,
the label of ‘‘car 1.000’’ indicates that the vehicle is 100%
recognized as car class.

We also observe the executing time based on the video that
we obtained. Based on the observation, the average time to
classify one vehicle is 5.65 seconds. It is reasonably efficient
in terms of the classification process when the position of the
camera and the distance of the camera to the region of interest
are considered. However, it can be improved in the future to
enhance the executing time.

VOLUME 8, 2020 14275



S. Awang et al.: Vehicle Type Classification Using an Enhanced SF-CNNLS

TABLE 4. Comparison of accuracy performance with other techniques.

E. RESULTS COMPARISON WITH OTHER
STATE-OF-ART TECHNIQUES
In this experiment, TC-SF-CNNLS is tested with similar
vehicle classes as reported in the state-of-art techniques using
BIT database. The vehicle classes that we observed are
bus, sedan car, minivan, SUV and truck. In this experiment,
we consider taxi as sedan car class. This is because all the
related works did not separate the taxi as another class.
The techniques that we considered in this comparison are
Semi-supervised CNN [10], CNN in low-resolution images
[11], multi-branch CNN [23], and compress sensing and
CNN [24]. The reason whywe choose these techniques is that
they used CNN based framework in their work. Therefore,
we would like to see if this proposed technique is comparable
to other related techniques. For this comparison, we randomly
select 200 images for the training dataset and 200 images
for testing dataset similar to the experiment in work done by
Dong et al. [10]. Table 4 shows the comparison of the results
among those techniques.

Looking at that table, only Dong et al. [10] provided the
highest accuracy for each vehicle type, whereby, bus class
achieved the highest of 98% accuracy, followed by sedan
car with 91%, truck, minivan and SUV with 90%, 83%,
and 84%, respectively. As for Bautista et al. [11], they used
low-resolution images taken from surveillance cameras in
their experiment. However, they only classified into bus, car,
truck, and minivan. They were able to achieve an average
accuracy of 96.47%. Whereas, Chen et al. [23] only pro-
vided the highest accuracy that they obtained without detailed
accuracy in each class. They tested with three databases
created by themselves. The databases contain web-nature
images, a multi-view angle (no top view angle), and the
images are taken in a controlled environment such as in a
showroom. Based on their experiment, the highest accuracy
for each database is 91%, 94.9%, and 97.8%. However, they
did not mention in detail the specific vehicle class that they
observed in their experiment, except general vehicle classes,
for instance, bus, car, and truck.

Another technique is proposed by Li et al. [24]. In this
work, they only observed their accuracy performance based
on 3 vehicle classes, which are a bus, sedan car and truck
using Caltech database with the average accuracy is 95.04%
without a specific accuracy in each class. In our proposed
technique, we observe the accuracy performance in each
class. The highest accuracies are obtained from bus and sedan
car with an accuracy of 98.5%. Truck, minivan, and SUV
achieve the accuracy of 97%, 86% and 89%, respectively.

All the accuracies are higher than the accuracies in all classes
from Dong et al. [10]. From this comparison, we can see that
our proposed method is comparable and outperforms other
techniques with the highest accuracy is 98.51%.

Thus, this proved that our proposed technique enhances the
technique of unsupervised and supervised CNN by utilizing
the local and global features from the luminance and the
chromatic component of vehicle image is able to successfully
differentiate the vehicle classes. It also proves that the vehicle
classes are able to be classified based on the determined
classes.

V. SUMMARY AND CONCLUSION
A vehicle type classification has been proposed using an
enhanced technique named three-channels of a convolutional
neural network with a layer-skipping strategy
(TC-SF-CNNLS) to overcome the difficulties in classifying
the vehicle from different classes that shared almost similar
features. The aim of this study is to extract unique and richer
features of the vehicle with the hypothesis that the features
able to differentiate the almost similar features. The technique
mimics the ability of human eyes that have different sensitiv-
ity to color and brightness when looking at an object. Due to
that, this technique is designed to extract the local and global
features of an object which is a vehicle from luminance and
chromatic components of the images. The extracted features
are separated in each component, thus, we are able to extract
the discriminant features to obtain unique features among the
vehicles. The luminance component denotes as Y, which is a
grayscale color space. This component represents brightness
in human eyes. It is used to extract the local and global
features of the vehicle. The chromatic red component and
chromatic blue component denote as Cr and Cb, respectively.
Cr corresponds to reddish colors and Cb corresponds to
blueish colors. In general, Cr and Cb represent the color
information of the image.

In this technique, the sparse filtering is optimized to
generate the optimized sparse filters that are significant in
extracting the features from three components. Also, super-
vised training and unsupervised training are implemented to
extract and learn the features. Softmax Regression is used as
the classifier to produce an output probability of the vehicle.
A benchmark database is known as the BIT dataset, and a
self-obtained dataset known as SPINT that consists of 6 vehi-
cle classes is used to observe the performance of this proposed
technique. Based on the experimental results, TC-SF-CNNLS
is able to successfully differentiate vehicle classes especially
the class that has similar features, such as taxi and car, mini-
van and SUV. Thus, it is proved that the proposed technique is
able to produce a promising classification accuracy compared
to the other existing techniques.
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