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ABSTRACT A common radar system calibration approach is to use civil aviation automatic dependent
surveillance-broadcast (ADS-B) data to register errors. Considering the temporal and spatial uncertainties in
radar system observation data, a specific iterative closest point (SICP) algorithm is proposed for estimating
two-dimensional (2D) radar system errors. Radar system errors consist of the measurement deviations for the
slant range and azimuth of the target and are spatially reflected by the difference between the observed and
actual (ADS-B-observed) positions of the same target. Thus, the SICP algorithm is used to register the tracks
corresponding to radar and ADS-B observation data. The radar system errors are reflected by a translation,
rather than a rotation, of the observation data. Therefore, in the SICP algorithm, a unit matrix first replaces
the rotation matrix in the iterative closest point (ICP) algorithm. Then, the translation matrix is iteratively
calculated, and finally, the cumulant of the translation matrix is calculated as the radar system error. The
proposed algorithm is advantageous because it does not require the temporal registration of radar and ADS-B
observation data when temporal and spatial uncertainties are present (e.g., when 2D radar observation data
have low accuracy and contain many outliers). Additionally, the SICP algorithm can effectively reduce the
dependence on sensor data accuracy. The experimental results obtained based on simulated and measured
data demonstrate that compared to conventional registration algorithms, the proposed algorithm can rapidly
and accurately estimate radar system errors and has higher registration accuracy.

INDEX TERMS Two-dimensional radar, ADS-B, ICP, system error registration, curve registration.

I. INTRODUCTION
In a radar network system, multiple radars transmit detection
data to the data fusion center for data fusion. A precondition
for successful multisensor data fusion is that system errors
need to be eliminated from the observation data collected
by various sensors before the data can be transformed into
a common reference coordinate system for processing. If
uncompensated, system errors will increase target tracking
errors. For a multisensor system, system errors will cause
a relatively large difference between the tracks of the same
target observed by various radars. This will lead to fuzzy, dif-
ficult track association and fusion, which in turn will weaken
the radar network system performance in track fusion or even
cause it to lose its advantages [1]. System error registration
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is a key issue that must be addressed in multisensor infor-
mation fusion. Anti-bias track association algorithms have
been proposed for system errors in multisensor information
fusion [2]–[5]. By directly substituting the radars’ system and
random errors into track association algorithms, Qi et al. [2]
and Qi et al. [3] realized track association via two process-
ing steps (coarse and fine). In addition, Qi et al. [4] and
Dong et al. [5] achieved anti-bias track association based on
topological relationships. The above track association algo-
rithms can improve association robustness. However, because
system errors are not eliminated, these algorithms are unable
to improve the sensor tracking accuracy. Hence, to improve
fusion quality, it is necessary to first register radar system
errors.

Several studies have been conducted to investigate radar
system error registration [6]–[15]. Rafati et al. [6] registered
errors in asynchronous radar observation data collected by

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 6417

https://orcid.org/0000-0002-1354-1354
https://orcid.org/0000-0001-9254-2146
https://orcid.org/0000-0002-4059-4806


P. Li et al.: SICP Algorithm for Estimating Radar System Errors

multiradar network systems. A new real-time radar system
error estimation algorithm was also proposed [7]. All of
these algorithms use high-accuracy radar data to register
other radar system errors. With the continuous development
of global navigation satellite systems (GNSSs), the com-
prehensively use of sensors, (such as GNSSs and radars)
in information fusion and error registration has become a
new research direction. A method was proposed to compre-
hensively use radar, global positioning system (GPS), and
sonar data to facilitate accurate ship track positioning and
tracking through chambers in a lock [8]. This method can
effectively improve positioning accuracy. Automatic depen-
dent surveillance-broadcast (ADS-B) technology applied in
civil aviation systems uses GNSSs for positioning. Compared
to the measuring accuracy of early-warning radars, GNSSs
have very high target positioning accuracy. Therefore, the use
ADS-B data to achieve real-time registration of radar sys-
tem errors has great potential. Radar and ADS-B-combined
error registration algorithms have been proposed [9]–[11].
However, because ADS-B receivers are unable to obtain
accurate data packet transmission times, these algorithms
[9]–[11] must estimate new errors that result from time
inaccuracies. While these algorithms are able to achieve a
relatively high registration accuracy, their engineering appli-
cations are, to some extent, limited by their complexity. Based
on ADS-B observation data, a combined system error esti-
mation algorithm for radar and ADS-B tracking platforms
was proposed [12]–[14]. This algorithm is, however, still
relatively highly complex. A multisensor spatial registration
algorithm was also proposed based on the entropy function
approach [15]. However, this algorithm requires synchronous
radar detection, which is difficult to achieve in practical radar
networks.

Most of the available radar system error registration
algorithms primarily focus on the difference between the
radar-observed and actual target positions. These algorithms
first require that various information sources have accurate
time systems. Because information sources differ in their
data update cycles, it is necessary to first use a state-model
prediction algorithm to predict point tracks and calculate the
difference between observations made at the same time from
various information sources. Ultimately, statistical methods
are needed to average the errors in all the observation data to
estimate radar system errors. However, these approaches still
face the following challenges.

(1) When using ADS-B data for error registration, it is
impossible to obtain an accurate time for ADS-B data trans-
mission. As a result, it is impossible to temporally align
radar andADS-B observation data, thereby affecting the radar
system error estimation accuracy.

(2) To ensure consistency in radar and ADS-B sampling
times, it is necessary to correct the sampling times of each
sensor by interpolation. Interpolation is an approximate data
processing method and thus will introduce new errors into
the observation data, reducing the system error estimation
accuracy.

(3) Outliers contained in radar observation data will also
affect the statistical estimate of radar system errors.

Considering the above problems in system error registra-
tion methods, a graphic method may be used to effectively
reduce the effects of inconsistent observation data sampling
times on system error estimation. From a graphic perspec-
tive, a radar bearing system error registration approach was
proposed based on multistraight line fusion [18]. In this
approach, a nearly straight-line track of the same group of
targets is first selected from both the ADS-B and radar track
data, the outliers are then removed, the overall least-squares
(LS) algorithm is subsequently used to fit each of the ADS-B
and radar track observation data to a straight line, and finally,
the angle between the two straight lines is calculated and
treated as the azimuth component of the system error. Thus,
the azimuth component of the radar system error is registered.
When using this approach, time alignment does not need to
be considered. Straight-line fitting can also effectively reduce
the effects of random errors on system error estimation.
However, this approach is only able to estimate the azimuth
component of the system error; it is unable to estimate the
range component of the system error. Based on the above
approach [18], the LS algorithm was introduced into radar
system error estimation [19]. The LS algorithm can further
improve the system error estimation accuracy.

Thus, in this study, based on the graphic approach used
in previous studies [18], [19] to register system errors,
the specific ICP (SICP) algorithm can be used to register
radar systemmeasurement errors. Because this study focused
primarily on two-dimensional (2D) radars, pitch (elevation)
registration is not considered. However, the proposed SICP
algorithm is also applicable to three-dimensional (3D) radars
and can be used to register the slant-range, azimuth, and
pitch (elevation) components of the system error.

II. RADAR AND THE ADS-B–COMBINED
OBSERVATION MODEL
Figure 1 shows a 2D radar andADS-B–combined observation
model. In this model, a 2D radar and an ADS-B device are
used to track the same target. The radar system errors are
generally estimated based on the observation data for the
same cooperative target acquired by the radar and the ADS-B
device. To facilitate processing, the observation data obtained
by the radar and the ADS-B device are referred to as the
radar and ADS-B observations, respectively. In addition, it is
assumed that the radar- and ADS-B-observed tracks have
been coarsely associated and that they are two types of sensor
observation data for the same cooperative target.

Theoretically, the radar observation zR,i is composed of the
actual position xR,i of the target, the radar system error bR, and
the random error eR,i, as follows:

zR,i = xi + bR + eR,i (1)

where zR,i = [rR,i, θR,i]T , xi = [ri, θi]T , bR = [1rR,1θR]T ,
eR,i = [vrR,i, v

θ
R,i]

T , in which rR,i and θR,i are the slant range
and azimuth of the radar observation, respectively, ri and
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FIGURE 1. Unified observed model for radar and ADS-B device.

θi are the slant range and azimuth of the actual position of
the target, respectively, and vrR,i and v

θ
R,i are the slant range

and azimuth components of the random error, respectively.
In addition, the random error follows a Gaussian distribution,
i.e., [

vrR,i
vθR,i

]
∼ N

([
0
0

]
·

[ (
δrR

)2 0

0
(
δθR

)2
])

(2)

where δrR and δθR are constants.
The ADS-B observation zA,i is derived from the GPS posi-

tion information by coordinate transformation, and has very
high accuracy. Therefore, zA,i can be approximately treated as
the actual target position. Thus, Equation (1) can be updated
to

zR,i = zA,i + bR + eR,i (3)

By identity transformation, we have

bR = zR,i − zA,i − eR,i (4)

III. 2D RADAR SYSTEM ERROR REGISTRATION ANALYSIS
It is assumed that the target moves along a straight line at
a uniform speed. Figure 2(a) shows the track of the radar
observation in a rectangular coordinate system. Figure 2(b)
shows the track of the radar observation in a polar coordinate
system when the radar has no system or random errors.

In the polar coordinate system, if the radar observation only
includes the slant-range component of the system error, then
the corresponding track is an upward/downward translation
of the actual track. If the radar observation contains only the
azimuth component of the system error, the corresponding
track is a leftward/rightward translation of the actual track.
Therefore, the radar system error denotes the translation of
the actual track of the target to the observed track in surveil-
lance space, as shown in Figure 3. In Figure 3, the radar-
observed and actual tracks of the target are represented by

FIGURE 2. Ideal trajectories of same target in different coordinative
systems.

FIGURE 3. Relationship between real radar and ADS-B measurements.

a dashed star line (‘‘-∗-’’) and a dash-dotted line (‘‘-.-’’),
respectively. As shown in Figure 3(b), if the radar observation
contains both slant-range and azimuth system error compo-
nents, then the radar-observed track is a translation of the
actual track in each of the two polar coordinate system direc-
tions. Therefore, the radar system error can be determined by
calculating the extents of translation of the actual track of the
target to the radar-observed track.

FIGURE 4. Relationship between real radar and ADS-B measurements.

Figure 4 shows the track of an unmanned aerial vehi-
cle (UAV) monitored by a navigation-monitoring radar.
In Figure 4(a), the black track marked by the dashed star
line is the flight track of the UAV derived from GPS data,
and the blue track marked by the dash-dotted line is the track
derived from the navigation radar observation data. As shown
in Figure 4(a), there is a significant difference between the
radar-observed and ADS-B tracks of the target. As shown in
Figure 4(b), the radar-observed track of the target deviates
significantly from the ADS-B track in a polar coordinate
system.

The above analysis demonstrates that the radar system
error consists of the measurement errors for the slant range
and azimuth of the target and is spatially represented by
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the deviation of the observed position of the target from its
true position (i.e., the ADS-B observed position). Therefore,
the system error can be determined by registering the to-
be-registered curve (the curve corresponding to radar obser-
vation) to the standard curve (the curve corresponding to
ADS-B data). For accurate registration problems, Besl and
McKay [20] innovatively proposed an ICP algorithm. The
ICP algorithm is a mainstream algorithm for 3D data regis-
tration, and has been extensively applied in accurate registra-
tion [21]–[25]. In this study, the ICP algorithm is modified
based on the examined application scenario, with the curve
corresponding to the radar observation as the point cloud of
the target and the curve corresponding to the ADS-B data
as the reference point cloud. The SICP algorithm is subse-
quently used for radar system error estimation.

IV. SYSTEM ERROR REGISTRATION BASED ON
THE SICP ALGORITHM
A. OVERVIEW OF THE ICP ALGORITHM
The ICP algorithm is mainly used in 3D model registration.
The ICP algorithm registration approach is simple, efficient,
accurate, and robust. The basic goal of the ICP algorithm is to
find a Euclidean transformationmatrix between the target and
reference point clouds that ensures an optimal match between
the two sets of point clouds under certain measurement stan-
dards. The ICP algorithm searches within the reference point
set for the point closest to each data point in the target point
set during each iteration and treats the two points as a match-
ing point pair. Based on the obtained matching point pairs,
the ICP algorithm estimates the transformation parameters.
Additionally, the ICP algorithm applies the transformation
matrix to the objective function and repeats the iteration pro-
cess. The ICP algorithm also updates the relative positions of
the point clouds. The ICP algorithm repeats this process until
the difference between the values of the objective function
computed from two consecutive iterations is less than a preset
threshold.

Let P = {pi|pi ∈ R
2, i = 1, 2, · · · ,N } and Q = {qi|qi ∈

R2, i = 1, 2, · · · ,M} be the target and reference point sets,
respectively, where R2 is a 2D point set and N ≤ M . The ICP
registration algorithm steps are as follows:

(1) Set a threshold τ > 0 as the condition for terminating
iterations.

(2) Assume that in the k th iteration, a corresponding qki is
found in the reference point set Q for each data point pki in
the target point set P that allows

∥∥pki − qki ∥∥ = min
(3) Calculate the rotation matrix Rk and the translation

matrix T k that allows the following:

N∑
i=1

∥∥∥Rkpki + T k − Qki ∥∥∥2 = min (5)

(4) Calculate pk+1 and dk+1:

pk+1i = Rkpki + T
k (6)

dk+1 =
1
N

N∑
i=1

||pk+1i − qki ||
2 (7)

If dk−dk+1 < τ , terminate the iteration process; otherwise,
return to Step (6) to continue the iteration process.

B. SICP ALGORITHM FOR ESTIMATING THE RADAR
SYSTEM ERROR
The radar system error consists mainly of slant-range and
azimuth errors. As a result, the curve fitted to the radar obser-
vation data is a translation, rather than a rotation, of the curve
fitted to the ADS-B observation data. Therefore, the ICP
algorithm must be modified for curve registration before it
can be used to solve the practical problem investigated in
this study. The ICP algorithm can be used to calculate the
deviation of the target point set from the reference point set
when there is an optimalmatch between the two curves. There
is a curve translation in the application scenario investigated
in this study, but no curve rotation occurs. To solve this
situation, a unit matrix first replaces the rotation matrix in
the ICP algorithm, and we refer to this new algorithm as the
SICP algorithm.

The SICP algorithm estimates the radar system error by
calculating the deviation between the curves fitted to the
radar and the ADS-B observation data in the radar coordinate
system. Let us assume that there are M ADS-B observation
datasets and N radar observation datasets. Thus, the SICP
algorithm registers the error by the following steps:

Step 1: Transform the coordinates of the target’s
ADS-B observation data

First, the geographic coordinates of the ith (i =

1, 2, · · · ,M ) target position are transformed to Earth-
centered Earth-fixed (ECEF) coordinates (Xi,Yi,Zi):XjYj

Zj

 =
 (N + hj) cosϕj cos λj

(N + hj) cosϕj sin λj[
N (1− ρ2)+ hj

]
sinϕj

 (8)

Then, the ECEF coordinates (Xi,Yi,Zi) of the target are
transformed to to-be-registered radar station-centered local
rectangular coordinates. Let (λC , φC , hC ) be the geographic
coordinates of the radar station. First, the geographic coor-
dinates (λC , φC , hC ) of the radar station are transformed to
ECEF rectangular coordinates (XC ,YC ,ZC ):XCYC

ZC

 =
 (N + hC ) cosϕC cos λC

(N + hC ) cosϕC sin λC
[N (1− ρ2)+ hC ] sinϕC

 (9)

Then, (Xi,Yi,Zi) are transformed to (xi, yi, zi) using the fol-
lowing equation: xiyi
zi

 =
 − sin λC
− sinφC cos λC
cosφC cos λC

cos λC
− sinφC sin λC
cosφC sin λC

0
cosφC
sinφC


×

XiYi
Zi

−
XCYC
ZC

 (10)
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Finally, (xi, yi, zi) are transformed to radar-station-centered
polar coordinates:{

ri =
√
x2i + y

2
i + z

2
i

θi = arctan(xi/yi)
(11)

Step 2: Establish a reference point set and a target point
set

The data point set obtained by coordinate transformation
of the ADS-B observation data for the target is treated as
the reference point set Q = {(θqi , r

q
i )}, j = 1,2, · · · ,M .

The slant range and azimuth data in the radar measurement
data are used to form the target point set P =

{(
θ
p
i , r

p
i

)}
,

i = 1, 2, · · · ,N .
Step 3: Calculate the deviation using the SICP

algorithm
The SICP algorithm is applied as follows:
(1) Set a threshold τ > 0 as the condition for terminating

iterations.
(2) Assume that in the k th iteration, the reference data

point qki closest to each data point pki in the target point
set P is found in the reference point set Q that allows∥∥pki − qki ∥∥ = min.

(3) Calculate the translation matrix T k =
[
1θk ,1rk

]
that

allows
N∑
i=1

||Pki + T
k
− Qki ||

2
= min (12)

(4) Calculate pk+1 :

pk+1i = pki + T
k (13)

(5) Calculate the estimation error dk+1 between two
iterations:

dk+1 =
1
N

N∑
i=1

||pk+1i − qki ||
2 (14)

If dk − dk+1 < τ , terminate the iteration process; otherwise,
return to Step (2) and continue the iteration process.

(6) Terminate the iteration process and calculate the total
deviation of the target curve:

βsum =

k∑
i=1

T i (15)

where βsum = [1θ sum,1rsum]T (1rsum and 1θ sum are
the slant-range and azimuth components of the system error,
respectively).

The proposed algorithm can also calibrate low-accuracy
radar data against high-accuracy radar data when civil avi-
ation ADS-B devices for cooperative targets are unavailable.

V. EXPERIMENTAL RESULTS AND ANALYSIS
To examine the performance of the proposed SICP algorithm,
six system error estimation algorithms, namely, the SICP
algorithm, the curve-fitting-based (CF) algorithm, the LS-
based algorithm for the radar rectangular coordinate system

(LSr), the LS-based algorithm for the radar polar coordinate
system (LSp), the curve-fitting-based LS algorithm for the
radar rectangular coordinate system (CF-LSr), and the curve-
fitting-based LS algorithm for the radar polar coordinate
system (CF-LSp), are compared based on measured data.

To facilitate analysis, ADS-B observation data are approx-
imately treated as theoretical values. Additionally, two algo-
rithm evaluation metrics are given.

When the theoretical value of the radar system error is
known, the root-mean-square errors (RMSEs) of the radar
system error components are used for evaluation, which are
defined as follows:

RMSE
(
1ρ̂R

)
=

√√√√ 1
M

M∑
i=1

(
1ρ̂R,i −1ρA,i

)2 (16)

RMSE(1θ̂R) =

√√√√ 1
M

M∑
i=1

(1θ̂R,i −1θA,i)2 (17)

where 1ρ̂R,i and 1θ̂R,i are the estimated slant-range and
azimuth components of the radar system error during the ith

experiment, respectively, 1ρA,i and 1θA,i are the theoretical
slant-range and azimuth components of the radar system error
during the ith experiment, respectively, and M is the total
number of experiments.

When the theoretical radar system error is unknown,
the RMSEs of the registered radar observation data are used
for evaluation, which are defined as follows:

RMSE
(
ρ̂R
)
=

√√√√ 1
N

N∑
i=1

(
ρ̂R,i − ρA,i

)2 (18)

RMSE(θ̂R,i) =

√√√√ 1
N

N∑
i=1

(θ̂R,i − θA,i)2 (19)

where ρ̂R,i and θ̂R,i are the registered slant-range and azimuth
components of the radar observation at the ith sampling time,
respectively, ρA,i and θA,i are the slant-range and azimuth
components of the ADS-B observation at the ith sampling
time, respectively, and N is the number of radar or ADS-B
observations.

A. EXPERIMENTAL ANALYSIS BASED ON
SIMULATION DATA
In the simulation experiments, the following equation was
used to model the target motion:

3y− 2x − 1600 = 0 (20)

where x and y are the horizontal and vertical coordinates
of the target on the plane, respectively. The target’s initial
state was set to [100m, 150m/s, 600m, 100m/s]T. The blue
dash-dotted line in Figure 5(a) shows the target’s motion track
in the radar rectangular coordinate system. The blue dash-
dotted line in Figure 5(b) shows the target’s motion track
in the radar polar coordinate system. The slant-range and
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FIGURE 5. Radar and ADS-B measurements.

azimuth components of the radar system error were set to
1rR = 100m and 1θR = 0.03rad, respectively. The random
slant-range and azimuth errors were set to δrR = 10m and
δθR = 0.001rad , respectively. The sampling period for both
the radar and ADS-B device was set to 1 s/time. The black
dashed star line in Figure 4 shows the obtained target observa-
tion data, including 40 trace points. The ADS-B observations
are assumed to contain no system or random errors and are
treated as the theoretical target position.

Figure 6 shows the observed tracks of the target registered
by the six algorithms in the radar polar coordinate system
when the radar sampling times are consistent with the theo-
retical times. Table 1 summarizes the values of the radar sys-
tem error estimated by the six algorithms. As demonstrated
in Figure 6, the radar observations registered by each of the
six system error estimation algorithms are closer to the ADS-
B observations, suggesting that all six algorithms are able
to improve the accuracy of the radar observation data. For
additional clarity, the results obtained using the six algorithms
are presented in three plots. Table 1 shows that the values
of the radar system error estimated by the SICP and LSp
algorithms are the same and are the closest to the theoretical
values, suggesting that these two algorithms perform the best
in terms of the system error estimation. The system error

FIGURE 6. Registration results of radar measurements in non-delayed
situation.

values estimated by the CF-LSr and CF-LSp algorithms are
the second closest to the theoretical values, followed by those
estimated by the LSr and CF algorithms. The CF algorithm
estimates the azimuth by calculating the angle between the
straight lines fitted to the radar and the ADS-B observation
data, respectively. Therefore, the CF algorithm is only able
to estimate the azimuth component of the radar system error.
Additionally, the CF algorithm is also affected by the target
motion model. As a result, the CF algorithm performs the
worst for system error estimation. However, the CF algorithm
is simple and practical. The system error in the CF algorithm-
preprocessed radar observation data is relatively small. Con-
sequently, the values of the system error estimated by the
LS algorithm in the radar rectangular and polar coordinate
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TABLE 1. Estimation results of radar system error.

FIGURE 7. Registration RMSEs for radar measurements.

systems are basically the same, i.e., the CF-LSr and CF-LSp
algorithms have basically the same estimation performance.
The system error in the un-preprocessed radar observation
data is relatively large. The LSp algorithm outperforms the
LSr algorithm, mainly because a nonlinear transformation
is required when using the LS algorithm to process radar
data in the radar rectangular coordinate system. Additionally,
the second- and higher-order system error terms are ignored.
This leads to a loss of system error information and thereby
affects the system error estimation accuracy. In contrast,
in the radar polar coordinate system, the aforementioned pro-
cessing is not required for the LSp algorithm. Theoretically,
after preprocessing the radar observation data, the CF-LSr
and CF-LSp algorithms will outperform the LSr and LSp
algorithms. However, when the system error is very small,
the inversion operation of the matrix in the LS model will
be affected, which in turn decreases the estimation accuracy.
This is particularly true for estimating the azimuth component
of the radar system error.

Figure 7 shows the values of the radar system error esti-
mated by the six algorithms. As shown in Figure 6a, all

six algorithms have relatively high estimation accuracy for
the slant-range component of the radar system error. In par-
ticular, when there is a significant increase in the system
error, the estimation accuracy of the six algorithms remains
relatively high. Additionally, the six algorithms exhibit rel-
atively similar estimation performance. As demonstrated in
Figure 6b, the values of the system error azimuth component
estimated by the SICP and LSp algorithms are relatively con-
sistent and have the smallest RMSEs, suggesting that these
two algorithms perform the best. The CF-LSr and CF-LSp
algorithms exhibit the second best performance, followed by
the LSr and CF algorithms. These results are consistent with
the experimental results in Table 1.

The estimation performance of the six algorithms is fur-
ther compared. Table 2 summarizes the mean RMSEs of
the aforementioned various components of the system error.
As demonstrated in Table 2, the CF-LSp, LSp, and SICP
methods exhibit the best performance in estimating the range
component of the system error, followed by the CF-LSr and
LSr algorithms. The CF-LSr and CF-LSp algorithms have
basically the same estimation performance as the LSp and
SICP algorithms. The SICP and LSp algorithms exhibit the
best performance in estimating the system error azimuth
component, followed by the CF-LSp/CF-LSr, LSr, and CF
algorithms, in order. Similarly, the CF-LSr and CF-LSp algo-
rithms exhibit basically the same estimation performance.
The LSp and SICP algorithms have identical estimation per-
formances.

Figure 8 shows the RMSEs of the data registered by the six
algorithms when the radar observation times are inaccurate
(there is a time delay in the radar observations; however,
the ADS-B observations are still accurately paired with the
radar observations). The range and azimuth components of
the radar system error are 1rR = 50m and 1θR = 0.02rad ,
respectively. The random range and azimuth errors are δrR =
10m and δθR = 0.001rad , respectively. The RMSEs of the
registered data are used as evaluation metrics mainly because
the system error is unable to completely reflect the esti-
mation algorithm performance when there is a time delay.
The RMSEs of the registered data can better reflect the
estimation accuracy of the six algorithms. As demonstrated
in Figure 8(a), when the time delay is less than 0.8 s, all
the algorithms can relatively satisfactorily improve the range
component of the radar system error and produce relatively
similar estimates, except for the CF algorithm, which is
unable to estimate the range component of the system error.
A time delay exceeding 0.8 s combined with the flight speed
of the target, to some extent, affects the accuracy of the
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TABLE 2. Average RMSEs with different radar system errors.

TABLE 3. Registration average RMSEs of radar measurements in delayed situation.

FIGURE 8. Registration RMSEs of radar measurements in delayed
situation.

radar observation data. The performance of all six estima-
tion algorithms decreases to some extent. Nevertheless, these
algorithms are still able to approximately estimate the error
in the slant range of the target. Figure 8(b) shows that as
the time delay increases significantly, the RMSEs of the data
registered by the LSr and CF algorithms also increase sig-
nificantly, suggesting that these two algorithms are relatively
significantly affected by the time delay. In comparison, the
other four algorithms are relatively unaffected by the time
delay. Table 3 summarizes the mean RMSEs of the data regis-
tered by the six algorithms, whichmore clearly comparatively
demonstrate their estimation performance. Table 3 shows that
the six algorithms basically exhibit consistent registration

performance for the range data. The mean RMSEs of the
range data registered by the six algorithms are approximately
41 m. The mean RMSEs of the registered azimuth data show
that the CF-LSr algorithm exhibits the best registration per-
formance for the azimuth data, followed by the CF, CF-LSp,
LSr, and SICP/LSp algorithms, in order. The SICP and LSp
algorithms exhibit the same registration performance for the
azimuth data. The results in Table 3 are consistent with those
in Figure 8.When there is a system time delay, the registration
performance of the CF-LSr and CF algorithms is relatively
poor, but the registration performance of the SICP and LSp
algorithms remains relatively satisfactory. However, the LSp
algorithm requires that the radar observations be accurately
paired with the ADS-B observations.

In addition, from Table 1 and Table 3, it is found that the
SICP and LSp algorithms obtain the same radar system error
and other estimation performance values. This is because the
SICP algorithm uses the least squares rule to estimate the bias
(the same as the LSp algorithm) between the radar measure-
ments and the ADS-B measurements in the polar coordinate
system. Hence, by knowing the observed time of the radar
measurements, the SICP and LSpmethods can obtain the best
performance or approximate the best performance, and they
obtain the same values as the experiment results.

In summary, regardless of the accuracy of the radar sam-
pling times (i.e., if there is a time delay), the SICP algorithm
is able to produce relatively satisfactory estimates. Addition-
ally, compared to other LS model-based algorithms, the SICP
algorithm does require an accurate match between radar and
ADS-B observations. Therefore, the simulation experiment
sufficiently demonstrates that the SICP algorithm is able to
effectively and satisfactorily estimate the radar system error.

B. EXPERIMENTAL ANALYSIS OF MEASURED DATA
To test the effectiveness of the algorithm in this paper, surveil-
lance radar is used to continuously track civil aviation aircraft
and obtain the measurement data. At the same time, an ADS-
B receiver is used to obtain the observations of the aircraft.

Measured data used in this study originated from radar
(30 sampling points) and ADS-B (115 sampling points)
observations for the same group of cooperative targets.
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TABLE 4. Estimation results of radar measurements.

FIGURE 9. Radar and ADS-B measurements.

Figures 9(a) and (b) show the trace points of the radar and
ADS-B observations at various times in the radar rectangular
and polar coordinate systems, respectively. Due to the uncer-
tainties in radar andADS-B sampling times, it is very difficult
to use conventional LS-based radar system error estimation
algorithms to establish matching rules for radar and ADS-B
observations. In comparison, the SICP algorithm estimates
the radar system error by establishing closest matching rules
based on the planar geometric constraints for radar and
ADS-B observations. As shown in Table 4, the range and
azimuth components of the system error estimated by the
SICP algorithm are 559.32 m and 0.1864 rad, respectively.
Figure 10(a) shows the radar observations registered by the
SICP algorithm. As shown in Figure 10(a), the radar obser-
vations registered by the SICP algorithm are closer to the
ADS-B observations in the radar polar coordinate system.
Due to their high accuracy, the ADS-B observations can be
approximately treated as the theoretical true target position,
which emphasizes the feasibility of the SICP algorithm.

To further analyze the estimation performance of the SICP
algorithm, it is assumed that the radar andADS-B observation

FIGURE 10. Radar and ADS-B measurements after preprocessing.

sampling times are accurate. The radar and ADS-B observa-
tions during a common period of time were selected. Addi-
tionally, the ADS-B observations were extrapolated based
on the radar sampling times. The extrapolation results are
treated as the theoretical values of the radar observations at
various times. To facilitate analysis, the radar and ADS-B
observations mentioned hereinafter in this section are the
selected radar observations during the common period and
the extrapolation of the ADS-B observations (each containing
22 sampling trace points), respectively. Figures 10(a) and (b)
show the trace points of the radar and ADS-B observa-
tions in the radar rectangular and polar coordinate systems,
respectively.

Figures 11(b)–(d) show the SICP, CF, LSr, LSp,
CF-LSr, and CF-LSp algorithms for the preprocessed radar
and ADS-B observations, respectively. Table 4 summarizes
the values of the radar system error estimated by these
algorithms. To easily distinguish the experiment results of
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the SICP algorithm in situations when the sampling time
is and is not known, the algorithm is expressed as ‘SICPc’
when the sampling time is known. The registration results
produced by the six algorithms are illustrated in the above
three plots, primarily to facilitate demonstration and display.
Additionally, to facilitate differentiation, the SICP algorithm
for the preprocessed radar data is referred to as the SICP
algorithm. As demonstrated in Figures 11(b)–(d), all six algo-
rithms can effectively estimate the radar system error. Based
on the difference between the registered radar observations
and the ADS-B observations, the SICP algorithm outper-
forms the CF algorithm, the LSp algorithm outperforms the
LSr algorithm, and the CF-LSp and CF-LSr algorithm exhibit
similar performances.

Table 5 summarizes the RMSEs of the radar observations
registered by the six algorithms and the RMSEs of the radar
observations registered by the SICP algorithm for the sam-
pling times and positions. As demonstrated in Table 5, when
the sampling times are known, the radar observations reg-
istered by the SICPc, CF-LSr, and CF-LSp algorithms have
the smallest RMSEs and are the closet to the ADS-B obser-
vations (approximately treated as the theoretical position of
the target). The RMSEs of the radar observations registered
by the CF algorithm are the second smallest, followed by
those of the radar observations registered by the LSr and
LSp algorithms. This is mainly because the LS algorithms
(i.e., the LSp and LSr algorithms) directly process the radar
observations, whereas the CF-LS algorithms (i.e., the CF-
LSp and CF-LSr algorithms) process the compensated radar
observations. Evidently, the error in the radar observation
data is significantly greater than that in the compensated radar
observation data. In LS estimation modeling, the second- and
higher-order terms of the system error are ignored. In fact,
these terms also contain system error information and will
affect the system error estimation accuracy, particularly when
the system error is relatively large, which suggests that LS
algorithms are relatively sensitive to observation data errors.
Additionally, compared to the LSp algorithm that processes
radar observations in the polar coordinate system, the LSr
algorithm processes radar observations in the rectangular
coordinate system, which requires a nonlinear transformation
of the azimuth information. This transformation will cause
certain loss of information when the system error is relatively
significant. As a result, the estimation accuracy of the LSp
algorithm is higher than that of the LSr algorithm. Relatively
less information is lost when nonlinearly transforming the
azimuth information after compensating the azimuth radar
observation data. As a result, the CF-LSp and CF-LSr algo-
rithms exhibit basically the same estimation performance.
In addition, when the sampling times are unknown, the SICP
results are also listed in Table 5. Although the SICP results in
this situation are not as accurate as those when the sampling
time is known, the SICP algorithm can still realize the estima-
tion of the radar system error when the sampling time is not
known. The other methods cannot estimate the radar system
error when the sampling time is not known.

FIGURE 11. Registration results of radar measurements.

Based on the above analysis, when the radar or ADS-B
sampling times are unknown or inaccurate, the SICP algo-
rithm is able to effectively estimate the radar system error
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TABLE 5. Registration RMSEs of radar measurements.

and improve its observation accuracy. While the CF algo-
rithm is able to more effectively estimate the azimuth com-
ponent of the radar system error, it is unable to estimate
its range component. Additionally, the CF algorithm is only
able to effectively perform straight-line fitting and, on this
basis, estimate the azimuth component of the radar system
error when the target moves in a nearly straight line and
the observation data are approximately evenly distributed
on the two sides of a straight line, further constricting the
application of the CF algorithm. In comparison, the SICP
algorithm has a lower requirement for the motion model of
the target and a lower time accuracy requirement for radar
observations. As a result, the SICP algorithm has a wider
range of application. When the radar and ADS-B sampling
times are known, the SICP algorithm is also able to produce
relatively satisfactory estimates based on preprocessed radar
observation data and exhibits the same estimation accuracy
as the CF-LSr and CF-LSp algorithms. Therefore, regardless
of whether the radar or ADS-B sampling times are known or
unknown, the SICP algorithm is able to effectively estimate
the radar system error. In particular, when the radar and
ADS-B sampling times are known, the SICP algorithm is able
to achieve the same estimation performance as the CF-LSp
algorithm.

VI. CONCLUSION
In this study, a SICP algorithm is proposed to estimate 2D
radar system errors. The SICP algorithm analyzes the radar
and ADS-B observation data in the polar coordinate system
and considers radar system error estimation from a computer
graphics perspective. In other words, when there is a radar
system error, the track observed by the radar has the same
shape as that observed by an ADS-B device, but there is
a deviation between the two tracks. In view of this, the
SICP algorithm is established based on the computer graphics
approach. The SICP algorithm determines the radar system
error by registering the radar-observed curve and calculat-
ing the translation matrix between the target and reference
curves. This approach cleverly evades the time registration
issue. Experiments based on simulations and measured data
demonstrate that the SICP algorithm is able to effectively
estimate the radar system errors and exhibits excellent radar
track registration performance, with promising applications
in engineering fields.
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