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ABSTRACT In this paper, the problem of determining the sparsest input matrices to ensure controllability
of linear singular systems is investigated. Firstly, it is shown that, determining the sparsest input matrices to
ensure reachable controllability or complete controllability is NP-hard, even when the system ‘singularity’
is arbitrarily large. Secondly, submodular functions for singular systems are built, upon which greedy
algorithms are developed to approximate the sparsest input matrices with guaranteed performance bounds
for the case where there is no restriction on the number of independent inputs. Thirdly, a two-step greedy
algorithm is proposed for determining the sparsest input matrices with a given number of inputs to ensure
controllability. Compared with the existing algorithms for sparsest input selections, the proposed algorithm
achieves better trade-off between the approximation performances and computation efficiency, which are
demonstrated by two simulation examples.

INDEX TERMS Controllability, computational complexity, networked control systems, optimization.

I. INTRODUCTION
Input selections under the objectives to meet/optimize certain
system performances have long been active but challenging
issues in control community [1]. In a recent paper [2], it is first
shown that, given an autonomous system as (1), it is NP-hard
to determine the minimal number of state variables that need
to be actuated by an input to ensure system controllability,

ẋ(t) = Ax(t), (1)

where x(t) is the state vector, and A is state transition matrix.
A more general proposition is that, given a collection of
possible input matrix columns, it is NP-hard to choose the
minimal number of columns to form an input matrix so that
the resulting system can be controllable [2], [3].

An input selection problem for a more general class of
linear systems is considered in this paper, which is known
as the singular system or the descriptor system. Analysis and
synthesize of descriptor systems have received significant
attention due to their widespread application in modeling
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and control of variously actual systems, such as electri-
cal systems, biological systems, economical systems, hybrid
systems and intelligent transportation systems [4]–[8], [10],
[11]. Additionally, the descriptor system involves the usual
state-space formulation as a special form, and can establish
some dynamical systems without state-space formulation.
This paper focuses on determining the sparsest input matrices
with a given number of inputs that ensure controllability
of singular systems. Two points make this problem wor-
thy of extra attention. One is that, criteria for complete
controllability of singular systems are a little more com-
plicated than that of the nonsingular systems described by
the standard state-space model. Some related concepts, like
modes, controllable subspaces, etc., are often defined upon
the standard canonical forms of singular systems, which
make extending input selection methods from nonsingular
systems to singular ones not so straightforward. The other
one is that, as argued in [9], the problem of determining the
sparsest input matrices with guaranteed performance bounds
to ensure controllability is far from completely settled for
nonsingular systems with multiple eigenvalues. It is left for
us to find algorithms with guaranteed bounds, acceptable
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approximation performances and relatively low computa-
tional complexity.
Related Work: Controllability and observability of large-

scale networked dynamical systems have drawn the atten-
tion of control scientists [12]–[14]. As mentioned earlier,
determining the minimal number of actuated states to ensure
controllability for nonsingular systems has been proven to
be NP-hard [2]. However, there is a simple greedy algo-
rithm which can maximize the rank increase of controlla-
bility matrix in each iteration. It can achieve a logarithmic
approximation factor and can obtain the best performance
in polynomial time. Moreover, it has a closed form solution
with the minimum input number to ensure controllability,
which is equal to the maximum geometric multiplicity of
the state transition matrix [15]. Note that, this is similar to
actuator and sensor deployment problems investigated under
structural framework in [12], [16]. And more specifically,
system matrices are fixed with zeros or free parameters. For
example, the matching theory [12] is used to provide the
minimum input number required for the controllability of
structure, which enable the problem of determining the mini-
mum actuated states with structural controllability guarantee
in polynomial time [16].

Apart from focusing on the binary concept of controllabil-
ity, researchers also proposed some energy related metrics to
quantify controllability and found appropriate actuator selec-
tion strategies to satisfy certain performance criteria [17].
Approaches for input selection based on this concept, includ-
ing submodular optimization [3], a method of the relaxed
control energy metric [18], have been developed in the lit-
erature. These investigations extend the binary concept of
controllability to quantitative one, which deepens our insight
into controllability of singular system. However, these meth-
ods either have higher computing complexities or have lower
approximation performance.

Concepts of reachable controllability and complete
controllability for descriptor systems seem to be first
developed in [19]. Afterwards, various criteria have been pro-
posed, including some rank based criteria [19], graph char-
acterization for structural controllability [20], and matroid
theory based criteria for mixed descriptor systems which
entries of system matrices are either fixed constants, or free
parameters [21]. Input selections for controllability of mixed
descriptor systems have been considered in [22], under a
dimensionless assumption defined therein. The main differ-
ence between problems considered in that paper and this
one is that, the objective in [22] is to determine the minimal
number of dedicated inputs, that is, an input is dedicated if
it actuates only one state, whereas we will show that for a
given singular system with fixed system matrices, selecting
the minimal number of dedicated inputs is less complicated
than selecting the sparsest input matrices with limited number
of inputs.
Main Contributions: In this paper, we consider the problem

of determining the sparsest input matrices with given num-
ber of inputs to ensure controllability of singular systems.

The contributions of this paper are in three aspects. Firstly,
it is proven that determining the sparsest input matrices to
ensure reachable controllability or complete controllability
is NP-hard, even when the system ‘singularity’ is arbitrarily
large. Secondly, submodular functions for singular systems
are built, upon which greedy algorithms are developed to
approximate the sparsest input matrices with guaranteed per-
formance bounds for the case where there is no restriction
on the number of independent inputs. Thirdly, a two-step
greedy algorithm is proposed for determining the sparsest
input matrices with a given number of inputs to ensure
(reachable or complete) controllability. This algorithm has
much less search space than the simple greedy one, and
remarkably, has a submodularity-ratio like provable approx-
imation bound. Compared to the existing methods, numer-
ous numerical simulations show that this algorithm achieves
better trade-off between the approximation performances and
computation efficiency.

The organization of this paper is as follows. Section II gives
the problem formulation, and Section III presents some pre-
liminaries. Section IV gives computational complexities of
the problems considered in this paper. Afterwards, Sections V
and VI deal with algorithms for problems considered in this
paper. Some numerical examples are provided in Section VII.
Section VIII finally concludes this paper.
Notations: R, C, Z and N denote the set of real, complex,

integral and nonnegative integral numbers, respectively. For
a matrix M , Mij denotes its (i, j)-th entry if no confusion
is made. ||M ||0 denotes the number of nonzero entries in
a matrix M . M† denotes the Moore-Penrose pseudo-inverse
of M . Let J , J1, J2 be a set of integers, then MJ represents
the submatrix of M comprising the columns with indices
given by J , and MJ1,J2 the submatrix of M comprising the
rows indexed by J1 and columns indexed by J2. |S| denotes
the cardinality of a set S. By diag{Mi|

N
i=1} ( col{Mi|

N
i=1}) we

denote the block diagonal matrix (compact matrix) with the
i-th diagonal block (row block) being Mi.

II. PROBLEM FORMULATION
Consider the following linear time invariant (LTI) system

Eẋ(t) = Ax(t)+ Bu(t), (2)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rl is the input
vector at time t , A ∈ Rn×n, B ∈ Rn×l are respectively the
state transition matrix and input matrix. The constant matrix
E ∈ Rn×n may be singular. System (2) or (E,A,B) is called
the linear singular system or descriptor system. Obviously,
when E is nonsingular, this system collapses to the standard
state-space system [23].

If det(sE − A) 6= 0 for at least one s ∈ C, where E may be
singular, the pair (E,A) is called regular. System (2) is said to
be solvable, if for any admissible inputs u(t) ∈ Rl , there is a
unique state solution x(t) satisfying Equation (2). It is known
that system (2) is solvable, if and only if det(sE − A) 6= 0
for at least one s ∈ C. In this paper, we always assume that
system (2) is solvable.
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In this work, we are interested in determining the sparsest
input matrices to ensure controllability of the linear singular
systems. Before proceeding that, the notion of reachable con-
trollability (R-controllability) and complete controllability
(C-controllability) for singular systems is introduced.

The admissible initial state is the initial state vector
x(0) ∈ Rn such that Equation (2) admits a differentiable
solution of x(t) and u(t). The set of all admissible states is
denoted by R0, which is called the reachable set.
Definition 1 (R-controllability [19]): System (2) is said to

be R-controllable, if for any two states x0 and x1 in the set of
admissible initial states R0, there exists a finite time T and a
differentiable control input u(t)|0≤t≤T , such that x(0) = x0,
x(T ) = x1.
Definition 2 (C-controllability [19]): System (2) is said to

be C-controllable, if for any two states x0, x1 ∈ Rn, there
exists a finite time T and a differentiable control input
u(t)|0≤t≤T , such that x(0) = x0, x(T ) = x1.
For notation simplicity, we just say (E,A,B) is

R-controllable (C-controllable) if system (2) is so.
Lemma 1 (Conditions for R-Controllability): Suppose that

system (2) is solvable. System (2) is R-controllable, if and
only if

rank([sE − A,B]) = n,∀s ∈ C. (3)

Lemma 2 (Conditions for C-Controllability): Suppose that
system (2) is solvable. System (2) is C-controllable, if and
only if

rank([sE − A,B]) = n, ∀s ∈ C, (4)

rank([E,B]) = n. (5)

The problems considered in this paper can be formulated
as following.
Problem 1: Given the pair (E,A) in (2), determine

min
B∈Rn×n

||B||0

(E,A,B) is C-controllable (resp. R-controllable)

Problem 2: Given the pair (E,A) in (2) and an integer
l ≤ n such that there exists a B ∈ Rn×l making (E,A,B)
C-controllable (resp. R-controllable). Determine

min
B∈Rn×l

||B||0

(E,A,B) is C-controllable (resp. R-controllable)

Problem 2 differs from Problem 1 in that, there is a restric-
tion on the available number of independent inputs. Such
scenario occurs, for example, in a leader-follower multi-agent
system where the number of leaders is limited, or in a circuit
system where the number of independent voltage sources
is limited. It is shown in [9] that, these two problems are
not necessarily equivalent for a nonsingular system where
A has multiple eigenvalues. It is straightforward to see that,
Problem 1 is always feasible, as the input matrix B = In
always makes (E,A,B) C-controllable and R-controllable.
Besides, Problem 1 can be seen as a special case of Problem 2
by setting l = n.

III. PRELIMINARIES
This section presents some preliminaries for our further
derivations.

A. GENERALIZED EIGENVALUES
The generalized eigenvalue problem of two matricesM ,N ∈
Rn×n is to find a scalar λ and the corresponding vector φ such
that φM = λφN . We call λ the generalized eigenvalue and
φ the corresponding left eigenvector of the pair (M ,N ). There
are many numerical algorithms to determine the generalized
eigenvalues. See [24] and the references therein.

Using the generalized eigenvalue arguments, the following
lemma states an equivalent condition for (3) to hold.
Lemma 3: Suppose that the solvability condition holds for

system (2), i.e., det(sE − A) 6= 0 for at least one s ∈ C.
Assume that there are m distinct generalized eigenvalues
{si|mi=1} for (E,A). For each si, let Xi be the matrix consisting
of the maximum number of linearly independent row vectors
of φ, where φ satisfies φE = siφA (i.e., Xi is a basis matrix
of the left null space of siE −A). Then, (3) holds, if and only
if XiB is of full row rank for each i = 1, . . . ,m.
Proof: See the appendix. �

B. SUBMODULARITY
Let� be a finite set and 2� be its the power set. A set function
f : 2� → R assigns a real scalar to each subset of �.
A nonincreasing function f is a set function such that for all
F1 ⊆ F2 ⊆ �, it holds that f (F1) ≥ f (F2).
Definition 3 (Submodularity [25]): A set function f :

2� → R is submodular if for any sets F1,F2 with F1 ⊆ F2
and any element ω ∈ � \ F2, we have that

f (F1 ∪ {ω})− f (F1) ≥ f (F2 ∪ {ω})− f (F2), (6)

and supermodular if the reversed inequalities in (6) hold.
Lemma 4 [25]: Suppose that the set function f : 2� →

R is submodular and nonincreasing. For the optimization
problemminF⊆� |F | under the constraint f (F) ≥ α, where α
is a given threshold, the simple greedy algorithm (i.e., in each
iteration choosing the element with the maximum increase
in f (F)) achieves a solution Fgre that satisfies the following
inequality

|Fgre|

|F∗|
≤ 1+ log(

f (�)− f (∅)
f (�)− f (FT−1)

),

where F∗ is the optimal solution, FT−1 is the set returned at
the second-last iteration of the greedy algorithm.

C. MATROID
Matroid is a structure that captures and generalizes the notion
of linear independence in vector spaces. Given a finite set
� and elements together with a family F = {F1,F2, · · · } of
subsets of �, the pair (�,F) is a matroid if:
• ∅ ∈ F ;
• if F1 ∈ F and F2 ⊆ F1, then F2 ∈ F ;
• if F1,F2 ∈ F and |F1| = |F2| + 1, then there exist
some ω ∈ F1\F2 satisfying F2 ∪ ω ∈ F .
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From the above definition, � is also named as the ground
set, and a member of F is referred to as an independent
set. For a matrix E , a linear matroid can be defined as
N (E) = (�,F), where � is the set of indices of columns
of E , F is the collection of indices of columns of E which
are linearly independent, i.e., F = {J : rank(EJ ) = |J |}.
Given two matroids N1 = (�,F1) and N2 = (�,F2),
thematroid intersectionN1∩N2 is defined as the collection of
all common independent sets of N1 and N2. The cardinality
of N1 ∩N2, represented by ρ(N1 ∩N2), is defined as

ρ(N1 ∩N2) = max{|J | : J ∈ F1, J ∈ F2}.

A structured matrix is a matrix whose entry is either a fixed
zero or can take an arbitrary real value independently. The set
of n× m structured matrices is denoted by {0, ∗}n×m, where
∗ denotes the entry which can take values independently.
For a matrix M whose entries are functions of some free
parameters, its generic rank, indicated by grank(M ), is the
maximum rank it can achieve as the function of its free
parameters.
Lemma 5 [26]:Given X ∈ Rr×n, B̄ ∈ {0, ∗}n×l , it is valid

that

grank(XB̄) = max{|J | : J ⊆ {1, . . . , n}, rank(XR,J ) =
|J |, grank(B̄J ,C ) = |J |},

in which R = {1, . . . , r}, C = {1, . . . , l}.
The generic rank of XB̄ can be computed via matroid

intersection algorithm, which has polynomial time complex-
ity. From Lemma 5, it is easy to see that grank(XB̄) =
ρ(N (X ) ∩N (B̄ᵀ)).

IV. COMPLEXITY ANALYSIS
In this section we prove that both Problem 1 and Problem 2
are NP-hard for the singular systems. We will first give the
computational complexities and then present their proofs.
Theorem 1: When the purpose is to make the system

C-controllability, Problem 1 and Problem 2 are NP-hard, even
if the rank deficiency of E is arbitrarily large.
Theorem 2: When the purpose is to make the system

R-controllability, Problem 1 and Problem 2 are NP-hard, even
if the rank deficiency of E is arbitrarily large.

Since by setting l = n, Problems 1 and 2 are equivalent,
which are both equivalent to finding the sparsest diagonal
input matrix to ensure system controllability,1 for the proofs
of these two theorems it suffices to prove the NP-hardness
of the latter problem. In the following, we will use ep×q
to denote a p × q matrix whose entries are all one, 0n×n
the n × n zero matrix, and eni the ith standard basis vector
in the n-dimensional vector space. We will say (E,A) is k
C-controllable (R-controllable), if there exists a diagonal
matrix B with no more than k nonzero entries such that
(E,A,B) is C-controllable (R-controllable).

1From Lemma 3, for any B∗ which is an optimal solution to Problem 1,
the n × n diagonal matrix Bd , which is constructed by letting Bdi,i = 1
whenever the ith row of B∗ is nonzero, is always a feasible solution to
Problem 1, and ||Bd ||0 ≤ ||B∗||0.

Our proofs adopt some similar ideas from [2]. The reduc-
tions start from the set cover problem. Let C = {C1, . . . , Ch}
be a collection of subsets of {1, . . . , p}. A set cover of C is
a set {i1, . . . , ik} ⊆ {1, . . . , h}, such that Ci1 ∪ · · · ∪ Cik =
{1, . . . , p}, where k is called the cardinality or size of this
set cover. It is known that, given an integer k , determining
whether there exists a set cover with size k is NP-complete.
The complete proofs are given in the following.
Proof of Theorem 1: Let C = {C1, . . . , Ch} be a collection

of subsets of {1, . . . , p}. Without losing of generality, assume
that C1∪· · ·∪Ch = {1, . . . , p}. Construct an p×hmatrixC as
Cij = 1 if the jth set contains i. Construct an (h+p)×(h+p+q)
matrix

X =
[

Ih 0h×p eh×q
Cp×h Ip 0p×q

]
.

From this construction, matrix XI,I is block triangular with
nonzero diagonal entries, and hence invertible, where I =
{1, . . . , h + p}. Therefore, X is of full row rank. Define
matrices E = diag{Ih+p, 0q×q}, and 3 = {1, 2, . . . , h + p}.
Now we will construct matrix A satisfying 3XE = XA and
det(sE − A) 6= 0.

To this end, let ai ∈ Rh+p+q satisfy Xai = 3Xe
h+p+q
i , for

i = 1, . . . , h + p. Since rank(X ) = rank([X ,3Xeh+p+qi ]),
such ai always exists. Let X⊥ ∈ R(h+p+q)×q be a basis matrix
that spans the right null space of X . Since the first h + p
columns ofX are linearly independent, it can be validated that
X⊥J1,J2

is invertible, where J1 = {h+ p+ 1, . . . , h+ p+ q},
J2 = {1, . . . , q}. Construct A as A = [a1, . . . , ah+p,X⊥].
Based on these constructions, it can be validated that

3XE = XA. Therefore, Xi, which is the ith row of X ,
is the left generalized eigenvector of (E,A) associated with
the generalized eigenvalue i. Moreover, there is a monomial
sp+h detX⊥J1,J2

in det(sE − A) that cannot be zeroed out by
other monomials. Hence, (E,A) is regular. As rank(E) =
h+ p, E is singular and its rank deficiency can be arbitrarily
large. Obviously, the above mentioned A can be constructed
in polynomial time by solving linear matrix equations. In the
following, we will prove that the system associated with
(E,A) is k + q C-controllable, if and only if the collection
C has a set cover with size k .
For the one direction, assume that C has a set cover
{i1, . . . , ik}. Let the input matrix B ∈ R(h+p+q)×(h+p+q) be
such that Bjj = 1 for j = i1, . . . , ik , and Bjj = 1 for
j = h+p+1, . . . , h+p+q, and other entries are zero. Then,
from Lemma 2, it can be seen that (E,A,B) is C-controllable.
Thus, (E,A) is k + q C-controllable.
For the other direction, assume that (E,A) is k + q

C-controllable. Thismeans that, there exists a diagonalmatrix
B ∈ R(h+p+q)×(h+p+q) with no more than k + q nonzero
entries, so that (E,A,B) is C-controllable. According to
Lemma 2, to make rank([E,B]) = h+p+q, the (h+p+1)th,
(h + p + 2)th, . . ., (h + p + q)th diagonal entries of B
must be nonzero. On the basis of that, to make (E,A,B)
C-controllable for a diagonal B, it is necessary and sufficient
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to make the support 2 of the (h + i)th row of X intersects
with J , for each i ∈ {1, . . . , p}, where J = {j : Bjj 6= 0, j ∈
{1, . . . , p+h}} and |J | ≤ k . As every element of {1, . . . , p} is
contained in C1∪· · ·∪Ch, for each j ∈ J ∩{h+1, . . . , h+p},
we can find a replacement j∗ ∈ {1, . . . , h}, such that Cjj∗ =
1 and thus the support of the jth row of X intersects with
J \{j} ∪ {j∗}. As |J | ≤ k , we finally have that the collection
C has a cover set with size no more than k . The NP-hardness
of Problem 1 for regular singular systems then follows the
NP-completeness of the set cover problem. �
Proof of Theorem 2: Again we use the reduction from

the set cover problem. The reduction is almost the same as
that of the C-controllability case. The only difference is that,
there is no need to consider the condition (5). A little bit
modifications are sufficient to fit for this purpose. To this
end, let E = diag{Ih+p+1, 0q×q}, where q > 1 and the
‘singularity’ q can be arbitrarily large. Parameter matrix
X ∈ R(h+p+1)×(h+p+1+q) becomes

X =

 Ih 0h×p eh×1 eh×q
Cp×h Ip 0 0p×q
0 0 e1×1 0

 .
It can be verified that the first (h + p + 1) columns
of X are linearly independent. Hence, X is of full row
rank. Let E = diag{Ih+p+1, 0q×q}. Afterwards, construct
matrix A ∈ R(h+p+q+1)×(h+p+q+1) in the similar way to the
C-controllability case. It can be verified that, (E,A) is regular.
Then, following similar arguments to the proof of Theorem 1,
it can be claimed that (E,A) is k R-controllable, if and
only if the collection C has a set cover with size no more
than k + 1. �
Remark 1: As mentioned above, our main ideas follow

those of [2], but with some technical differences. More spe-
cific, to generalize their proofs to the singular case, as the
rank deficiency of E (which can be seen as the ’singularity’ of
the system) can be arbitrarily large, it takes extra attention to
guarantee that (E,A) is regular in the constructions. Besides,
the conditions for C-controllability are more complicated
than those of the Popov-Belevitch-Hautus (PBH) test for the
nonsingular state-space systems.

V. SUBMODULARITIES FOR SINGULAR SYSTEMS AND
SOLUTIONS TO PROBLEM 1
In this section, we identify some submodular functions for
linear singular systems that facilitate approximation algo-
rithms for Problem 1, aswell as the two-step greedy algorithm
in the next section for Problem 2.

First, we consider the dimension of reachable subspace.
Unlike the linear nonsingular case, the reachable state set
of linear singular systems is often hard to be represented
in the original forms of their system parameters [19].
A transformation is utilized to obtain the standard canonical
form of system (2). To be specific, there exist two nonsingular

2The support of a vector is the set of indices of nonzero entries of this
vector.

matrices P and Q, such that

PEQ = diag{In1 ,E2},PAQ = diag{A1, In2},

PB = col{B1,B2},

where E2 ∈ Rn2×n2 is nilpotent, i.e., Ek2 = 0 for some
integer k , and integers n1 + n2 = n. The standard canonical
form of system (2) is given as follows:

ẋ1(t) = A1x1(t)+ B1u(t)
E2ẋ2(t) = x2(t)+ B2u(t)

,

with state transformation col{x1(t), x2(t)} = Q−1x(t), where
x1(t) ∈ Rn1 and x2(t) ∈ Rn2 . Given Ai ∈ Rni×ni and
Bi ∈ Rni×l , let < Ai|Bi > denote the space spanned
by [Bi,AiBi, . . . ,A

ni−1
i Bi], i = 1, 2. According to [17],

the reachable subspace Rrs of system (2) is given by

Rrs =< A1|B1 > ⊕ < E2|B2 >,

where ⊕ denotes direct sum.
Proposition 1: Let dimRrs(B) be the dimension of reach-

able subspaces of system (2) with input matrix B. For any
givenB ∈ Rn×l , dimRrs(BS ) is submodular on S ⊆ {1, . . . , l}.
Proof: See the appendix. �
However, utilizing the dimension of reachable subspaces

based on the standard canonical form to approximate Prob-
lem 1, may be not natural and cause extra computational bur-
dens. In the following, we give another submodular function
based on the generalized eigenvectors.

Let m, si|mi=1 and Xi|mi=1 be defined as in Lemma 3.
Moreover, let ri be the number of rows of Xi. It is valid
that

∑m
i=1 ri ≤ rank(E). Define a set function f (S) on

S ⊆ {1, . . . , n} as

f (S) =
m∑
i=1

rank(XiIS )+ rank([E, IS ]).

By Lemma 3, condition (3) is satisfied, if and only if
rank(XiB) = ri for each i ∈ {1, . . . ,m}. Hence,
(E,A,B) is C-controllable, if and only if

∑m
i=1 rank(XiB) +

rank([E,B]) =
∑m

i=1 ri + n. Based on this fact and the
analysis below Theorem 2, Problem 1 has the same optimal
value as the following problem:

min
S⊆{1,...,n}

|S|

f (S) =
m∑
i=1

ri + n.

Theorem 3: The greedy algorithm based on f (S) (see
Algorithm 1) achieves an O(log(n))-approximation for
Problem 1 when the objective is to ensure C-controllability.
Proof: See the appendix. �
Corollary 1: Define a set function f̄ (S) on S ⊆ {1, . . . , n}

as

f̄ (S) =
m∑
i=1

rank(XiIS )
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The greedy algorithm based on f̄ (S) (similar to Algorithm 1,
the termination condition is f̄ (S) =

∑m
i=1 ri) achieves an

O(log rank(E))-approximation for Problem 1when the objec-
tive is to ensure R-controllability.
Proof: See the appendix. �

Algorithm 1 Approximation Algorithm for the Problem 1
Require: E,A
Ensure: Approximation of the minimal set S such that

(E,A, IS ) is C-controllable
1: Calculate Xi of (E,A), for i = 1, . . . ,m;
2: Initialize V ← {1, . . . , n}, S ← ∅;
3: while f (S) <

∑m
i=1 ri + n do

4: s← arg max ω∈V\S f (S ∪ {ω})− f (S);
5: S ← S ∪ {s};
6: end while
7: return S.

This section has identified some submodular functions
which facilitate approximation algorithms for Problem 1 on
singular systems. In fact, these results are consistent with
nonsingular systems. Algorithms in this section are the first
step towards the two-step greedy algorithm developed in the
next section.

VI. TWO-STEP GREEDY ALGORITHM FOR PROBLEM 2
We now proceed with Problem 2when there is a fixed number
of available inputs. A two-step greedy algorithm with prov-
able performance bounds will be proposed.

A. FEASIBILITY CONDITION AND NONSUBMODULARITY
For the ease of derivations, let rm+1 be the dimension of the
left null space of E (i.e., rm+1 = n− rank(E)), and Xm+1 be
the matrix consisting of a collection of linearly independent
row vectors which span the left null space of E . Then, from
Lemma 3, system (2) is C-controllable, if and only if XiB is
of full row rank for i = 1, . . . ,m+ 1.
The following proposition gives the feasibility condition

for Problem 2.
Proposition 2: Let rmax = max

1≤i≤m
ri. The minimal

number of inputs to ensure the C-controllability equals
max{rmax, n− rank(E)}.
Proof: The necessity is obvious. To show the sufficiency,

let0 be the vector consisting of all entries of B, and write B as
a function B(0) of 0. Denote lmax = max{rmax, n−rank(E)}.
Let P(i) = {0 ∈ Rn×lmax : XiB(0) is not of full row rank}.
It is easy to see that P(i) has zero Lebesgue measure in
Rn×lmax . Define a setP byP=Rn×lmax\∪

m+1
i=1 P(i).Asm+1 is

countable, P is open and dense in Rn×lmax . As a result, a real
valued matrix always exists inP , which makes the associated
system C-controllable. �

Proposition 2 generalizes the known result that, the
minimal number of inputs to guarantee controllability of
a standard state-space described system equals the maxi-
mum geometric multiplicity of the system state transition

matrix [13]. As a result of the above mentioned proposition,
Problem 2 is feasible if and only if l ≥ max{rmax, n −
rank(E)}. We denote lmax , max{rmax, n− rank(E)}. In the
following, we always assume that Problem 2 is feasible,
i.e., l ≥ lmax.

It is natural to consider the following function:

g(B̄) =
m∑
i=1

grank(XiB̄)+ grank([E, B̄])

where B̄ ∈ {0, ∗}n×l , as a performance function3 for
Problem 2. Since grank([E, B̄]) = n−rm+1+grank(Xm+1B̄),
an equivalent expression of g(B̄) is g(B̄) = n − rm+1 +∑m+1

i=1 XiB̄. It can be verified that, Problem 2 has the same
optimal value as the following problem:

min
B̄∈{0,∗}n×l

||B||0

s.t. g(B̄) =
∑m+1

i=1 ri.

In fact, although solutions to the above mentioned opti-
mization problem are structured matrices, which characterize
the zero-nonzero patterns of the input matrices, it has been
proven in [11] that once we have the feasible zero-nonzero
patterns B̄ of the input matrices, a numerical realization of B̄
making each XiB full of row rank, thus making the system
C-controllable, i = 1, . . . ,m + 1, can be determined in
polynomial time. Hence, in what follows, we mainly focus
on the zero-nonzero patterns of the input matrix B, which is
denoted by B̄.

With a little abuse of notation, given B̄1, B̄2 ∈ {0, ∗}n×l ,
we say B̄1 ⊆ B̄2, if B̄1ij 6= 0 implies B̄2ij 6= 0. By B̄2\B1 we
denote a structured matrix whose (i, j)th entry is nonzero only
if B̄2ij = ∗ and B̄1ij = 0. An element ēi,j ∈ B̄1 is such that
ē ∈ {0, ∗}n×l , and there is only one nonzero entry in ē, which
is the (i, j)th entry with (i, j) satisfying B̄1ij 6= 0. Let B̄full be
the n× l structured matrix whose entries are all nonzero. It is
easy to see that g(B̄) is a set function on B̄ ⊆ B̄full .4 However,
g(B̄) is usually neither submodular nor supermodular. This
can be seen from the following example.

Example 1: Consider E = I2, A =
[
2 0
0 2

]
. Let B̄1 =[

∗ 0
0 0

]
, ē1,2=

[
0 ∗
0 0

]
and B̄2 =

[
∗ 0
∗ 0

]
. It can be validated

that

g(B̄1 ∪ ē1,2)− g(B̄1) = 0, g(B̄2 ∪ ē1,2)− g(B̄2) = 1.

Consequently, g(B̄2 ∪ ē1,2) − g(B̄2) > g(B̄1 ∪ ē1,2) − g(B̄1)
while B̄1 ⊆ B̄2, which shows that g(B̄) is nonsubmodular.
On the other hand, when ri = 1 for i = 1, . . . ,m + 1, it is
easy to see that g(B̄) is submodular (but nonmodular), which
means that g(B̄) is usually not supermodular.

3In this paper, by performance function, we simply mean that whether the
constraint conditions of the associated optimization problem are satisfied can
be judged by checking the value of this function.

4For simplicity of notations, B̄ can either be seen as a set (of nonzero
entries), or a structured matrix.
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B. SUBMODULARITY-RATIO FAILS TO GIVE NON-TRIVIAL
PERFORMANCE BOUNDS FOR G(B̄)
Recently, submodularity-ratio, which is used to measure how
far a set function is from submodularity, has been adopted
to give some performance bounds for greedy algorithms for
nonsubmodular functions [27].
Definition 4 (Submodularity-Ratio, [27]): Let h̄ be a non-

negative set function onV . For any S,T ⊆ V , define h̄S (T ) =
h̄(T ∪ S) − h̄(S). The submodularity-ratio of h̄ is defined
as

γh̄ = min
S,T⊆V

∑
t∈T\S h̄S ({t})

h̄S (T )
.

The submodularity-ratio γh̄ is such that 0 ≤ γh̄ ≤ 1, and
is 1 if and only if h̄ is submodular. The γh̄ usually gives some
nontrivial performance bounds for the greedy algorithm of a
nonsubmodular function, but fails to so do when γh̄ = 0.5

However, the following example shows that, g(B̄) indeed has
a zero submodularity-ratio.
Example 2 Example 1 Continued, Zero Submodularity-

Ratio of g(B̄): Consider the parameters in Example 1. It holds
that g(B̄1 ∪ {ē1,2})− g(B̄1) = 0, g(B̄1 ∪ {ē2,1})− g(B̄1) = 0,
but g(B̄1 ∪ {ē1,2 ∪ ē2,1}) − g(B̄1) = 1, which means that
γg = 0.

C. A TWO-STEP GREEDY ALGORITHM
We propose an alternative for the simple greedy algorithm,
which is a two-step greedy algorithm. This algorithm is an
overall greedy algorithm, but consists of two steps. The first
step is to approximate a minimal set S such that (E,A, IS ) is
C-controllable. Here S is the set of directly actuated states.
The second step is to select elements from (B̄full)S,C , where
C = {1, . . . , l}, that is, to select elements from the rows
of Bfull indexed by S. The detailed description is given in
Algorithm 2. Remarkably, this algorithm has a submodularity-
ratio like provable approximation bound, as shown in the
following theorem.
Theorem 4: The two-step greedy algorithm achieves an

O(lmax log(n))-approximation for Problem 2.
To prove Theorem 4, we first prove the following two

intermediate results.
Lemma 6: If g(B̄) <

∑m+1
i=1 ri, then there exists ē ∈ B̄0\B̄,

such that g(B̄ ∪ {ē}) − g(B̄) ≥ 1, where B̄0 is defined in
Algorithm 2.
Proof: Suppose that g(B̄) <

∑m+1
i=1 ri. Then, there exists

at least one i ∈ {1, . . . ,m + 1}, such that grank(XiB̄) < ri.
Assume that grank(XiB̄) = r ′i < ri for one integer i. Let
R = {1, . . . , ri}, C = {1, . . . , l}. According to Lemma 5,
there is J ⊆ S, such that rank(XiR,J ) = |J | = r ′i , and
grank(B̄J ,C ) = |J | = r ′i . Since (E,A, IS ) is C-controllable,
one has that rank(XiIS ) = ri. Therefore, there exists at least
one j ∈ S\J , such that grank(X̄iR,J∪{j}) = r ′i + 1. Moreover,
grank(B̄J ,C ) = |J | implies that there is a C ′ ⊆ C satisfying

5The approximation ratio is O(γ−1h̄ log h̄(∅)
h̄(ST−1)

), where ST−1 is the
selected set at the second-last iteration of the greedy algorithm.

grank(B̄J ,C ′ ) = |J |, |C ′| = |J |. Hence, let ēj,i ∈ {0, ∗}n×l

be the structured matrix with its only nonzero entry being the
(j, i)th entry, where i ∈ C\C ′. Hence, grank(B̄ ∪ {ēj,i}) =
r ′i+1. From Lemma 5, it turns out that grank(Xi(B̄∪{ēj,i})) =
r ′i + 1, meanwhile j ∈ S. As a result, there exists ē ∈ B̄0\B̄,
such that g(B̄ ∪ {ē})− g(B̄) ≥ 1. �
The above lemma means that, before the termination of

Algorithm 2, in each iteration when an element is added
to B̄, the increase of the associated performance function
(i.e., g(B̄)) is at least one.

Algorithm 2 A Two-Step Algorithm for Problem 2
Require: E , A, a fixed number of inputs l (l ≥ lmax)
Ensure: Zero-nonzero patterns of the approximated sparsest

input matrices for Problem 2
1: Calculate Xi of (E,A), for i = 1, . . . ,m+ 1;

Step 1:
2: Approximate a minimal set S such that (E,A, IS ) is

C-controllable using Algorithm 1;
Step 2:

3: Initialize B̄0 ← (B̄full)S,C , B̄alg ← ∅, where C =
{1, . . . , l};

4: while g(B̄alg) <
∑m+1

i=1 ri do
5: ē← arg max ē∈B̄0\B̄alg g(B̄alg ∪ {ē})− g(B̄alg);
6: B̄alg← B̄alg ∪ {ē};
7: end while
8: return B̄alg

Lemma 7: Let B̄alg be the structured input matrix obtained
from Algorithm 2. Then, there is at most lmax nonzero entries
in each row of B̄alg.
Proof: Let C = {1, . . . , l}, R = {1, . . . , n}. Suppose that

there are lmax nonzero entries in the ith row of B̄, i ∈ R.
Denote the set of column indices of these nonzero entries
by I∗, I∗ ⊆ C . We will prove that, for each j+ ∈ C\I∗,
g(B̄ ∪ {ēi,j+}) − g(B̄) = 0. That is, adding ēi,j+ to B̄ can-
not increase the value of the performance function g(B̄).
Assume that there exists one j ∈ {1, . . . ,m + 1}, such that
grank(Xj(B̄ ∪ {ēi,j+})) − grank(XjB̄) = 1. Denote B̄e ,
B̄ ∪ {ēi,j+}. Suppose that grank(XjB̄e) = r∗. According to
Lemma 5, it indicates that there are J∗ ⊆ R and C∗ ⊆
C with |J∗| = |R∗| = r∗, j+ ∈ C∗ and i ∈ J∗,
such that rank(XjR,J∗ ) = r∗ and grank(B̄eJ∗,C∗ ) = r∗.
If grank(B̄eJ∗\{i},C∗\{j+}) < r∗−1, to make grank(B̄eJ∗,C∗ ) =
r∗, it must hold that grank(B̄J∗,C∗ ) = r∗. Then immedi-
ately grank(XjB̄) = r∗, which means that grank(XjB̄e) −
grank(XjB̄) = 0, causing a contradiction. On the other
hand, assume grank(B̄eJ∗\{i},C∗\{j+}) = r∗ − 1. Since
|C∗\{j+}| < lmax, and |I∗| = lmax, there always exits a
j∗ ∈ I∗\(C∗\{j+}), such that grank(B̄J∗,{j∗}∪(C∗\{j+})) =
r∗. Recalling that rank(XjR,J∗ ) = r∗, it holds that
grank(XjB̄) = r∗ by Lemma 5. This immediately leads to
that grank(XjB̄e) − grank(XjB̄) = 0, causing a contradiction
again. Hence, adding any extra element to the rows of B̄
with lmax nonzero entries cannot increase the performance
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function. Combined with Lemma 6, this proves the proposed
claim. �
Proof of Theorem 4: Let B̄alg be the structured input matrix

obtained from Algorithm 2, and S∗ and B̄∗ respectively the
optimal solutions to Problems 1 and 2. Recall that S is the set
returned from Algorithm 1. First, from Theorem 3, the num-
ber of nonzero rows of B̄alg is at least |S|, which is no more
than (1+log(n)) times of |S∗|. Second, fromLemma 5, it turns
out that ||B̄alg||0 ≤ lmax|S|. Obviously ||B̄∗||0 ≥ |S∗|. Hence,
it holds that ||B̄alg||0 ≤ lmax|S| ≤ lmax(1 + log(n))|S∗| ≤
lmax(1+ log(n))||B̄∗||0. �
Let us have a brief comparison between the two-step

greedy algorithm and the simple greedy one. The worst-case
approximation ratio O(lmax log(n)) for the former algorithm
has a form similar to the performance bound of using non-
trivial submodularity-ratios for nonsubmodular functions.
By contrast, currently we have not obtained a non-trivial
performance bound for the simple greedy algorithm. Suppose
that the second step of the two-step algorithm and the simple
greedy algorithm both terminate after Nite iterations. Then,
the ratio of size of total search spaces of these two algorithms
is n|S|+|S|lNitenlNite

, where S denotes the set returned in the first step
of Algorithm 2. Usually |S| is much less than n [2]. Hence,
this ratio is generally much smaller than 1. It is expected
that, the two-step greedy algorithm is more computationally
efficient than the simple greedy one. Our numerical experi-
ments in the next section will show that, the two-step greedy
algorithm almost has the same approximation performance as
that of the simple greedy one, while is more computationally
efficient.
Remark 2: By changing g(B̄) to be ḡ(B̄) =

∑m
i=1 ri,

Algorithm 2 can be directly modified to fit for selecting
the sparsest input matrices with a given number of inputs
to ensure R-controllability. Details are omitted due to its
obviousness.

VII. NUMERICAL RESULTS
We present two numerical examples to show the main results
of this paper.

First, we calculate a descriptor system defined by an elec-
tric circuit in [20]. In this example, the system dynamics
are defined by Eẋ(t) = Ax(t) + Bu(t), where Bu(t) are
the alternative input options, and the system state x(t) =
[v1(t), v2(t), v3(t), v4(t), i1(t), i2(t), i3(t), i4(t)] is defined by
the voltage and current at each element of the circuit network
of Fig.1. We have

E =



0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

FIGURE 1. An electric circuit diagram.

FIGURE 2. Averaged running time (a) and input sparsity (b) when
l = lmax = 3.

A =



0 1/L1 0 0 0 0 0 0
0 0 0 0 0 1/C 0 0
0 0 0 1/L2 0 0 0 0

−1/R1 0 0 0 1 0 0 1
0 0 0 0 0 1 1 −1
−1 1 0 0 0 0 0 0
0 0 1 1 0 R2 0 0
0 1 1 0 0 R2 0 0


.

For each element of the series circuit, R1(R2),L1(L2),C are
the resistance, inductance and the capacitance respectively.
Let the parameters be R1 = R2 = 100,L1 = L2 = 10,
C = 200, where their physical units are standard
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FIGURE 3. Averaged running time (a) and input sparsity (b) when
l = lmax + 1 = 4.

units and here omitted. The goal is to select the spars-
est input in order to ensure that all states in the circuit
network are of the R-controllability and C-controllability.
For the pair (E,A), there are three generalized eigenvalues
s1 = 0.0, s2 = 10.0, s3 = −5.0 × 10−5, and one
collection of left eigenvectors is given by {Xi|3i=1}, where
X1 = [−10.0, 0.0, 10.0, 0.0, 0.0, 0.0,−1.0, 1.0], X2 =
[100.0,−1.0, 100.0, 1000.0, 1000.0,−10.0,−10.0, 2.5 ×

10−5] and X3 = [−2.5 × 10−4,−1.0,−2.5 ×
10−4, 0.0, 0.0, 0.0, 2.5 × 10−5, 2.5 × 10−5]. Implementing
Algorithm 2, we obtain the input matrices as following:

B1 =
[
1 0 0 0 0 0 0 0

]ᵀ
for R-controllability, and

B2 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



FIGURE 4. Averaged running time (a) and input sparsity (b) when
l = lmax + 2 = 5.

for C-controllability. Substitute the above B1 and B2 into
Lemma 1 and Lemma 2 respectively, by Lemma 3, it can
be found that rank(sjE − A,Bi) = 8 for j = 1, 2, 3, i =
1, 2, and rank[E,B2] = 8. This means that, the associated
system is R-controllable under the input matrix B1 (corre-
sponding to putting a voltage source on the resistor R1), and
C-controllable under the input matrix B2 (corresponding to
putting a voltage source on the inductance L2 and four current
sources to control the currents i1, i2, i3 and i4).

Next,we present some numerical results to show the effi-
ciency and effectiveness of the proposed algorithms in this
paper. To compare our two-step greedy algorithm with algo-
rithms in the existing literature, consider the problem of
constructing the sparsest input matrices for controllability of
nonsingular systems, i.e., E = I . We generate system state
transition matrices using the same method as in [9], which
can generate square matrices with multiple eigenvalues.

More precisely, the maximum geometric multiplicity of
eigenvalues is set to be 3, which means lmax = 3. For each
dimension of states n, ranging from 10 to 400, 10 independent
plants are generated. For each plant, set the number of inputs l
to be 3, 4 and 5 respectively, and use the graph coloring
based algorithm proposed in [9], Algorithm 2 and the simple
greedy algorithm (based on g(B̄)), respectively, to determine

VOLUME 8, 2020 6599



Y. Zhang, W. Zhang: Sparsest Input Selection for Controllability of Singular Systems via a Two-Step Greedy Algorithm

the zero-nonzero structure of input matrices that ensure con-
trollability. The averaged computation time, and the averaged
sparsity of input matrices are given in Figs. 2, 3 and 4 respec-
tively for l = 3, 4 and 5. All computations are implemented
with a personal notebook computer with Intel(R) Core(TM)
i7-5500U CUP and 12.0 GB RAM. The corresponding
codes for numerical experiments could be found in the
Github [28].

From Figs. 2, 3 and 4, the two-step greedy algorithm
achieves comparable approximation performances to the sim-
ple greedy algorithms, while costs much less time than the
latter algorithm. The graph coloring based algorithm in [9]
has almost the same time consumption as that of the two-
step greedy algorithm. However, when the system dimension
increases or the number of independent inputs l gets closer
to lmax, its approximation performances seem not as good as
those of the two-step greedy algorithm. It can be declared
that, the two-step greedy algorithm may be preferable, as it
achieves better trade-off between the approximation perfor-
mances and time complexity.

VIII. CONCLUSION
The problem of determining the sparsest input matrices with
given number of inputs to ensure controllability of sin-
gular systems is considered. It is proven that determining
the sparsest input matrices to ensure R-controllability and
C-controllability is NP-hard, even when the system ‘singular-
ity’ is arbitrarily large. Because of lack of submodularity and
a nonzero submodularity-ratio, it is hard to give a non-trivial
approximation bound of the simple greedy algorithm for this
problem. Therefore, a two-step greedy algorithm is proposed.
This algorithm has much less search space than the simple
greedy one, and remarkably, has a submodularity-ratio like
provable approximation bound. Through numerous numer-
ical simulations, it is shown that this algorithm achieves
better trade-off between the approximation performances and
computation efficiency compared to the existing methods.
As for future work, it is interesting to derive some non-trivial
approximation bounds for the simple greedy algorithm in
solving the problems in this paper.

APPENDIX
SOME TECHNICAL PROOFS
Proof of Lemma 3: Since the solvability condition holds, there
are only a finite number of complex valuesmaking sE−A row
rank deficient. According to Lemma 1 of [29], a composite
matrix [M1,M2] is of full row rank, if and only if TM2 is of
full row rank, where T consists of the maximum number of
linearly independent row vectors spanning the left null space
ofM1. Applying this lemma on [siE−A,B] and noting that Xi
is a basis matrix of the left null space of siE−A, the required
result then follows immediately. �
Proof of Proposition 1: Partition P as P = col{P1,P2}with

P1 ∈ Rn1×n, P2 ∈ Rn2×n. Then, B1 = P1BS , B2 = P2BS .

Hence,

dimRs(BS )

= dim〈A1|B1〉 + dim〈E2|B2〉

= dim〈A1|P1BS〉 + dim〈E2|P2BS〉.

According to Theorem 7 of [3], dim < A1|P1BS > and dim <
E2|P2BS > are both submodular on S ⊆ {1, . . . , l}. Since the
summation of two submodular functions is still submodular,
dimRs(BS ) is submodular on S ⊆ {1, . . . , l}. �
Proof of Theorem 3 and Corollary 1: From Proposi-

tion 2.1.9 of [26], given a constant matrixM with l columns,
rankMS is submodular on S ⊆ {1, . . . , l}. Notice that the
summation of two submodular functions is still submodular.
Based on these facts, f (S) and f̄ (S) are both submodular func-
tions. Noticing that f (S) and f̄ (S) are both non-decreasing,
the performance bounds in Theorem 3 and Corollary 1 then
follow from Lemma 4. �
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