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ABSTRACT Coordinated beamforming is very efficient at managing interference in ultra dense network.
However, the optimal strategy remains as a challenge task to obtain due to the coupled nature among densely
and autonomously deployed cells. In this paper, the deep reinforcement learning is investigated for predicting
coordinated beamforming strategy. Formulated as a sum-rate maximization problem, the optimal solution
turns out as a balanced combination of selfish and altruistic beamforming. As the balancing coefficients
depend on the beamforming vectors of all the cells, iterations are inevitable to get the final solution.
To address this problem and improve efficiency, deep reinforcement learning (DL) is proposed to predict
the balancing coefficients. Specifically, the agent, on behalf of a base station-user pair, will rely on Deep
Q-network to learn the highly complex mapping between the balancing coefficients and signal-interference
environment of each user. Subsequently, the beamforming vectors are obtained efficiently through the learned
balancing coefficients. Due to the distinguished feature in exploration of the beamforming parameterization,
the complexity problem brought by predicting the beamforming matrix directly is avoided. The performance
of the proposed scheme is investigated by experiments with arguments regarding multiple input and multiple
output configuration, shadow fading and state design. Simulation results indicate the facts that: 1) the
theoretically infinite strategy space can be discretized with limited levels and granularity;2)it is feasible
to approximate the complex mapping by Q-learning for wireless channel consisting both the large and small
scale fading, 3) the balancing coefficients only concerns large scale fading, so the coordinated beamforming
can be decomposed to two sub-problems with different time scales: parameterization at large time scales and
instant beamforming based on balancing coefficients.

INDEX TERMS Deep learning, beamforming, ultra dense network (UDN), Q-learning, interference
management.

I. INTRODUCTION
The ultra dense network (UDN) is the key enable technology
for the future mobile communication system such as 5G
and beyond to meet the exponential demand growth of data
traffic [1] and mobile multimedia services [2], [3]. Within
the architecture of UDN, a large amount of small cells are
deployed autonomously around the served users, eventu-
ally, system performance in terms of capacity, coverage, and
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service efficiency can be improved due to the ever decreased
distance between the transmitter and receiver. However, when
cells density continues to increase, UDN will suffer from
severe issues such as bad inter cells interference and complex
mobility management problem. While the later problem can
be circumvented via separation of control and data planes,
interference management faces more challenges. To solve
the problem, traditional means such as game theory, graph
theory, and optimization method have been employed. Under
the framework of optimization approach, coordination for
UDN can be modeled as utilization maximum problem in
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multi-cells, then scheme based on joint multi-dimensional
resource allocation can be obtained by, for example, convex
optimization in some case. Although coordination based on
optimization such as beamforming or power control among
cell cluster can be promising, the optimal solution is ordi-
narily difficult to get, because the denser and larger scale the
UDN is, the more and stricter constraints are imposed on the
network performances and resource usages of the optimum
problem. As a compromise, some kind of sub-optimal strat-
egy or iterative optimization approach is employed [1], [4].

Recently, deep learning (DL) has shown great poten-
tials for improving the performance in communication sys-
tem. At present, much attempts have been made to apply
DL in areas of physical layer [5], resource allocation such
as power control [6], [7], and beamforming [8]–[10]. For
instance, [6] applied the full connected deep neural net-
work (DNN) to approximate the weighted minimum mean
square error (WMMSE) power allocation algorithm. Exper-
iment results indicate that DNN can approximate WMMSE
algorithm with high approximation accuracy and less compu-
tation complex. Reference [7] proposed to solve the transmit
power control problem by using convolution neural net-
work (CNN). The objective is to maximize spectrum effi-
ciency (SE) and energy efficiency (EE). Simulation results
show that the CNN-based power control method can achieve
almost the same or even higher SE and EE than conven-
tional power control scheme with much less computation
time. Reference [8] dealt with transmitter beamforming based
on an outage-based scheme, the proposed work attempts to
cope with channel uncertainty at base station (BS), how-
ever, only simple scenarios assumptions of point-to-point and
single group multicasting were adopted. In [9], a coordi-
nated beamforming scheme based on neural network model
for mmWave BS was proposed. The DL is supplied with the
OFDM omni-received sequences from the coordinated BSs
in uplink to predict the RF beamforming codeword in down-
link. To meet the real time applications requirements, [10]
explores the beamforing structure of uplink-downlink duality,
and relies on a CNN network to predict the virtual uplink
power allocation, from which the final beamforming matrix
can be obtained. In contract to approaches in [8]–[10] prevent
the neural network from predicting directly the beamforming
matrix, as a result, complexity is reduced.

Despite the progress made in DL based coordinate beam-
forming, it is noticed that such efforts mainly focus on
approaches regarding only single cell scenario, but relatively
speaking, approach for multi-cells is scarce in literature.
In our opinion, scheme for multi-cells is more beneficial and
practical for UDN. Motivated by this finding, we propose to
use deep reinforcement learning to perform the multi-cells
coordinated beamforming in this paper.

Traditionally, multi-cells beamforming can be in the form
of coordination and cooperation. In the beamforming coor-
dination such as Cooperative Beamforming(CB) in Coor-
dinated Multi-Point downlink transmission(COMP) [14] in
LTE-Advanced, the cells will share control information each

other firstly, then apply classical beamforming algorithm
such as maximal ratio combining (MRC) [14], zero forcing
(ZF) [11], and block diagonalization (BD) [12], [13] to reduce
inter cell interference. In the beamforming cooperation such
as Joint Processing(JP) in COMP [14], the cells will share
both control and data information each other, then beam-
forming algorithm such as virtual SINR (VSINR) in [15] can
be employed. Moreover, aiming at maximizing different sys-
tem objective, such as spectrum efficiency (SE) [16], energy
efficiency (EE) [17], or content distribution efficiency [18],
the multi-cells beamforming can be formulated as optimum
problems while guaranteeing quality of experience (QoE).
Based on the formulated model, optimal or sub-optimal solu-
tions can be obtained by convex optimization or heuris-
tic method. For 5G heterogeneous network with massive
MIMO(multiple input and multiple output), new beamform-
ing structure appeared such as hybrid beamforming (HBF)
proposed in [19]. HBF involves beamforming at analog and
digital stages concurrently in order to reduce the complexity
and cost due to the large number of antennas.

Distinguished from the traditional or single cell
approaches, we focus coordinated beamforming for multi
cells UDN based on DL approach. Specifically, the
beamforming is formulated as a system sum-rate maximum
problem. As the problem is non-convex, it is solved by
optimum condition with standard theory of Lagrange dual-
ity. The obtained optimum beamforming vectors for multi
cells couple with each other, moreover, each vector depends
on coefficients balancing the selfish and altruistic strategy.
To refrain from iterations in calculating the coefficients,
we propose to use DL to learn the balancing coefficients
which parameterize the beamforming vectors. More pre-
cisely, the Deep Q-network is applied to approximate the
mapping between the strategy equilibrium and observations
of each user, including desired channel state information and
interference levels towards other users. Accordingly, each
serving cell, on behalf of its scheduled user, acts as an agent,
and by deep learning, the agent will get the best strategy in
an offline style. Based on the learned strategy and observed
information, the agent will automatically search and react
with a balanced beamforming strategy between selfish and
altruistic. Moreover, as balancing coefficients only concern
large scale channel fading, the corresponding beamforming
can be decomposed to two sub-problems with different time
scales: 1)large time scales parameterization at different levels
for MIMO configurations; 2) instant beamforming based
on balancing coefficients. Eventually, the proposed scheme
avoids direct estimate of complex beamforming matrix.

The contributions of this work can be summarized as
follows.

1) We propose to use deep reinforcement learning to
determine the balancing coefficients of selfish and
altruistic strategy in coordinated beamforming.

2) The mapping function between the observations of
each user and the balancing coefficients which deter-
mine the beamforming can be learned in large time
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scales by a Deep Q-network. Based on the learned
mapping function, discretized coefficients are properly
selected for instant beamforming according to the envi-
ronments of base station and user pair.

3) The performance of the proposed scheme is simulated
and evaluated by experiments with arguments regard-
ing MIMO configuration, shadow fading and state
design options. By simulation results, we find that the
balance coefficients depend on the large scale fading
of the channels, the simulation results also confirm the
feasibility and effectiveness of the proposed method.

The paper is organized as follows. Section II introduces the
system model. In Section III, the optimization problem and
its resulting solution are presented. Section IV is devoted to
the Deep Learning design, and Section V presents simulation
results. Finally, Section VI concludes the paper.
Notation: The following notations are used: ||X||2: 2-norm

of X, XH : Hermitian transpose of X, |X |: cardinal number of
set X , 5⊥X = I− XH (XXH )−1X, 5X = XH (XXH )−1X.

II. SYSTEM MODEL FOR BEAMFORMING IN UDN SYSTEM
We consider downlink UDN consisting ofN cells, each with
one base station(BS) and one served user(UE). For conve-
nience of presentation, the same index is assumed for both the
BS and its served user. Further, each BS has Nt antennas and
each UE has Nr antennas, while for multiple input and sin-
gle output (MISO) configuration, each UE has one antenna.
We assume frequency reuse one in the system, so there will
be severe inter cell interference across the cells. To combat
inter cell interference, beamforming coordination across Nc
cells in a cluster is sought to suppress the interference.

We denote by Hki ∈ CNr×Nt the channel from BS i to UE
k , both large and small scale fading components are included.
The large fading includes path loss and shadowing. The
small fading ismodeled as independent identically distributed
complex Gaussian random process with zero mean and unit
variance. The signal to noise plus interference ratio of UE k
with noise power of σ 2

k is

γk =
|vHk Hkkwk |

2P∑Nc
j 6=k |v

H
k Hkjwj|

2P+ σ 2
k

, (1)

where wk ∈ CNt×1 is the BS transmitting beamforming
vector and vk ∈ CNr×1 is the UE receiving beamforming
vector, P is the transmit power of BS.

Assume the goal is to maximize the sum-rate of the system
with constraint ‖wk‖

2
2 = 1, then the beamformimg vectors

can be obtained by solving the optimization problem:

Max
V,W

∑Nc

k=1
Rk

s.t. ‖wk‖
2
2 = 1, (2)

where Rk is the achievable rata of user k

Rk = log(1+ γk (V,W)), (3)

V and W are matrices of vk and wk respectively.

Problem (2) is well known to be NP hard, to circumvent
the obstacle, we resort to approach harnessing standard the-
ory of Lagrange duality, and get the final solution through
characterizing the optimum condition of Lagrange function.

III. COORDINATE BEAMFORMING ALGORITHM BASED
ON BALANCED STRATEGY
In this section, the beamforming algorithm based on the
optimum condition with standard theory of Lagrange duality
is first outlined. Then based on the structure of the obtained
solution, different levels of parameterization are presented for
MIMO,MISO, and special case of 2×1MISO configurations
respectively.

A. THE COORDINATE BEAMFORMING ALGORITHM
First, let define the Lagrangian function as follows:

L(µ,W) =
∑Nc

k=1
Rk −

∑Nc

k=1
µk (1− ||wk ||

2
2), (4)

where µk is the Lagrangian multiply of the constraint for wk
in (2), µ is the vector consisting of µk s.
Then, if we take the partial derivative of the Lagrangian

function with respect to wk first, then we can express the
Karush-Kuhn-Tucker (KKT) condition ∂

∂wHk
L(µ,W) = 0 as

follows [4],

1
/
ln 2∑Nc

j=1 |v
H
k Hkjwj|

2P+ σ 2
k

HH
kkvkv

H
k HkkwkP− µkwk

=

∑Nc

j 6=k

γj
/
ln 2∑Nc

j=1 |v
H
j Hjiwi|

2P+ σ 2
j

HH
jkvjv

H
j HjkwkP. (5)

By rearranging the terms in (5), (5) can be further
expressed as an eigenvector problem as follows.

(Ek −
∑Nc

j 6=k
λjkBjk )wk = µkwk , (6)

where Ek = ω−1k HH
kkvkv

H
k Hkk , Bjk = ω−1k HH

jkvjv
H
j Hjk , and

ωk = ln 2(
∑Nc

j=1

∣∣vHk Hkjwj
∣∣2 + σ 2

k /P).
The coefficient λjk in (6) is defined as:

λjk =
zj∑Nc

i=1,i 6=j L
i
j + σ

2
j

ωk

ωj
, (7)

where zj = |vHj Hjjwj|
2P is the received signal of UE j from

BS j, L ij = |v
H
j Hjiwi|

2P is the signal leakage from BSs i to
UE j.

Once coefficients λjk are given, (6) is an eigenvector prob-
lem, the optimal beamforming vector wk is obtained by

wk = VMax
G (Ek −

∑Nc

j 6=k
λjkBjk ) (8)

where VMax
G (X) is the eigenvector of matrixXwith the largest

eigenvalue.
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TABLE 1. Algorithm1: Iterative beamforming for MIMO.

B. PARAMETERIZATION OF THE BEAMFORMING FOR
MIMO BY BALANCING COEFFICIENTS
It is noted from (8) that the beamforming vector wk is
determined by coefficients λjk , j 6= k . Given the determined
coefficients, wk can be obtained directly by eigenvalue com-
putation. However, (7) indicates that λjk depends on both
wk of user k and wj, j 6= k of other users. In other word,
the optimal bamforming vectors wk ,∀k are coupled each
other in nature. To address this issue,wk is updated iteratively
by (8) with other wj, j 6= k fixed till the convergent results
are reached. The iteration based beamforming algorithm is
summarized in Algorithm 1 in Table 1.

From (8), it is also noted that coefficient λjk plays a
balancing role in the beamforming coordination strategy.
Specifically, for case λjk = 0, the beamforming vector corre-
sponds to the traditional maximum-ratio transmission (MRT)
scheme, which selfishly increases the desired signal of user k
with none consideration of interference to other users j 6= k .
On the other side, for case λjk = ∞, the beamforming effort
is devoted to decrease the interference to users in other cells.
The later corresponds to the classical Zero Forcing Beam-
forming(ZF) scheme. So λjk in (8) will guarantee the system
sum-rate by balancing the selfish and altruistic strategy.

C. PARAMETERIZATION OF THE BEAMFORMING FOR
MISO
For MISO configuration which can be regarded as a simpli-
fied case of optimization problem in (2), the beam combiner
vk = 1,∀k in this case. As a result, the optimal beamforming
vector wk in (6) can be rewritten as follows.

wk = µ
−1
k

(Ek −
∑Nc

j=1,j 6=k
λjkBjk )wk

= (µkωk )−1(hHkkhkkwk −
∑Nc

j=1,j 6=k
λjkhHjkhjkwk )

=

∑Nc

j=1
ζjkhHjk , (9)

where ζjk = (µkωk )−1λjkhjkwk j 6= k , and ζkk =

(µkωk )−1hkkwk are complex numbers. hjk ∈ C1×Nt is the
channel vector from base station k to user j.

Equation (9) indicates that the optimal beamforming vector
wk in MISO configuration can be parameterized by complex
numbers ζjk , that is, theweighted combination of hjk ∈ C1×Nt

by ζjk . Actually, (9) has been pointed in [21] for parameter-
ization of the Pareto boundary. The Pareto boundary [21] is
the outer boundary of the achievable rata regionR defined as

R = ∪|wk |=1,∀k (R1 · · · ,Rk , · · · ,RNc ). (10)

Based on the definition of the Pareto region, the outer
boundary of R corresponds to optimum points where one
user’s rate cannot be increased without decreasing the rate
of other users.

D. PARAMETERIZATION OF THE BEAMFORMING FOR
2×1 MISO
For special case of 2×1MISO configuration, the coefficients

λ21 =
wH
1 h

H
11h11w1P

wH
2 h

H
22h22w2P+ wH

1 h
H
21h21w1P+ σ 2

2

×
wH
1 h

H
11h11w1P+ wH

2 h
H
12h12w2P+ σ 2

1

wH
1 h

H
21h21w1P+ σ 2

2

, (11)

and

λ12 =
wH
2 h

H
22h22w2P

wH
1 h

H
11h11w1P+ wH

2 h
H
12h12w2P+ σ 2

1

×
wH
2 h

H
22h22w2P+ wH

1 h
H
21h21w1P+ σ 2

2

wH
2 h

H
12h12w2P+ σ 2

1

. (12)

Considering that
∏

hH21
+
∏
⊥

hH21
= I and γhH21 =

∏
hH21

hH11,
where γ is a complex number, the optimal beamforming
vectors wk , k = 1, 2 can be expressed as

wk = λkwMRT
k + (1− λk )wZF

k , (13)

where wMRT
k and wZF

k are the MRT and ZF beamforming
vectors respectively. λk , k = 1, 2 are real value parameters
in the range of 0 ≤ λk ≤ 1.

Take k = 1 as an example,

wMRT
1 =

hH11
||h11||

, (14)

and

wZF
1 =

5⊥
hH21

hH11

||5⊥
hH21

hH11||
(15)

Equation (13) has been proved differently in [21] and [22]
respectively. It indicates that the optimal beamforming vector
is a balanced combination of MRT and ZF vectors in the
beamforming vectors space for special case of a two users
MISO system.

Now, if we look back and make an observation
of (8) and (9), we will find that the beamforming vector
obtained from (13) is at the highest level in term of param-
eterization with balancing coefficients, the parameterization
level ascends from MIMO to two users MISO configuration.
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Based on the observation made above, we conclude that
the balancing coefficients are determinant of coordination
strategy for beamforming algorithm. However, to get the bal-
ancing coefficients such as (7), iteration among different cells
is inevitable, which will increase complexity in implement
and introduce additional delay in signaling.

To remedy the issue brought by iteration, the beamforimg
problem (8) is decomposed to two sub-problems with differ-
ent time scales:

1) Determine balancing coefficients at large time scales;
2) Instant beamforming based on balancing coefficients.
In next section, deep reinforcement learning is introduced

as an alternative approach to approximate the complex map-
ping function in (8) and (13).

IV. DEEP REINFORCEMENT LEARNING BASED
BEAMFORMING
Reinforcement learning (RL) is widely used in machine
learning area. Under the infrastructure of RL, the agent will
interact with environment, and during this process, it will
acquire the best action strategy through learning from the
exploration and exploitation of the environment. In the sense
of RL learning, both activities are based on the experiences
of the agent, however, exploration are based on experience
which the agent has never been come across previously in the
space of state-action pairs, on the other hand, exploitation is
based on the experiences so far.

In the literature, the RL can be classified to three cate-
gories: (1) critic only; (2) actor only; (3) critic and actor.
Q-learning, which falls into the critic only category, is a
widely used algorithm in RL for the agent to learn the best
action strategy. The action strategy, also called policy, is a
sequence of actions in each upcoming time instants of an
episode:

π = {at = ϕt (st ), t = 1, 2, · · · }, (16)

where ϕt (st ) is the mapping function from the state to action.
In Q-learning, a Q-function is defined as Q(st , at ), which
reflects the value of action at in state st . So an optimal
Q-function Q∗(st , at ) means that the agent will get the max-
imum expected rewards when it takes the action at in state
st following the optimal policy π∗. The objective of the
Q-learning is to find the best policy π∗ which achieves
the maximum expected rewards. In this paper, the mapping
function ϕt (st ) in Q-learning is utilized to map the complex
relationship in (8) and (13) between balancing coefficients
and signal-interference environment.

For multi agents learning process, distributed or coordi-
nated Q-learning can be assumed. In distributed Q-learning,
each agent learns independently without sharing of policy
information each other, and the target agent regards other
agents as part of the environment. On the contrary, in coor-
dinated Q-learning, portion of the policy information will
be shared among agents taking part in the coordination,
and the convergence time can be reduced by providing the
learned policy to a new agent for initialization. However,

extra signal overhead is required for coordinated Q-learning
scheme. Moreover, states and actions among the agents
should be updated with synchronization, otherwise, oscilla-
tion and instability will occur in the system. Based on this
consideration and the additional observation in (9) that only
partial observations of the channels hjk ∈ C1×Nt are required
to calculate the optimal beamforming vectorwk , in this paper,
distributed Q-learning is assumed. Specifically, each BS in
the cluster is considered as an agent, which will interact
with the environment. The environment, on the other hand,
corresponds to the UDN which excludes the target agent. For
deep reinforcement learning framework formulation, the key
elements are detailed in the following sub-sections.

A. STATE SPACE
Under the deep reinforcement learning framework, the state
will characterize the environment the agent faces. The agent
interacts with environment through action and reward based
on the observed state. To parameterize the optimal beam-
forming vector, the state is defined differently for MIMO
and MISO configuration, as each configuration possesses
different parameterization level.
MIMO Configuration:
The state space Sk of the agent k is defined as:

Sk = {z,Lk}, (17)

where z is the signal strength vector {zk = log(||Hkk ||2),
k = 1, · · · ,Nc}, Lk = {log

(
||Hjk ||2

)
, j 6= k} is the

signal leakage vector of agent k towards other UEs. Since
the channel amplitude varies across several orders in magni-
tude, the logarithmic form in the state definition is beneficial
for quick convergence of the DQN network during training
process.
MISO configuration:
The state space of each agent Sk is defined as:

Sk = {zk ,Lk}. (18)

In (18), only signal strength of desired user k is consid-
ered compared with (17). Lk = {log

(
||hjk ||2

)
, j 6= k}

is defined similarly as in MIMO configuration. The reason
for this design comes from the observation of (9) that the
beamforming vector of user k is the weighted combination
of hjk ∈ C1×Nt , j = 1 · · ·Nc. Based on this observation,
the logarithmic form of channels from the BS k to all the
users are taken as elements of the state space. On the con-
trary, for MIMO configuration, as balance coefficient in (7)
depends on the receiver combiner vectors, so the signal
strength of other users in the environment are also consid-
ered in (17) to reflect the effect of the receiver combiner.
The rationale of the different design for different MIMO
configuration relies on the fact that higher level of param-
eterization exists in beamforming structure in MISO, so less
information is required in the state space to determine the best
solution.
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B. ACTION SET
At each instant t , the agent in state st will take an action at
from the action set A. In this paper, the action set A is a
discretized balancing coefficients for the parameterization in
the structure of the beamforming vector. As different MIMO
configuration possesses different level of parameterization,
different action space is defined accordingly.
MIMO configuration:
Theoretically, the action space for (7) seems infinite, rang-

ing from λjk = 0 to λjk = ∞. So it is a challenge to discretize
the large space with limited levels and granularity while trade
off the performance loss against the complexity. To cope
with this issue, we discretize the balancing coefficient based
on its distribution probability by examining the statistics
from experiment result in Section V. Based on the statistics,
the action space is defined as:

ak =
{
akj , j 6= k

}
(19)

where

akj = {0, 1, · · · , |A| − 1} . (20)

Correspondingly, λjk = 10log(λ
min
jk )+akj δ , and

δ = (log |λmax
jk | − log |λmin

jk |)/|A|. (21)

λmax
jk and λmin

jk are the maximum and minimum value of the
truncated distribution in λjk .
2× 1 MISO Configuration:
For special case of 2 × 1 MISO configuration, the action

space is a discretized balancing coefficients of λk , k = 1, 2
in (13). As the value of λk , k = 1, 2 is in the range of
0 ≤ λk ≤ 1, k = 1, 2, even discretization based on a fixed
granularity 1 = 1/35 is assumed with 36 levels in total:

ak = {1, · · · , 36, for λk = 0, 1, · · · , 351} (22)

The selected action at by an agent in state st is based on
a decision policy π , which will be learned by the agent from
the reward fuction defined in the next sub section.

C. REWARD FUNCTION
The reward function will reflect the objective of the UDN
system, the agent will receive a reward from environment as
the degree of satisfaction to the action. Based on the objective
in (2), the reward is defined as the system sum-rate, which is
expressed as:

r =
∑Nc

k=1
Rk . (23)

With deep learning, the agent will get the maximum return
if it follows the optimal decision policy based on the obser-
vation of the environment. In deep learning, the return is cal-
culated as the expected cumulative discount rewards defined
as Gt = E[

∑
∞

n=0 β
nrt+n], where β is the discount rate, and

E[•] is the expectation.
To get the optimal decision policy, we adopt deep

Q-learning scheme. The core concept of Q-learning is the

Q-function Qt (st , at ), which is defined as the ultimate
expected action value the agent will receive if it follows a pol-
icy π depending on the state thereafter. The optimal decision
policy follows the optimal Q-function actually. In practice,
the optimal Q-function is obtained with Bellman equation by
iterative updates as follows:

Qt+1(st , at )=Est+1 [rt + β max
at+1

Qt (st+1, at+1)|st , at ]. (24)

The remarkable features of Q-learning is that it is model
free, which means that it can get the optimal Q-function
by (24) without knowledge of transition probability from
one state to others. It has been shown that the iterative
updates are guaranteed to converge to the optimal Q-function
when t →∞.

In this paper, the Q-function is utilized to approximate
relations between wireless environment states and balancing
coefficients in (8), and (13). Once the optimal Q-function
is obtained, the agent will select the best λjk based on the
wireless states for the instant coordinate beamforming across
the cells.

D. DEEP Q-NETWORK
In case the number of discrete states and action spaces
are small, Q-table can be used for the Q-function iterative
updates. As the name suggests, Q-table is a table with dimen-
sions of |A| rows and |S| columns. The content of the Q-table
corresponds to the value of a specific state-action pairs. Once
the Q-table is obtained from training stage, the optimal policy
follows the output of the Q-table. But for the DL approach
investigated in this paper, the dimension of action spaces is
Nc × (Nc − 1)× |A| for (19), so the action space scales with
N 2
c . Moreover, the state value in (17) is continues, apparently,

Q-learning based on Q-table is not affordable, so we resort to
Deep Q-network (DQN) in [23].

In DQN, deep neural networkwithweights {θ} is employed
to approximate the Q-function, and the weights {θ} are
obtained by training algorithm with data samples in the
offline training stage. At the online testing stage, the trained
DQN will output the value of Q-function given the state as
the input. To update parameter weights {θ}, the DQN use a
mean-squared error as loss function, and the loss function is
defined as:

Losst (θ ) =
∑

(st ,at )∈D
(y− Q(st , at , θ))2, (25)

whereD is the data sample set for training, y is the target value
defined as

y = rt +max
at∈A

Qold (st , at , θ−), (26)

{θ−} are the parameter weights in previous iteration, Qold
is generated by target network for producing target value.
With loss function, the parameter weights {θ} are updated as
follows:

θt+1 = θt + α∇θtLosst (27)
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FIGURE 1. Principle of the proposed beamforing based on DQN.

where ∇θtLosst is the loss function gradient with respect to
parameter weights {θ},αis the step size.

E. DEEP Q-NETWORK BASED BEAMFORMING
The Deep Q-network based beamforming is achieved by
training the DQN agent to get the balancing coefficients with
the experiences during the interactions with the environment.
The principle is showed in Fig.1.

To train the agent, the emulator is firstly constructed which
is a UDN with BSs and served UEs distributed under the
coverage of their serving base station. Based on the distance
between the BS and UE pair, the channel can be generated
with the path loss model assumed. The training process will
consist of fixed number of episodes. During each episode,
the training proceeds with the following procedures: 1) one
of the BS and UE pairs is selected randomly as agent, and
other pairs in the UDN act as the environment; 2) the channel
of each pair is generated independently; 3) a random action
is selected for the agent from the action sets; 4) the beam-
forming vectors for users in the environment are initialized
with classical algorithm such as ZF; 4) the beamforming
vectors for agent is calculated based on the selected action;
5) the beamforming vectors for other users are calculated
with the balancing coefficient in (7) forMIMO configuration;
6) the observation and reward are produced and fed to the
DQN by the environment; 7) based on the observation and
reward, the DQN determines the action according to the
δ-greedy algorithm; 8) the DQN records the Quadruple et =
{Skt , a

k
t , rt , S

k
t+1} in thememory poolD, and updates theDQN

parameters with random samples from D.
The proposed training algorithms are outlined in

algoritm 2, algorithm 3, and algorithm 4 for MIMO, MISO
and 2 × 1 MISO configuration respectively in the following
tables.
MIMO Training
MISO training
2× 1 MIMO Training

V. SIMULATION RESULTS
In this section, the simulation layout is first described, after-
wards, the simulation results will be presented.

FIGURE 2. Distribution of base stations and users.

TABLE 2. Algorithm2: Training DQN for MIMO beamforming.

A. SIMULATION LAYOUT
A UDN network with cell radius of 50 meters is simulated.
The cell number per cluster is 3. The layout of the base
stations and users are shown in Fig.2. The transmit power
of BS is 30dBm. For MIMO configuration, each BS has
4 antennas, and each UE has 2 antennas. For MISO case,
one antenna for each user is assumed. The UE is dropped
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TABLE 3. Algorithm3: Training DQN for MISO beamforming.

TABLE 4. Algorithm4: Training DQN for 2 × 1 MIMO beamforming.

uniformly in each cell, and the path loss model is given by

PL = 140.7+ 36.7× log10(R) (28)

in dB, where R is distance in km.
The DQN is a fully connected neural network with five

layers. Three hidden layers are configured, corresponding to

FIGURE 3. Distribution of the balancing coefficient.

100, 60, and 30 neurons respectively. The Relu activation
function is adopted. To update parameters, adaptive moment
estimation method (Adam) [24] is used, and the beginning
learning rate is 0.01. The DQN was first trained in offline
stage with observation received from the simulated UDN,
then, in the deployment stage, the DQN generates the coordi-
nate coefficient λjk for beamforming, and the system through-
put is collected for comparison.

The proposed method is compared with two reference
beamforming algorithms. One is the SLNR in [20], and
the other is the MRT algorithm. For MIMO configuration,
maximum SINR beam combiner is assumed to maximize the
achieved data rates. The beam combiner is defined as follows.

vk =
C−1k Hkkwk

|C−1k Hkkwk |
, (29)

where

Ck =
∑Nc

i=1,i 6=k
HH
kiwiwH

i Hki + Iσ 2
k (30)

is the covariance matrix of received interference and noise
at receiver side of user k .

B. DISTRIBUTION OF THE BALANCING COEFFICIENTS
To perform simulation based on Deep Q-learning, the first
thing is to determine the discretizing granularity of the coef-
ficients λjk . In this paper, we determine the granularity by
analyzing the distribution of the coefficients with experiment.
Fig.3 shows the probability distribution of the coefficients
λjk when the aforementioned layout of UND is assumed.
From Fig.3, it is evident that over 95% of the coefficients
samples are within the range [4, 9] in dB. Based on this
observation and a compromise between performance and
complexity, the even discretization scheme with six levels
in (20) is adopted in the simulation. The λmax

jk and λmin
jk are

set according to log10(λ
max
jk ) = 9 and log10(λ

min
jk ) = 4

respectively.
For training and evaluation of the proposed method,

20000 channel samples are generated, and 16000 samples
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FIGURE 4. Sum-rate performance of different methods for 4 × 2 MIMO.

are employed for training of the DQN. At the training phase,
one user is scheduled for transmission per cell, and multi-
ple BS-UE pairs are formed for coordinated beamforming.
The agent is selected with random from the BS-UE pairs,
and other BS-UE pairs constitute the environment. During
the training process, the beamforing vector of the agent is
determined by the action provided by the DQN, while the
beamforming vectors of BS-UE pairs in the environment are
calculated with classical algorithm or algorithm1 in Tab.1.
Based on the coordinated beamforming vectors, the corre-
sponding states and the rewards, which are the sum-rate of
the system, are calculated. To train theDQNnetwork, both the
states and the rewards are fed to the DQN as inputs, and the
outputs are the actions of the agent. At the evaluation phase,
4000 samples are used. The predicted balance coefficients
by the trained DQN were applied to substitute the values
originally provided by (7).

The simulation results are illustrated below from Fig.4-10
for MIMO, MISO, and special case of 2× 1 MISO configu-
rations. In the simulation, the performances of the DL based
algorithm are closely investigated considering the arguments
listed below.
• MIMO configuration
• Reference algorithm
• Shadow fading effect
• Dominant factor determining agent state.

C. SIMULATION RESULTS COMPARED WITH CLASSICAL
ALGORITHMS
MIMO Configuration Results: In MIMO case, for algoritm 1
to calculate the beamforimg vectors as well as balancing coef-
ficients, iterations between transmitter and receiver sides are
required as beamforming vectors at transmitter and receiver
sides are coupled as indicated in (7) and (29). However,
for case of the proposed DL scheme, the balancing coef-
ficients are learned by DQN in an offline style, so in the
online stage, they are provided by the DQN according to
the instant states of the agent and keep fixed during the
iterations between the transmitter and receiver. As a result,
calculation of balancing coefficients is avoided during the

FIGURE 5. Sum-rate performance of different methods for 4 × 2 MIMO.

iteration for the proposed scheme compared with algorithm1.
Fig.4 illustrates the throughput results by the proposed and
classical algorithms in terms of the Cumulative Distribution
Function (CDF) for 4 × 2 MIMO. From Fig.4, we can see
that the performance of MRT is the worst, as it assumes the
selfish strategy, so it only enhances the desired signal without
consideration of interference towards other UEs. Relatively,
the SLNR is better than MRT, but worse than proposed deep
learning based beamforming (DL indicated in figure), as the
coefficient in SLNR is fixed but not the optimal value in (7),
so the result is sub-optimal.

D. SIMULATION RESULTS COMPARED WITH ALGORITHM1
Next, the performance of the proposed DL based scheme is
compared with algorithm1 in which the both beamforming
vectors wk and coefficients λjk are found iteratively. The
number of iteration in algorithm 1 is fixed to 20. The CDF
comparison results are shown in Fig.5.

As presented in Fig.5, the performances of the two schemes
in terms of system sum-rate match well on the whole, how-
ever, there is still small difference between the CDF curves
of the two schemes. The small difference mainly exists above
the CDF value of 0.5, the difference indicates that the pro-
posed scheme performs better for edge users than for center
users compared with algorithm1. Typically, the cell center
users and cell edge users correspond to 90th and 5th per-
centile users. The reasons for this difference can be elaborated
from two aspects: 1) Performance loss due to discretization
range of action space. From Fig.3, we notice that there are
still samples outside the range of discretization. Due to the
range limitation, more selfish strategy is not allowed for
the center users to select. To overcome this problem, some
more advanced discretization schemes such as nonlinear or
non-uniform schemes may be required. 2) Absent of leakage
components Lj, j 6= k from state space design in (7). Such
absent can reduce the signaling overhead but to some extent
at a cost of small performance loss.
MISO Configuration Result: In case of MISO for

algoritm 1, iterations are still required to obtain the balancing
coefficients, even though the beamforming vectors at the
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FIGURE 6. Convergence performance of different methods for 4 × 1 MISO.

transmitter and receiver sides are decoupled. However, for
the proposed DL based algorithm, iteration for obtaining the
balancing coefficients is avoided. The comparison results
in Fig.6 are employed to demonstrate such difference in
iteration. The results are averaged over 500 experiments.
From Fig.6, it is obvious that no iteration is required for
the proposed DL scheme, while iterations are required for
algorithm1 to reach convergence of the balancing coeffi-
cients. The results verify the advantage of the proposed
scheme in terms of efficiency for both the processing com-
plexity and time delay.

E. SIMULATION RESULTS ON SHADOWING EFFECT
In perspective of (7), the balancing coefficient depends on
both the large and small scale fading in channel. The large
scale fading consists of path loss and shadowing effect.
To investigate the influence of channel shadowing on the per-
formance of the proposed scheme and the extent of such influ-
ence, the performances of the proposed DL based algorithm
with and without shadowing effect are compared, moreover,
the proposed method is also compared with algorithm1 for
MIMO (MISO) and algorithm in [21] for 2 × 1 MISO con-
figuration respectively. The shadowing fading is assumed as
lognormal distributed with Standard Deviation (STD) of 5dB.

Fig.7 shows the simulation results in terms of CDF of
system sum-rate for 4 × 2 MISO configuration with and
without shadow fading, the last case is denoted with ‘No’ in
the figure.

At a first glance of the Fig.7, we get the impression that per-
formance differences due to shadow fading exist for both the
proposed algorithm and algorithm1. More precisely, shadow
fading will decrease the throughput of cell edge users while
increase that of cell center users. But if we look deep at the
details of the figure, we see the influence of shadow fading
on DL agent is a little more than for algorithm1. The reason is
that the shadow fading will introduce more uncertainty in the
channel due to the random nature, as a result, there are more
uncertainty in the distribution of the balancing coefficients,
which is responsible for the performance difference in the cell
center users. This phenomenon also exists for 4 × 1 MISO
results in Fig.8.

FIGURE 7. Sum-rate performance under shadowing for 4 × 2 MIMO.

FIGURE 8. Sum-rate performance under shadowing for 4 × 1 MISO.

It should be pointed out that the results in Fig.8 are
achieved at a much less cost compared with Fig.7, as they
are obtained with reduced state information. This fact cor-
roborates the assertion that beamforming for MISO pos-
sesses higher level of parameterization, so less information
is required to train the agent, and signaling overhead is saved
in practical implement.

For 2× 1 MISO configuration, [21] has given the expres-
sion of λk , k = 1, 2 in (13) theoretically, for convenient
reference, we reproduce it here.

λk =
√
ζk , k = 1, 2, (31)

where ζk is expressed as

ζk =
ak

ak + bk (1+ ck )2
, (32)

ak , bk , and ck are defined as:

ak = ||5hk̄kh11||
2, (33)

bk = ||5⊥hk̄khkk ||
2, (34)

ck =
pk
σ 2
k

||hk̄k ||
2, (35)

and k̄ is the complement set of k for set k = {1, 2}.
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FIGURE 9. Sum-rate performance of different methods for 2 × 1 MISO.

FIGURE 10. Sum-rate performance of different methods for 4 × 2 MIMO
when only large scale channel fading is considered in calculating the
balancing coefficients.

Fig.9 gives the simulation results in terms of system sum-
rate CDF for 2× 1 MISO. In the figure, DL based algorithm
is compared with algorithm which calculates beamforming
vectors by λk , k = 1, 2 in (31). The later is indicated by
‘Theory’ in Fig.9. From the figure, we conclude that the
performance of the DL based algorithm in 2× 1 MISO is the
least influenced by shadow fading among the MIMO config-
urations considered. The DL based algorithm manifests the
best due to the highest level of parameterization in 2×1MISO
configuration.

F. SIMULATING THE DEPENDENCE OF BALANCING
COEFFICIENTS ON LARGE SCALE CHANNEL FADING
Considering that multi-cells beamforming in (8) depend on
the wireless channel consisting of large and small scale
fading with different time scales, we attempt to separate
the original beamforming problem into two sub-problems:
1) predicting the balancing coefficients at large time scales;
2) instant beamforming based on obtained balancing coeffi-
cients. Beamforming with balancing coefficients predicted at
large time scales can save signaling overheard for channel
estimation in practice. To this end, we consider state space
Sk design option based on large scale fading in this section.

Specifically, the new state space Sk is predicted only by
channels with large scale fading component. The predicted
balancing coefficients are used for instant beamforming with
MIMO channels consisting of both kinds of fading. To verify
this attempt, simulations based on the new state space design
are conducted. The simulation results are shown in Fig.10.
It is surprising that the performance difference is rather
small when state space designs with partial and full channel
components are used to predict the balancing coefficients.
This result is encouraging for implement: much signaling
overheard can be saved for instant channel estimation, and
more reliable estimate of the balancing coefficient based on
large time scales can be guaranteed.

VI. CONCLUSION
In this paper, we present the parameterized beamform-
ing structure of the coordinated beamforming considering
balanced strategy in UDN. Based on analysis, the Deep Rein-
forcement Learning is proposed to predict the balancing coef-
ficients which parameterize the final beamforming vectors.
The proposed method was evaluated in simulated UDN sys-
tem with different MIMO configurations. Experiment results
demonstrate that strategy space for MIMO configuration can
be discretized with limited levels and granularity although
the range is infinite theoretically. Simulation results confirm
the efficiency of the proposed scheme in terms of iteration.
The results also reveal the fact that the learned DQN can
predict the beamforming strategy only based on the large
scale channel fading. The important aspect of this finding is
the reduction of signaling overhead in implement.
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