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ABSTRACT This paper proposes a new technique to develop an accurate multiphysics parametric model
for microwave components to speed up the multiphysics modeling process. In the proposed technique,
the artificial neural networks (ANNs) and pole/residue based transfer function are incorporated to represent
the highly non-linear relationships between electromagnetic centric (EM-centric)multiphysics behaviors and
multiphysics geometrical/non-geometrical design parameters. Vector fitting technique is utilized to obtain
the poles/residues of the transfer function for each multiphysics sample. Since the relationship between
multiphysics design parameters and the pole/residues of the transfer function is non-linear and unknown,
two mapping functions are proposed to establish the mathematical links between the multiphysics design
parameters and poles/residues. Parallel multiphysics data generation is proposed to generate the training and
testing data for establishing the proposed multiphysics parametric model. A two stage training algorithm is
proposed to guide the multiphysics training process. Once an accurate overall model is developed, it can be
used to provide accurate and fast prediction of the multiphysics behavior of microwave components with
geometrical and non-geometrical parameters as variables, and further can be used in the high level design.
Compared with the existing multiphysics modeling methods, the proposed technique can achieve better
model accuracywith high efficiency. The proposed technique provides an accurate and efficientmethodology
evenwhen the coarsemodel or empiricalmodel is unavailable. Twomicrowave examples are used to illustrate
the validity of the proposed multiphysics parametric modeling technique.

INDEX TERMS Artificial neural networks, multiphysics, parametric modeling, parallel computation,
transfer function.

I. INTRODUCTION
Accurate parametric modeling of multiphysics behavior is
very important and essential for high performance radio fre-
quency (RF)/microwave design. Multiphysics analysis typ-
ically encompasses several physics domain analysis, for
example electromagnetic (EM), structural mechanics and
thermal [1]–[6]. Multiple coupled physical domain analy-
sis makes the multiphysics simulation very computationally
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expensive. For multiphysics design, the computational cost
of directly using the multiphysics simulation is even more
expensive considering that it requires repetitively multi-
physics simulations due to the adjustments of the values
of design parameters. Parametric modeling can be used to
efficiently and accurately predict the multiphysics behavior
and perform the high level multiphysics design. To build an
accurate parametricmodel and reduce the computational cost,
many parametric modeling techniques have been introduced.

Space mapping techniques [7]–[13] have gained recog-
nition in computer-aided design (CAD). Space mapping
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considers the existence of coarse models and fine mod-
els [7]–[10]. The coarse models usually represent the
equivalent circuits or the empirical functions. They are com-
putationally very efficient but not accurate enough. While
the fine models, such as 3D EM simulator, are typically
very accurate but computationally very intensive. By using
spacemapping technique, we can combine the accuracy of the
fine models with the computational efficiency of the coarse
models [11], [12]. A neuro-space mapping algorithm which
uses the neural networks to build the relationships between
the fine models and the coarse models is introduced in [13].

Recent years, artificial neural network (ANN) has become
a powerful technique for solving the EM-based design, such
as parametric modeling and optimization design with differ-
ent values of geometrical variables. Neural networks can be
used to build the complex and nonlinear links between the EM
responses (such as S-parameter) and geometrical parameters.
After the neural network training process, we can obtain the
quick evaluations of the problem it has learned. As a further
approach, a knowledge-based neural network (KBNN) is
introduced in [17], [18]. The empirical functions or analytical
equations are embedded into the KBNNmodel so that we can
reduce the training data to further improve the efficiency of
the parametric model. In [19]–[22], the combined artificial
neural networks and transfer function (Neuro-TF) is pre-
sented to solve the high order EM problems. In [21], the pole-
and-residue-based transfer function has been introduced to
model the pure EM behavior with wider geometrical ranges.
This method is still applicable when there is no prior knowl-
edge or empirical functions. In [22], the EM behavior mod-
eling using adjoint neural networks and pole-residue transfer
functions with EM sensitivity analysis is introduced to further
improve the modeling accuracy and efficiency. A passiv-
ity enforcement technique for passive component modeling
subject to variations of geometrical parameters using com-
bined neural networks and rational functions is introduced
in [23].

The EM-centric multiphysics problem involves EM anal-
ysis combined with other physical domain analysis, such as
structural and thermal analysis, i.e., the EM analysis obtained
from multiphysics analysis. Multiphysics has become a hot
topic in microwave design area. Several multiphysics related
works have been introduced to improve the multiphysics
design efficiency. In [25], a multiphysics model which com-
bines the EM and thermal analysis with the non-linear
electro-thermal transistor models is introduced. In [26], a
correlating mapping is developed so that the multiphysics
non-geometrical design variables can be mapped to the geo-
metrical design variables for the simple EM structure. A mul-
tiphysics parametric modeling method is introduced using
artificial neural networks in [27]. In [28], a space mapping
approach is used to build the links between the multiphysics
domain and the pure EM domain in an effort to reduce
the multiphysics model development time. However, this
method requires the existence of the coarse model to build

the mapping. When the coarse model is not available, this
technique is not applicable.

In this paper, for the first time, the combined neural
networks and transfer function is proposed to develop an
accurate and efficient EM-centric multiphysics parametric
model to speed up the multiphysics modeling process. The
model inputs of the proposed parametric model include the
geometrical design variables and non-geometrical design
variables. The model output represents the behavior of
EM-centric multiphysics response evaluated by multiple
physical domain simulations. Vector fitting process is
exploited to obtain the poles/residues of the transfer function
for each multiphysics training sample. Two neural network
mapping modules are exploited to establish the mathematical
links between multiphysics parameters and poles/residues,
respectively. Considering that multiphysics simulation is very
time-consuming and computationally expensive, we pro-
pose to use parallel computational technique so that multi-
ple EM-centric multiphysics evaluations can are performed
simultaneously to obtain the training samples for establishing
the EM-centric multiphysics parametric model. We propose
a two stage training algorithm to make the multiphysics
trainingmore efficient. After the model development process,
the proposed EM-centric multiphysics parametric model
can provide fast and accurate predictions of multiphysics
responses. It can be further exploited to perform the multi-
physics design. The proposed technique can provide more
accurate multiphysics solutions even with less hidden neu-
rons compared with the existing parametric models. The
proposed technique provides an accurate and efficient mul-
tiphysics solution even when the coarse model or empirical
model is unavailable.

II. PROPOSED MULTIPHYSICS PARAMETRIC MODEL
INCORPORATING ARTIFICIAL NEURAL NETWORKS
WITH TRANSFER FUNCTION
In this section, the proposed EM-centric multiphysics
parametric model structure which includes the pole-and-
residue-based transfer function and two neural network
mapping modules is introduced. In our proposed technique,
we exploit the vector fitting techniques [29] to generate the
poles/residues of the transfer function from the multiphysics
frequency responses. Since the relationship between multi-
physics design parameters and the pole/residues of the trans-
fer function is non-linear and unknown, we develop the two
mapping modules to build the relationships between the mul-
tiphysics domain design parameters and the poles/residues
of the transfer function by exploiting artificial neural net-
works. Parallel computational technique is implemented to
accelerate the model development process. We proposed a
two stage training algorithm to guide the multiphysics train-
ing process. The first stage is the preliminary training and
the second stage is the model refinement training. Finally,
an accurate and efficient multiphysics parametric model is
developed.
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FIGURE 1. The structure of the proposed multiphysics parametric model with the transfer function
in pole/residue format. The model consists of the pole/residue based transfer function and two
mapping neural network functions. w1 and w2 represent the weighting parameters in the two
mapping functions; Rf represents the frequency responses from EM-centric multiphysics
simulation; Rs represents the frequency responses of the proposed EM-centric multiphysics
parametric model. Two mapping functions are used to map the multiphysics domain design
parameters to the poles and residues of the transfer function by exploiting the artificial neural
networks.

A. STRUCTURE OF THE EM-CENTRIC MULTIPHYSICS
PARAMETRIC MODEL
Fig. 1 demonstrates the proposed multiphysics parametric
model structure. The model includes two parts, the first part
is the pole/residue based transfer function, two second part
is two neural network mapping functions. The model inputs
are the multiphysics design variables and the frequency. The
model outputs are the EM-centric responses (for example,
the S-parameter). For multiphysics simulation, the design
variables usually contains not only the geometrical variables,
but also the non-geometrical variables which represent the
other physical domain parameters. Let x represent the vector
of all the multiphysics design parameters which include the
geometrical and non-geometrical variables. Let xg represent
the vector containing all the geometrical variables in x. Let
xm represent the vector containing all the non-geometrical
variables in x. xm are the variables in other multiphysics
domains besides geometrical variables.

Let s represent complex angular frequency which is the
extra input of the multiphysics model. Let Rf represent the
frequency response of the multiphysics simulation (multi-
physics analysis). Let Rs represent the response of the pro-
posed EM-centric multiphysics parametric model. In our
technique, Rs can be expressed by the transfer function, for-
mulated as

Rs(xg, xm,w1,w2, s) =
N∑
i=1

ri(xg, xm,w2)
s− pi(xg, xm,w1)

(1)

where the variables pi and ri represent the ith pole and residue
of the transfer function, respectively.N represents the number
of orders for the pole/residue based transfer function.

Let p be a vector containing all the poles of the pole/residue
based transfer function, defined as

p = [ p1 p2 · · · pN ]T . (2)

Let r be a vector containing all the residues of the pole/residue
based transfer function, defined as

r = [ r1 r2 · · · rN ]T . (3)

Multiply training samples are needed to develop the accu-
rate EM-centric multiphysics model. For different train-
ing samples, the poles/residues for the transfer function
is different. There is no empirical or analytical equations
between multiphysics parameters and poles/residues of the
transfer function. To obtain this nonlinear and unknown
relationships, two neural network mapping modules are
proposed.

For the first mapping function, we propose to exploit
the artificial neural network to establish the mathematical
links between the multiphysics design parameters and pole
vector p of the pole/residue based transfer function. Let fANN1
represent the proposed mapping function. The input parame-
ters of the first mapping function includes not only the geo-
metrical variables xg, but also non-geometrical variables xm.
The outputs are the poles of the transfer function, which are
formulated as

p = fANN1(xg, xm, w1) (4)

where w1 is a vector which contains all the weighting vari-
ables in the neural network.

Similarly, for the second mapping function, we propose to
exploit the artificial neural network to establish the mathe-
matical links between themultiphysics design parameters and
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residue vector r of the pole/residue based transfer function.
Let fANN2 represent the proposed mapping function. The
input parameters of the secondmapping function includes not
only the geometrical variables xg, but also non-geometrical
variables xm. The outputs are the residues of the transfer
function, which are formulated as

r = fANN2(xg, xm, w2) (5)

where w2 is a vector which contains all the weighting vari-
ables in the neural network. From Fig. 1 we can see that
frequency is the input to the transfer function, while the
inputs of the two mapping functions only contain the mul-
tiphysics design parameters. This can contribute to simple
artificial neural network structure with less hidden neurons.
To obtain the initial training data for two mapping neural
networks where the inputs are the geometrical parameters
and the outputs are the poles/residues of the transfer function,
we exploit the vector fitting techniques [29] to generate the
poles/residues of the transfer function from the multiphysics
frequency responses. We use the pole-residue tracking tech-
nique [21] to solve the discontinuity of poles/residues to
obtain the transfer functions of constant order w.r.t. the mul-
tiphysics design variables.

B. MULTIPHYSICS DATA GENERATION USING
PARALLEL TECHNIQUES
In our proposed technique, the first step of the multi-
physics modeling process is to generate EM-centric mul-
tiphysics training samples. There are various distribution
methods for generating the data, such as grid distribution,
star distribution and orthogonal distribution. In the pro-
posed technique, orthogonal distribution [30], i.e., a specific
type of design of experiment (DOE) sampling distribution,
is applied to generate the multiple samples where the sub-
space divisions are sampled with the same density and
are orthogonal. Orthogonal distribution around the central
point requires fewer samples compared with the grid dis-
tribution and enables the multiphysics model to be valid
in much larger neighborhood compared to star distribu-
tion. We define the number of training samples which are
needed to construct the proposed model as ns. Let Tr =
{1, 2, ..., ns} be the index set of all the training sampling
points.

In the proposed technique, multiple EM-centric multi-
physics evaluations for constructing the multiphysics model
take the major computational burden of the total compu-
tational time. Sequential EM-centric multiphysics evalua-
tions of the samples requires ns times the computational
time of one EM-centric multiphysics evaluation. There-
fore, to reduce the overall computational time, parallel
computational approach for the EM-centric multiphysics
evaluations is proposed. We generate the EM-centric multi-
physics responses Rf (x

(j)
g , x(j)m , s) for all the sampling points,

i.e., j = 1, 2, · · · , ns, simultaneously by performing the
multiple EM-centric multiphysics simulations using parallel

techniques, formulated as{
Rf (x(j)g , x(j)m , s)|j = 1, 2, · · · , ns

}
=

{
Rf (x(1)g , x(1)m , s),Rf (x(2)g , x(2)m , s),

· · · ,Rf (x(ns)g , x(ns)m , s)
}

. (6)

After the parallel data generation, the generated multiple
EM-centric multiphysics samples can be used for developing
the multiphysics model.

C. PROPOSED TWO STAGE TRAINING ALGORITHM
To build an efficient and accurate EM-centric multiphysics
parametric model, we propose a new training algorithm
which contains two training stages. For the first stage, we per-
form the preliminary training of the two mapping modules
by adjusting the weighting parameters w1 and w2 to build the
mathematical links between the poles/residues of the transfer
function and the multiphysics geometrical/non-geometrical
design variables. In the preliminary training stage, a relatively
relaxed training error criteria (such as 4% to 10%) is used
to increase the robustness of the proposed technique and
decrease the non-linearity and complexity. To avoid over
learning of the neural network, the number of hidden neurons
of the two mapping functions is initialized to be a small
number. .

After preliminary training of the two mapping neural net-
works, a second stage training process is proposed. In this
training stage, we perform the entire multiphysics refine-
ment training to further improve the accuracy of the pro-
posed model. The training samples at the refinement stage
are (x(j)g , x(j)m , Rf (j)), j ∈ Tr , i.e., samples of geometri-
cal and non-geometrical variables as the model inputs and
EM-centric multiphysics responses as model outputs. The
mechanism for the model refinement process is illustrated
in Fig. 2. It consists of the pole/residue based transfer function
and the two mapping neural networks whose initial values are
the optimal solutions from the preliminary training process
stage. At this stage, we perform both training and testing for
the proposed model. The training process is performed by
optimizing the weighting parameters w1 and w2 inside the
two mapping functions so that we can minimize the error
function

ETr (w1, w2)

=
1
2ns

∑
j∈Tr

∑
l∈�

∥∥∥Rs(x(j)g , x(j)m , w1, w2, s(l))− R(j,l)f

∥∥∥ 2
(7)

where Tr is the index set of all the training sampling points of
various geometrical and non-geometrical parameters, and ns
is the number of training data. � is the index set of frequency
samples.

Let Et represent the user defined threshold error (such
as 2%). When the training error is lower than Et , the training
algorithm stops. After the training process finished, we use
the testing samples which are independent to the training
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FIGURE 2. The mechanism of the model refinement process for the
EM-centric multiphysics parametric model. The training process is
performed by optimizing the weighting parameters w1 and w2 inside the
two mapping functions so that we can minimize the error function. It
consists of the pole/residue based transfer function and the two mapping
neural networks whose initial values are the optimal solutions from the
preliminary training process stage.

samples, i.e., never used in training, to test the overall mul-
tiphysics model. Let ETe represent the testing error. If ETe is
lower than Et , our proposed multiphysics parametric model is
developedwith good accuracy. Otherwise, we add the number
of hidden neurons in the two mapping modules and repeat the
training algorithm until we obtain a good testing error which
is lower than Et . In this way, we can obtain a good training
and testing error with a simple neural network sturcture.

D. PROPOSED EM-CENTRIC MULTIPHYSICS PARAMETRIC
MODELING ALGORITHM
we summarize our proposed modeling development algo-
rithm as follows
Step 1) Define the overall EM-centric multiphysics model

design parameters which include the geometrical
parameters xg and non-geometrical parameters xm.

Step 2) Evaluate multiphysics simulations Rf (x
(j)
g , x(j)m , s) at

all the Training samples (i.e., j = 1, 2, · · · , ns) using
parallel computational techniques.

Step 3) Use vector fitting techniques to get the poles p and
residues r of the transfer function. Use the pole-
residue tracking technique to obtain the transfer
functions of constant order w.r.t. the multiphysics
design variables.

Step 4) Perform the first stage preliminary training of the two
mapping neural networks to learn the relationships
of the poles/residues of the transfer function w.r.t.
the multiphysics geometrical and non-geometrical
variables.

FIGURE 3. The flowchart of the overall pole/residue based neuro-TF
multiphysics parametric model development process. The proposed
technique includes parallel multiphysics data generation, preliminary
training, and overall model refinement training.

Step 5) Perform the overall model refinement process to
further improve the accuracy of the final model. The
training data for this phase is(x(j)g , x(j)m , Rf (j)), j ∈
Tr , i.e., samples of geometrical x(j)g and non-
geometrical parameters x(j)m as model inputs and
EM-centric multiphysics responses as model
outputs.

Step 6) After training, test the refined multiphysics paramet-
ric model. If the testing error ETe ≤ Et , the model
development process terminates and the proposed
multiphysics parametric model is ready to be used
for higher level design. Otherwise (i.e., ETe > Et ),
adjust the number of hidden neurons in the two map-
ping neural networks fANN1 and fANN2 and go back
to Step 4).

Step 7) Stop the pole/residue based neuro-TF multiphysics
parametric model development process.

The flowchart of the overall pole/residue based neuro-TF
multiphysics parametric model development process is illus-
trated in Fig. 3.
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FIGURE 4. The four pole waveguide filter structure with EM-centric
multiphysics design parameters x = [h1 h2 hc1 hc2 V1 V2]T . The two
voltages (V1) and (V2) represent the electronic potentials which are
supplied to the piezo actuator. These two voltages can generate the
deformation on the piezo actuator due to piezo electric effect and
therefore affect the EM-centric multiphysics responses.

III. MICROWAVE EXAMPLES
A. EM-CENTRIC MULTIPHYSICS PARAMETRIC MODELING
FOR THE TUNABLE WAVEGUIDE FILTER APPLYING THE
PIEZO ACTUATOR
In order to illustrate the validity of the proposed technique,
we consider a four pole waveguide filter [31] example. The
tuning parameters are the heights of posts of the square cross
section which are located at the central parts of the cavities
and coupling windows. Due to the piezo electric effect [32],
the piezo actuator can generate a geometrical strain which is
proportional to the applied electric field. For our example,
the piezo actuator is applied to control the distance between
the post and the piezo actuator, this provides the tunability
for the four pole waveguide filter. Fig. 4 shows the structure
of this tunable filter where the heights (h1) and (h2) represent
the heights of the tuning post of the square cross section.
Heights (hc1) and (hc2) represent the heights of the square
cross section which is located at the center of the resonator
cavity. The two voltages (V1) and (V2) represent the elec-
tronic potentials which are supplied to the piezo actuator.
These two voltages can generate the deformation on the piezo
actuator due to piezo electric effect and therefore affect the
EM-centric multiphysics responses. For the resonant cavity,
the input waveguide and output waveguide are the standard
WR-75 waveguides, i.e., a = 19.050 mm, b = 9.525 mm.
The thickness for all the coupling windows in this example
is fixed to 2 mm. The frequency parameter f is an addi-
tional model input parameter. The total design variables for
the four pole waveguide filter example have six parameters,
i.e., x = [h1 h2 hc1 hc2 V1 V2]T . The geometrical design
parameters for the proposed multiphysics parametric model
are xg = [h1 h2 hc1 hc2]T . The non-geometrical design
parameters for the parametric model are xm = [V1 V2]T .
The proposed multiphysics model has two output responses
for this example, one is the real part of S11, the other is the
imaginary part of S11.

FIGURE 5. The deformed structure of the four pole waveguide filter due
to the piezo electric effects.

TABLE 1. The ranges of training sample and testing sample of the
EM-centric multiphysics parametric model for the four pole waveguide
filter example.

In this example, to build the accurate multiphysics para-
metric model, we use the COMSOL MULTIPHYSICS soft-
ware to evaluate EM-centric multiphysics analysis to obtain
the training and testing data with different values of all
the design parameters including the geometrical and non-
geometrical variables. To observe the piezo electric effects,
we perform the multiphysics simulation with the design vari-
ables x = [3.414.213.243.02200− 200]T (mm mm mm mm
V V). The deformed structure of the four pole waveguide
filter is illustrated in Fig. 5. From the figure we can see that
with the positive voltage (V1 = 200 V), the piezo actuator
will deflect towards the bottom side, while with the negative
voltage (V2 = −200 V), the piezo actuator will deflect
upwards the bottom side. Table 1 shows the training and
testing data ranges for the four pole waveguide filter example.
The frequency range for the EM-centric multiphysics para-
metric model is 10.5 GHz-11.5 GHz.

For multiphysics training data, we use DOE sampling
method to generate 49 training samples. For testing data,
we use random distribution sampling method to generate
20 testing samples which are never used in training data.
In our proposed technique, the pole/residue based transfer
function is exploited to build the EM-centric multiphysics
parametric model with different values of geometrical and
non-geometrical variables. We use the same number of
neurons for the two mapping networks which is selected as
4 in this example. After training, the training error for all
the training samples is 0.91%. We use testing data to test the
proposed model, the testing error for all the testing samples
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TABLE 2. Comparisons of different parametric modeling methods of the
four pole waveguide filter example.

is 1.37%. The proposed multiphysics model including the
transfer function and twomapping functions is developed and
trained using the software NeuroModelerPlus [33].

For comparison purpose, ANN model is trained to learn
multiphysics data using different hidden neurons. In this
example, we train the ANNmodel using 10, 20 and 30 hidden
neurons to construct the non-linear relationships between
the multiphysics responses and multiphysics geometrical and
non-geometrical design parameters. We compare the neural
network structures, training error and testing error for differ-
ent modeling techniques in Table 2. From the table, we can
see that when the number of hidden neural is 20, the ANN
model can obtain a relatively good training and testing error.
While the proposed EM-centric multiphysics model only
uses 4 hidden neurons for two mapping modules to obtain
a more accurate model compared to the existing parametric
models since the transfer function provides rich knowledge to
the proposed model. After model construction, the proposed
EM-centric multiphysics parametric model can provide fast
and accurate predictions of multiphysics responses. Fig. 6
illustrates the comparison of the magnitudes of S11 (in deci-
bels) for the proposed model, the ANNmodel with 20 hidden
neurons and the multiphysics simulation responses for two
different design parameters. These two samples are selected
from the testing data and have never been used during the
model development process. The values of the two design
parameters of the four pole waveguide filter are listed as
follows

Testing sample 1:
x = [3.456 4.011 3.237 2.892 229.6 124.4]T (mm mm

mm mm V V)
Testing sample 2:
x = [3.312 4.174 3.252 2.96 219 47.9]T (mm mm

mm mm V V)
From the modeling results, the proposed EM-centric mul-

tiphysics model is more accurate even with less hidden neu-
rons than the existing parametric models. After the model
development process, the proposed EM-centric multiphysics
parametric model can provide fast and accurate predictions of
multiphysics responses. It can be further exploited to perform
the multiphysics design. Considering the model development
process is a one time investment, the benefits of using the

FIGURE 6. Comparison of the magnitudes of S11 (in decibels) for the
multiphysics models developed using different modeling techniques and
COMSOL MULTIPHYSICS simulation responses: (a) Testing sample 1 and
(b) Testing sample 2 for the four pole waveguide example.

proposed multiphysics model accumulates when the model
is used over and over again.

B. MULTIPHYSICS PARAMETRIC MODELING OF AN IRIS
COUPLED MICROWAVE CAVITY FILTER
For the second example, we consider an iris coupled
microwave cavity filter [31] to demonstrate the proposed
EM-centric multiphysics modeling technique. Fig. 7 shows
the structure of this cavity filter. Widths w1, w2, w3 and w4
represent the widths of the iris. The large input power Pin is
supplied to the structure. This large input power can affect the
multiphysics responses because of the thermal distribution
and structural deformation. The frequency parameter f is an
additional model input parameter. The total design variables
for the iris cavity filter example have five parameters, i.e., x =
[w1 w2 w3 w4 Pin]T . The geometrical design parameters
for the proposed multiphysics parametric model are xg =
[w1 w2 w3 w4]T . The non-geometrical design parameter for
the parametric model is xm = Pin. The proposedmultiphysics
model has two output responses for this example, one is the
real part of S11, the other is the imaginary part of S11.
In this example, to build the accurate multiphysics para-

metric model, we use the ANSYS WORKBENCH software
to evaluate EM-centric multiphysics analysis to obtain the
training and testing data with different values of all the design
parameters including the geometrical and non-geometrical
variables. We use three modules in the software, i.e., HFSS
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FIGURE 7. The iris coupled cavity filter structure with EM-centric
multiphysics design parameters x = [w1 w2 w3 w4 Pin]T . A high power is
supplied to the port 1.

FIGURE 8. The practical process for the multiphysics analysis. The
iterative process terminates until we obtain a steady-state solution.

FIGURE 9. The thermal distribution in the filter structure by the thermal
analysis.

module, Steady-State Thermal module and Static Structural
module. Fig. 8 illustrates the practical process for the multi-
physics analysis. When the iris filter is supplied with a high
power, this high power can generate the RF losses across
the entire filter structure. We can calculate the RF losses by
computing the electric and magnetic fields over the entire
volume of the cavity filter. After evaluating the RF losses
which will become the heat source for the thermal analysis,
thermal analysis can compute the thermal distribution in the
filter. The thermal distribution will generate the thermal stress
which will further create the deformation of the filter. The
structural analysis can compute the deformation based on
different temperature in the structure. The deformed structure
of the iris cavity filter is looped back to the EM analysis to
re-simulate the EM responses. The iterative process ter-
minates until we obtain a steady-state solution where
the changes of temperature or deformation between the
two consecutive iterations are less than the user defined
threshold. After the multiphysics simulation, the temper-
ature information and structural deformation information
of the iris cavity filter with the design variables x =
[116.549.73543.44548.99536.25]T (mm mm mm mm kW)
are illustrated in Fig. 9 and Fig. 10, respectively.

The ranges of training samples and testing samples for
the EM-centric multiphysics parametric model are shown
in Table 3 for the iris cavity filter example. The frequency
range for the EM-centric multiphysics parametric model is
690 MHz-720 MHz. For multiphysics training data, we use
DOE sampling method to generate 81 training samples. For

FIGURE 10. The deformed structure of the iris filter by the structural
analysis.

TABLE 3. The ranges of training sample and testing sample of the
EM-centric multiphysics parametric model for the iris coupled cavity filter
example.

testing data, we use DOE sampling method to generate
64 testing samples which are never used in training data.

In our proposed technique, the pole/residue based transfer
function is exploited to build the EM-centric multiphysics
parametric model with different values of geometrical and
non-geometrical variables. We use the same number of
neurons for the two mapping networks which is selected as
8 in this example. After training, the training error for all
the training samples is 1.55%. We use testing data to test the
proposed model, the testing error for all the testing samples
is 1.63%. The proposed multiphysics model including the
transfer function and twomapping functions is developed and
trained using the software NeuroModelerPlus [33].

For comparison purpose, ANN model is trained to learn
multiphysics data using different hidden neurons. In this
example, we train the ANNmodel using 30, 40 and 50 hidden
neurons to construct the non-linear relationships between
the multiphysics responses and multiphysics geometrical and
non-geometrical design parameters. We compare the neural
network structures, training error and testing error for differ-
ent modeling techniques in Table 4. From the table, we can
see that when the number of hidden neural is 40, the ANN
model can obtain a relatively good training and testing error.
While the proposed EM-centric multiphysics model only
uses 8 hidden neurons for two mapping modules to obtain
a more accurate model compared to the existing parametric
models since the transfer function provides rich knowledge to
the proposed model. After model construction, the proposed
EM-centric multiphysics parametric model can provide fast
and accurate predictions of multiphysics responses. It can be
further exploited to perform the multiphysics design. Fig. 11
illustrates the comparison of the magnitudes of S11 (in deci-
bels) for the proposed model, the ANNmodel with 40 hidden
neurons and the multiphysics simulation responses for two
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TABLE 4. Comparisons of different parametric modeling methods of the
iris coupled cavity filter example.

FIGURE 11. Comparison of the magnitudes of S11 (in decibels) for the
multiphysics models developed using different modeling techniques and
ANSYS WORKBENCH simulation responses: (a) Testing sample 1 and
(b) Testing sample 2 for the iris coupled cavity filter example.

different design parameters. These two samples are selected
from the testing data and have never been used during the
model development process. The values of the two design
parameters of the iris coupled cavity filter are listed as follows

Testing sample 1:
x = [113.0348.2644.5350.0935]T (mmmmmmmmkW).
Testing sample 2:
x = [113.0351.2646.3347.2130]T (mmmmmmmmkW).
From the modeling results, the proposed EM-centric mul-

tiphysics model is more accurate even with less hidden neu-
rons than the existing parametric models. After the model
development process, the proposed EM-centric multiphysics
parametric model can provide fast and accurate predictions of
multiphysics responses. It can be further exploited to perform
the multiphysics design.

IV. CONCLUSION
In this paper, we have proposed a new technique to utilize the
combined neural networks and transfer function to develop
a novel EM-centric multiphysics parametric model to accel-
erate the multiphysics modeling process. In the proposed
method, the artificial neural networks and pole/residue based
transfer function have been incorporated to represent the high
non-linear relationships between EM-centric multiphysics
behaviors and multiphysics design parameters. We have pro-
posed to use parallel computational technique so that multi-
ple EM-centric multiphysics evaluations can are performed
simultaneously to generate the training data for establishing
the proposed parametric model. Two mapping neural net-
works have been proposed to represent the unknown relation-
ships between the poles/residues of the transfer function and
multiphysics design parameters. A two stage training algo-
rithm has been proposed to guide the multiphysics training
process. Compared to the conventional multiphysics mod-
eling methods, the proposed technique could obtain better
andmore consistent accuracy. Twomicrowave examples have
been presented to illustrate the advantages of the proposed
EM-centric multiphysics parametric modeling technique.
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