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ABSTRACT A lightweight two-stage convolutional (deep) neural network (CNN) based modulation format
identification (MFI) scheme is proposed and demonstrated for the polarization domain multiplexing (PDM)
fiber communication system with probabilistically shaped (PS) modulation formats. The scheme is tested
on a PDM system at a symbol rate of 28 GBaud. Six probabilistically shaped (PS) modulation formats
(of 3 bit/symbol PS-16QAM, PS-32QAM, and PS-64QAM, of 4 bit/symbol PS-32QAM and PS-64QAM,
and of 5 bit/symbol PS-64QAM) along with six standard modulation formats (BPSK, QPSK, 8PSK and
three uniformly shaped (US) QAM: US-16QAM, US-32QAM and US-64QAM) are identified by the trained
CNN. By taking advantage of computer vision, the results show that the proposed scheme can provide very
high accuracy and significantly improve the identification performance over the existing techniques. The
influences of the learning rate of the CNN are also discussed.

INDEX TERMS Optical fiber communication, modulation format identification, convolutional neural
networks.

I. INTRODUCTION
To meet the demand of various data services, an intelligent
optical network [1], which is called elastic optical networks
(EON), has drawn considerable interest in these years. This
network has the capability of adjusting transceiver configu-
rations, such as changing modulation format and data rates
intelligently [2] according to different data demands. The
key to implementing EON is to design a hitless flexible
transceiver that can identify the modulation format at the
receiver end (Rx) to ensure proper demodulation.

A number of modulation format identification (MFI) meth-
ods were proposed, which can be used to design the hit-
less flexible Rx, including some blind algorithms [3], [4]
and pilot aided [5] schemes. Other MFI methods like the
number of clusters or the higher-order statistics [6]–[10] of
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the power distributions in the Stokes space or constellation
planes [11]–[14] of received signals. However, these methods
are both designed to handle the problem of MFI of stan-
dard modulation formats such as PSK signals and uniformly
shaped (US) QAM signals. To the best of our knowledge,
there is no existing method that can be used to identify the
modulation format when the probabilistically shaped QAM
signals are involved.

Probabilistic shaping (PS) has been receiving a significant
amount of attention since it can realize higher capacity and
higher spectral efficiency on optical communications [15].
The challenge of the MFI scheme is that the accuracies of
the above MFI methods will tend to some lower values since
the PS-mQAM will tend to some other kinds of standard
modulation formats or other PS-mQAM for some special
cases. For instance, as in some specific conditions, in the
Jones space, PS-16QAM may have very small differences
between US-4QAM or QPSK signals, and PS-64QAM may
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also appear similar to PS-16QAM. Although the kind of
PS-QAM can be determined after we obtain the channel
quality (OSNR or something else) in the receiver side, and
receivers seem to know what PS-QAM will be sent, the
quality of the channel is not always constant in a real system,
especially in an EON system, and it is hard for a receiver
to have any preknowledge of the modulation format used by
various transmitters with different OSNRs.

Machine learning methods have attracted much attention,
and some ANNs methods are used as identification tech-
niques [16]. However, ANN is not suitable for complicated
situations, such as having too many modulation formats
or high-order QAM signals. Recently, convolutional neural
networks (CNNs) have been used in the area of artificial
vision, and their performances are very good [17], [18].
An image-based method using a 6-layer CNN proposed
in [19] improved the identification performance. However,
the new method that uses Jones constellations has poor toler-
ance to frequency offset and phase noise, and the OSNR val-
ues for identifying high-order QAM signals precisely remain
relatively high. Additionally, the identification rate will be
even worse if PS-QAM signals are added. In [20], we pro-
posed a high-performance MFI scheme by successfully
using lightweight convolutional neural networks (CNNs).
By changing the received signals into Stokes space and pro-
jection constellations in Stokes space onto three coordinate
planes, the CNN-based MFI scheme can achieve very high
accuracy, even if the OSNR is very low. It is also reasonable
to design the MFI scheme following a similar step introduced
in [20].

In this paper, we propose our MFI scheme using two-stage
CNNs, which can also handle the situations in which
some commonly used PS modulation formats are involved.
By mapping received signals into the Stokes space and
projecting the constellations onto three coordinate planes,
we can obtain a series of images, which are used as
inputs of the CNNs. Twelve modulation formats are tested.
They are BPSK, QPSK, 8PSK, US-16QAM, US-32QAM,
US-64QAM, PS-16QAM (3 bit/symbol), PS-32QAM (3 and
4 bit/symbol), PS-64QAM (3, 4, 5 bit/symbol). The results
show that our CNN-based MFI scheme performs very well.
All modulation formats can be identified when OSNR is
higher than 15 dB with accuracy higher than 95%. The tol-
erances of the proposed MFI scheme with respect to to chro-
matic dispersion (CD), polarization-dependent loss (PDL),
and polarization mode dispersion (PMD) are also discussed.

In section II, the two-stage CNN-based MFI scheme is
introduced. The setup of the experimental system is shown
in section III. In section IV, the performances of the scheme
are discussed, and we explain our conclusions in section V.

II. MODULATION FORMATS IDENTIFICATION SCHEME
A. GENERATION OF PS-QAM SIGNALS
The probabilistic amplitude shaping (PAS) architecture [21]
is proposed for making PS practical. In general, the standard

PAS process mainly contains three steps. In the first step,
a distribution matcher (DM) is used. The outputs of the DM
can be used to form PS

√
m pulse amplitude modulation

(
√
m-PAM) symbol sequence. The DM generates the shaped

positive amplitude A =
{
1, 2, · · · ,

√
m/2

}
of the constella-

tion symbols X following a probability distribution PA with
corresponding entropy H (PA) [22], where m is the order
of QAM symbols. From H (PA), we can obtain the entropy
H (PX ) (in bit/symbol) with all the amplitude portions of
all constellation symbols X . The entropy H (PX ) decreases
when the distributions of PS-QAM signals become more
shaped (see Fig. 1). In this article, the constant composition
distribution matching (CCDM) [23] is used. In the second
step, a forward error correction (FEC) encoder might be used
to ensure error-free transmission. Finally, in the third step,
a symbol mapping maps shaped stream of bits into a stream
of symbols. A brief architecture of PAS is shown in Fig. 2.
Different from other PS-mQAM, the probabilistic fold shap-
ing (PFS) method is used to generate PS-32QAM [24].

FIGURE 1. Constellations of 18 dB PS-16QAM signals at different H(PX ).
From left to right, the value of H(PX ) decreases, and the distributions of
PS-QAM signals become more shaped.

B. STOKES MAPPING AND IMAGE GENERATION
In a PDM system, after a coherent receiver, the corresponding
constellation can be obtained. In [19], the MFI method used
images generated in a Jones constellation diagram. How-
ever, constellation points randomly distribute around the ideal
location or shift in real optical communication systems with
signal degradation, such as phase noise and frequency offset.
In this case, especially when OSNR is relatively low, MFI
schemes may not obtain a reliable performance. In [20],
we proposed a CNN-based method by projecting constel-
lations in the Stokes space onto the Stokes plane, which
can overcome phase noise and frequency offset. In detail,
the received PDM signals can be mapped into Stokes space
using the formula

S =


s0
s1
s2
s3

 =


exe∗x + eye
∗
y

exe∗x − eye
∗
y

eye∗x − exe
∗
y

−jeye∗x + jexe
∗
y



=


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2
y

a2x − a
2
y

2axay cos δ
2axay sin δ

 (1)
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FIGURE 2. Brief architecture of PAS.

FIGURE 3. Images of constellations in Jones space and three different 2D
Stoke planes generated by using 20,000 signals. (a) US-16QAM with and
without a 100 kHz laser linewidth and 500 MHz frequency offset at 15 dB
OSNR. (b) QPSK and 3 bit/symbol PS-16QAM at 15 dB OSNR.
(c) 3 bit/symbol 32QAM and 64QAM at OSNR 20 dB with 100 kHz laser
linewidth and 500 MHz frequency offset.

where
(
ex , ey

)
are received PDM complex signals after algo-

rithms and (ax, ay) are the amplitudes of the complex signals.
δ is the phase difference between ex and ey. A 3D Stokes
space can be obtained by the last three components (s1, s2, s3)
of the Stokes vector S in formula (1). By noticing that the
amplitudes and relative phase of the signals are retained,
phase noise and frequency offset vanish, and the constella-
tions of signals in Stokes space are independent from the
phase noise and frequency offset (see Fig. 3 (a)). As in [20],

each constellation point in the Stokes space, (s1, s2, s3), can
be projected onto three Stokes planes, plane (s1, s2), (s2, s3)
and (s1, s3), then three images for the MFI scheme can be
generated.
In Fig. 3, QPSK and PS-16QAM are considered.

In Fig. 3(b), PS-16QAM (3 bit/symbol) might not be easily
distinguished from theQPSK in the Jones constellation plane,
but they can still be separated by using constellations in
Stokes space. In Fig. 3(c), as phase noise and frequency offset
are encountered, PS-16QAM (3 bit/symbol) and PS-32QAM
(3 bit/symbol) are too close, but they can also be separated
in Stokes space. In Fig. 4 and Fig. 5, images generated from
signals in the Jones constellation plane and Stokes space of
all modulation formats considered in this paper are listed.

FIGURE 4. Images of 20,000 symbols of BPSK, QPSK, 8PSK, US-16QAM,
US-32QAM, US-64QAM signals in 2D Stokes planes with their
corresponding 3D Stokes space constellations. Images in the first column
are Jones constellations of the corresponding signals. The laser linewidth
is 100 kHz.

C. THE PROPOSED SCHEME
The proposed CNN-MFI scheme is designed for a PDM
coherent system, which is shown in Fig. 6. Behind the mod-
ulation format-independent chromatic dispersion (CD) com-
pensation and Pol-deMUX, the proposed CNN-MFI scheme
is processed. After the modulation format is determined suc-
cessfully, other modulation format-dependent equalization
algorithms can be carried out.

To implement the proposed CNN-MFI scheme, there are
two main steps (see Fig. 7). In the first step, received sig-
nals are mapped into Stokes space, and images are gener-
ated by projecting 3D Stokes onto three 2D Stokes planes,
and then in the second step, modulation formats are iden-
tified by a two-stage trained neural network in real-time.
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FIGURE 5. Images of 20,000 symbols of PS-16QAM (3 bit/symbol),
PS-32QAM (3, 4 bit/symbol), PS-64QAM (3, 4, 5 bit/symbol) signals in 2D
Stokes planes with their corresponding 3D Stokes space constellations.
Images in the first column are Jones constellations of the corresponding
signals. The laser linewidth is 100 kHz.

FIGURE 6. The architecture of the proposed scheme. After modulation
format-independent processes, the proposed MFI scheme is processed,
and then all modulation format-dependent processes can be
implemented after the MFI process.

FIGURE 7. The steps of the proposed MFI scheme (from left to right): step
one, all received signals are mapped into Stokes space and then
projected onto three 2D Stokes planes; step two, a trained lightweight
two-stage deep neural network MobileNet V2 is used to identify the
modulation formats.

The first-stage CNN is used to distinguish whether the signal
belongs to a standard modulation format or is a PS-QAM
signal. Then, the second-stage CNN obtains the specific

modulation format. The lightweight deep neural network
MobileNet V2 [25], [26] is used as our CNN scheme, which
helps to improve the efficiency of our deep neural network.
The basic unit of a MobileNet is called a depthwise separable
convolution, which mainly separates a standard convolution
into a depthwise convolution and a pointwise convolution.
The new convolution layer is called a bottleneck, which can
reduce the computational cost 8 or 9 times less than a stan-
dard layer. Each stage is an independent MobileNet V2 with
21 layers: 17 residual bottleneck layers, 3 convolutional lay-
ers, and 1 average pooling layer. The two-stage CNNs are
used here because if we use one-stage CNNs, it will be hard
for the CNN to learn all the MFs well in the case of so many
formats. However, if we first distinguish the standard MFs
and PS-QAMs, it will be easier for the second-stage CNN
to determine specific modulation formats as they just learn
standard MFs or PS-QAMs.

III. EXPERIMENTAL SETUP
To verify the feasibility of the proposed scheme, a 28 Gbaud
coherent experiment platform is shown in Fig. 8. The
28 Gbaud signals of 12 modulation formats were generated
by a 65 GS/s arbitrary wave generator (AWG) with an offline
MATLAB program [15]. At the transmitter, the external cav-
ity lasers (ECLs) with a linewidth of 100 kHz were utilized
to produce light at the central wavelength of 1550 nm and
were modulated by an integrated polarization-multiplexing
I/Q modulator. Then, the transmitted signals were amplified
by an EDFA and sent into a span of an 80 km standard
single-mode fiber (SSMF). The loss of fiber was 0.2 dB/km,
the chromatic dispersion parameter was 16.9 ps/(nm·km) and
the nonlinear coefficient was 1.27 km−1·W−1. Additionally,
an ASE noise source and a variable optical attenuator (VOA)
were coupled to change the OSNR condition of the fiber
link. At the receiver side, a bandwidth optical bandpass fil-
ter (OBPF) of approximately 33 GHz was used to filter out
the out-band noise, and the filtered signals were fed into a
42 GHz electrical bandwidth polarization diversity coherent
receiver. The local oscillator (LO) was a 100 kHz bandwidth.
After balanced photoelectric detection (BPD) and 80 GS/s
analog-to-digital sampling of a real-time oscilloscope, elec-
trical signals were processed by an offline DSP module,
where our proposed CNN-MFI was embedded. Inside the
DSP module, the CD compensation and Pol-deMUX [27]
were performed first, then signals were mapped into Stokes
space, and images were generated for three 2D Stokes planes.
These three images are called an image combination, which
is used as input of our three-channel CNN.

The modulation format was identified by feeding the gen-
erated images to the proposed MFI scheme, and then modu-
lation format-dependent equalizations could be carried out.

We did not adopt data augmentation methods, including
image flip, and translation since the generated images are not
images of natural color scenes. To train the first-stage net-
work, we used 3,240 image combinations in the training pro-
cess (each modulation format has 270 image combinations),
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FIGURE 8. Experimental setup of a 28 Gbaud coherent platform. The
signals of twelve modulation formats are generated by an AWG. The
OSNR of the fiber link is simulated by an ASE noise source and VOA. After
balanced photoelectric detection, samples are fed into the DSP where the
proposed MFI scheme is performed.

and for the second-stage network, 64,800 image combina-
tions were used (each modulation format had 5,400 image
combinations). OSNR ranged from 9 dB to 35 dB for these
two-stage training images. The size of the input images was
224 × 224 pixels and had 256-level grayscale, so the largest
memory size of an image was 49 kb. Additionally, only one
generated image needs to be stored in the memory once a
time; it is small enough to implement the algorithm in a
DSP. The training process of the CNN can be performed
offline. To generate images, 20,000 symbols were used, and
100 epochs were conducted to converge the neural network.
We selected 10−5 as the initial learning rate, and the Adam
algorithm was used to adaptively adjust the learning rate
during the training process.

In the test stage, 32,400 image combinations for 12 modu-
lation formats (OSNR from 9 dB to 35 dB) were used to test
the accuracy of the trained model.

IV. RESULTS AND DISCUSSION
Fig. 9 shows the result of our MFI system. Fig. 9 (a) shows
that the first-stage CNN can easily distinguish the standard
MFs and PS-QAMs at all OSNRs. After the second-stage
CNN, the proposed system can recognize all 12 modulation
formats at relatively low OSNRs. In our opinion, the criteria
of the evaluation for whether the performance of our system
was good enough that the identification accuracy for each
modulation format was higher than 95%. Fig. 11 shows that
theminimum value of OSNRwhen the criteria can be reached
was approximately 15 dB for standard MFs and PS-QAMs,
so we give the identification result for OSNR range from
15 dB to 35 dB in Fig. 9 (b) and Fig. 9 (c). Theoretical OSNR
values under the FEC threshold of the standard 28 GBaud
16QAM, 32QAM, and 64QAM are approximately 18 dB,
21 dB, and 24 dB, respectively. The proposed scheme reduced
the required OSNR value to 16 dB for all of the QAM
modulation formats. For PSK signals, all PSK modulation
formats were identified precisely when the OSNR value was

FIGURE 9. The confusion matrix of the proposed MFI scheme. (a) Number
of test image combinations and accuracy matrix for first-stage CNN. All
images can be identified precisely. (b) Number of test image
combinations and accuracy matrix for second-stage CNN of standard MFs.
Each modulation format contains 2,100 test image combinations (OSNR
from 15 dB to 35 dB) of six standard MFs, including three PSK signals and
three US-QAM signals. Six image combinations of US-16QAM are
misclassified as US-64QAM. (c) Number of test image combinations and
accuracy matrix for second-stage CNN of PS-QAMs. Each modulation
format contains 2,100 test image combinations (OSNR from 15 dB to
35 dB) of six PS-QAM signals. Four image combinations of 3 bit/symbol
PS-16QAM are misclassified as 3 bit/symbol PS-64QAM, and two image
combinations of 3 bit/symbol PS-32QAM are misclassified as
3 bit/symbol PS-64QAM. One image combination of 3 bit/symbol
PS-64QAM is also misclassified as 3 bit/symbol PS-32QAM.

higher than 9 dB, which was lower than the FEC threshold
of 28 GBaud BPSK (9.73 dB). According to [28]–[30], the
required OSNRs under the FEC threshold for PS-16QAM,
PS-32QAM, PS-64QAM are approximately 17 dB, 19.7 dB
and 22.5 dB, respectively, which are also lower than the
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FIGURE 10. Images of 16QAM and 64QAM in three different 2D Stokes
planes at OSNR 13 dB. (a) US-16QAM and US-64QAM. (b) PS-32QAM
(3 bit/symbol) and PS-64QAM (3 bit/symbol).

FIGURE 11. Identification accuracy at different OSNRs (9 dB to 35 dB)
with image size 224 × 224 pixels.

required OSNR value 16 dB to recognize all PS-QAM signals
precisely.

It can be seen in Fig. 9 (b) that six image combina-
tions of US-16QAM were misclassified as US-64QAM. The
reason is that the visual appearance of the two formats
were very similar to each other when the OSNR was too
low, e.g. 13 dB, and it is very hard to distinguish them
from each other (see Fig. 10 (a)). For similar reasons, for
PS-QAM signals, four image combinations of 3 bit/symbol
PS-16QAM were misclassified as 3 bit/symbol PS-64QAM
and two image combinations of 3 bit/symbol PS-32QAM

FIGURE 12. Identification accuracy for input images of different numbers
of symbols from 5,000 to 20,000 at 5,000 with different resolutions.

were misclassified as 3 bit/symbol PS-64QAM and one
image combination of 3 bit/symbol PS-64QAM was also
misclassified as 3 bit/symbol PS-32QAM (see Fig. 10 (b) for
example), which are shown in Fig. 9 (c). However, as OSNR
was higher than 16 dB, the CNN-MFI scheme identified all
twelve modulation formats precisely (Fig. 11).

As in Fig. 11, the proposed MFI scheme reached a precise
identification accuracy at a very low OSNR requirement
compared to conventional Stokes space cluster algorithms
described in [12] and [31]. US- and PS-mQAM signals were
successfully identified when OSNR was higher than 14 dB;
for PSK signals only, all PSK modulation formats were rec-
ognized when OSNR was as low as 9 dB.

Meanwhile, the proposed MFI scheme also runs quickly
and requires very small storage memory. In a 28 Gbaud sys-
tem, the time to achieve 20,000 samples was approximately
0.174 µs, and it took approximately 5 ms to determine the
modulation format. The hardware platformwas an Intel Xeon
E5 v4, frequency 1.7 GHz, 8 cores, and a GTX TITAN Xp
GPU card, and 12 GB memory.

In Fig. 12, the effects of sizes of images and numbers of
symbols in each combination of images is considered. Three
sizes of images are shown: 56× 56 pixels, 112× 112 pixels,
and 224 × 224 pixels. The range of numbers of symbols
in each combination of images are from 5,000 to 25,000 at
5,000. For the same number of symbols in each combination
of images, the identification accuracy increases as the size
of the images increases. However, a larger size of images
implies that more computational resources are needed. Here,
we take images of 224 × 224 pixels as a reasonable size,
which is a tradeoff of efficiency and complexity. Addition-
ally, using a specific size of images in a combination of
images increases the identification accuracy as the number
of symbols increases. Other than typical MFI schemes, such
as schemes proposed in [12] and [31], the complexity and
requirement of memory of the proposed MFI scheme does
not change considerably as the number of symbols increases
because they are used to generate images only. From Fig. 12,
the identification accuracy does not improve considerably as
the number of symbols becomes larger than 20,000. There-
fore, we use 20,000 symbols in the proposed MFI scheme.

In Fig. 13, we investigated the change in identification
accuracy with the increasing number of epochs as we trained
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FIGURE 13. The total accuracy at different epochs for input images with
different resolutions of 56 × 56 pixels, 112 × 112 pixels, 224 × 224 pixels.

FIGURE 14. Images of constellations in 3D Stokes space and three 2D
Stokes planes of US-16QAM signal with 5 dB PDL effect.

the CNN. The conclusion is that the accuracy achieves a
stable value after 50 or 60 epochs for three sizes of images
with 20,000 symbols. Therefore, it is enough to train the CNN
with 60 epochs, and the accuracy can achieve a reliable value.

Although CD can be assumed to be compensated
precisely [32] and polarization demultiplexing can be per-
formed before the MFI scheme, in practice, the influence
of impairments such as polarization-dependent loss (PDL),
residual CD, and polarization mode dispersion (PMD) in
optical transmission systems still exist and should be con-
sidered. In the following, the tolerances of the proposed
MFI scheme with respect to these impairments are consid-
ered. Two uniformly shapemodulation formats (US-16QAM,
US-64QAM) and two probabilistically shaped modulation
formats (4 bit/symbol PS-32QAM, 4 bit/symbol PS-64QAM)
at OSNR 22 dB are discussed as examples. All impairments
are simulated using the offline MATLAB program.

To the effect of PDL, all the Stokes constellation points
in 3D Stokes space will linearly shift in the same direc-
tion but in the 2D Stokes plane (s2, s3), it will not change
(see Fig. 14). Therefore, benefiting from our three chan-
nels input, the scheme can accurately identify signals with
PDL effect. PDL is set in the range from 0 dB to 10 dB.
In Fig. 15 (a), the proposed MFI scheme can tolerate PDL
until 6.5 dB for US-16QAM, 6.5 dB for US-64QAM, 4.5 dB
for PS-32QAM (4 bit/symbol) and 5 dB for PS-64QAM
(4 bit/symbol), respectively.

For the residual CD (-300 – 300 ps/nm), the results are
shown in Fig. 15 (b). The tolerances of the proposed MFI
scheme of the four modulation formats are -170 – 160 ps/nm,
-200 – 210 ps/nm, -220 – 230 ps/nm and -240 – 250 ps/nm,
respectively.

FIGURE 15. Tolerances of the proposed MFI scheme of four modulation
formats (US-16QAM, US-64QAM, 4 bit/symbol PS-32QAM and PS-64QAM)
under three following effects: (a) PDL values from 0 dB to 10 dB.
(b) Residual CD values from -300 to 300 ps/nm. (c) DGD values from 0 ps
to 15 ps.

FIGURE 16. Images of constellations in 2D Stokes plane (s2, s3) of
4 bit/symbol PS-32QAM and PS-64QAM signal.

To the effect of PMD, the DGD is set in a range from 0 to
15 ps. In addition, the tolerances of the CNN-MFI system
for the four modulation formats are 7 ps, 10.5 ps, 11 ps and
12.5 ps, respectively (see Fig. 15 (c)).
From Fig. 15, the proposed MFI scheme can tolerate

residual CD, PDL and PMD effects in a wide range. It is
interesting to see that for residual CD and DGD, PS-QAM
signals perform better than US-QAM signals. The reason
is as follows: the inner part of constellations of PS-QAM
signals is more likely to appear than the outer part, which
makes signals more powerful against the residual CD and
DGD effects. However, for the PDL effect, PS-QAM signals
perform worse than US-QAM signals. This is because the
images of PS-QAM in the 2D Stoke plane (s2, s3) are too
similar to each other with the same low H (PX ) (see Fig. 16).
Additionally, we notice that higher-order modulation formats
often have better tolerance than the lower order modulation
formats since lower order modulation formats tend to be mis-
classified as higher-order modulation formats. However, this
does not influence the identification accuracy of US-64QAM
or 4 bit/symbol PS-64QAM, as they are the highest order
modulation format for US- and 4 bit/symbol PS-mQAM
signals.

V. CONCLUSION
For twelve modulation formats, BPSK, QPSK, 8PSK,
US-16QAM, US-32QAM, US-64QAM, PS-16QAM
(3 bit/symbol), PS-32QAM (3 and 4 bit/symbol), PS-64QAM
(3, 4, 5 bit/symbol), a deep learning-based modulation
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identification scheme is proposed. By mapping all received
signals into three 2D Stokes planes, images are generated that
are fed into the two-stage CNN-MFI scheme. The results
show that the proposed CNN-MFI scheme can achieve a
relatively high identification accuracy (>95%) with relatively
low OSNR burden (>15 dB). Additionally, the tolerances of
the proposed scheme with respect to the effects of residual
CD, PDL and PMD are also discussed. The results show that
the scheme has a wide range of tolerances to these effects.
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