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ABSTRACT With the progress of web technologies, web services with abundant functionalities, such as
video transmission, location, navigation, etc., are becomingmore andmore pervasive. Automatic web service
composition aims to automatically combine selected elementary web services from a finite service set by
matching the input and output parameters given an initial state and a goal state. Considering the end-to-end
Quality-of-Service(QoS) of each web service, the service composition problem becomes an optimization
problem to find the optimal solution. This paper maps this problem to an automatic planning problem and
proposes Q-Graphplan based on the classical graphplan, an efficient planner for solving classical planning
problems. First, we construct a planning graph based on the dependency relationships of the web services
and extract essential heuristics according to the reachability analysis. Second, we convert this planning
graph to a directed path generation graph. Finally, we extract the optimal solution from the path generation
graph using a backward A* algorithm with the heuristics of the planning graph. Furthermore, our approach
avoids redundancies when constructing the planning graph and improves the searching effectiveness in
extracting solution. We conduct experiments on the WSC-2009 dataset to compare performance against
present approaches, and the results show the efficiency and effectiveness of our proposed approach.

INDEX TERMS Service composition, AI planning, QoS-aware, heuristic search.

I. INTRODUCTION
Since the development of the internet has been accelerating in
recent years, web services are becoming more and more per-
vasive in people’s daily lives [1]. Web services are modular
web-based self-described software components that imple-
ment a collection of functions or operations [2], which are
made available through syntactic descriptions, such as SOAP,
RESTful and Web API. Each web service associates to a set
of non-functional quality of service (QoS) parameters (e.g.,
response time, throughput, reliability, etc.) which determine
the performance of this service. Due to the variability of
users’ requests, a single web service hardly satisfies the users’
requirements precisely.

Assuming a scenario, a user is driving a car with a smart
car device in an unfamiliar city to have sightseeing. The
smart car device is in the mobile network environment with
abundant web services, such as video transmission, voice
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navigation, viewpoints recommendation, GPS, store query,
music mix, etc. To make diverse web services available in the
mobile network environment, plenty of innovative research
work has been proposed. Work [3] proposed a creativity
feature-based learning system for Internet-of-Things (IoT)
services that classified the data and detect anomaly events
efficiently. It effectively reduced the computation overhead
and energy consumption of the IoT services and significantly
improved the efficiency of neural network training to adapt
to the mobile network environment better. Work [4] pro-
posed a transmission mechanism of Internet of Vehicles that
laid the foundation for multimedia services. It concurrently
considered privacy protection and multimedia transmission
resulting in significant improvement in the performance and
security of multimedia services in the mobile network envi-
ronment. Work [5] proposed a novel solution for the design
and performance analysis of wireless-powered communica-
tion system. Work [6] proposed a scalable video coding shar-
ing scheme that made video distribution more flexible in the
mobile edge network. Work [7] proposed a social and smart
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device-to-device (D2D) network framework which provided
a novel model for mobile edge cloud. Variousmobile web ser-
vices could be orchestrated together and invoked to dynami-
cally satisfy the user’s requirements efficiently. QoS-aware
automatic service composition (ASC) is proposed to auto-
matically combine the multiple web services as a service
chain based on the input-output dependencies [8], to produce
the desired output fulfilling users’ goals while choosing the
solution with the optimal QoS value.

Plenty of research results have been proposed about the
ASC problem. Most of them focus on single-objective opti-
mization [9]–[12]. QoS criteria include multiple categories,
therefore, single-objective optimization in service compo-
sition often could not satisfy the present requirements.
Consequently, multi-objective optimization of QoS values
for service composition problem has become an attractive
topic [13]–[15].

Among the proposed approaches, two main different mod-
els are generally used to address this issue. The first could be
characterized as the static model, separately constructing an
abstract service workflow and determining the atomic service
via optimization algorithms to find solutions with optimal or
near-optimal QoS values. This model transforms the ASC
problem as an integer programming problem, an NP-hard
problem [16]–[20]. This approach’s search space is limited
by the predefined workflow. Therefore, they can not ensure
the globally optimal of the solutions. The second model is the
dynamic model, dynamically constructing the service chain
with the changes in QoS values. This model usually generates
a dependency graph and solve the problem as a shortest path
problem [1], [21]–[24]. The graphplan algorithm [25] is a
frequent approach in the second model [26], [27]. In general,
this approach depends on an efficient search strategy. Fur-
thermore, it might produce redundant services that could not
lead to the goal and affect the searching efficiency during the
construction process of the dependency graph.

Heuristic search algorithms (e.g., A* algorithm) [28], [29]
have been widely used to optimize the optimal path genera-
tion problems. The planning graph could be seen as a source
of information for developing search heuristics. In this paper,
we study the multi-objective optimization in QoS-aware ASC
problem with the dynamic model and apply the planning
graph as a dependency analyzer and the heuristic generator
to solve the problem. The main contributions of this paper
are as follows:
1) We combine graphplan with heuristic search and propose

a new approach called Q-Graphplan as a QoS-aware ASC
problem solver. Q-Graphplan considers multiple QoS cri-
teria and dynamically chooses services with the QoS value
changes other than optimizing fixed composite services.
Moreover, Q-Graphplan extends the classical planning
graph with an extended layer to provide more useful
information.

2) We first introduce the heuristic extraction mechanism into
the ASC problem-solver, which take full advantages of the
planning graph and significantly increase the searching

effectiveness. We present a redundancy-free algorithm to
construct the planning graph which eliminates the nonef-
fective searching space and saves the backtracking time
when searching for solutions.

3) We present a new algorithm to convert the planning graph
as a directed path generation graph. We use the admissible
heuristics extracting from the planning graph and propose
a backward A* algorithm to search optimal solution from
the directed path generation graph.

This paper is organized as follows: In Section II, we intro-
duce the existing relative literature. Section III presents some
definitions and formulates the problem. Section IV presents
the Q-Graphplan algorithm, our kernel proposal. Section V
presents the experiment results. Section VI concludes the
work look forwards the future.

II. RELATED WORK
In this section, we describe the state of art proposals from
two aspects. In the first part, we focus on the QoS-aware
ASC problem. In the second part, we mainly describe around
graphplan and heuristic search.

As mentioned above, the static model to solve the
QoS-aware ASC problem has two steps. The first step is
to construct a workflow with abstract services and the sec-
ond step is service selection for each abstract service.
Work [30] formalized the general procedure of the static
model. Work [17] proposed a mixed integer programming
approach. Work [18] first selected multiple services for
every abstract service class of a complex process template
by a heuristic algorithm, which aims at determining a set
of near-optimal service compositions. A significant number
of research results have been done based on evolutionary
algorithms, such as Bee Colony Optimization [31], Genetic
Algorithms [19]. Work [20] studied QoS dependency on
the time of the execution or the input data. The authors
proposed a genetic algorithm to obtain approximations of
the Pareto optimal solutions set. Work [13] proposed a
QoS dependency-aware service composition considering the
dependency that the QoS values of a service are correlated to
other services, and when these services are selected together,
their QoS values will change. In general, these approaches
optimize QoS values on a static abstract service workflow,
therefore, it could miss some optimal solutions with different
services.

The dynamic model is to dynamically adjust the service
sequences with the changes of the QoS values. Work [32]
used CSP (Cost-Sensitive Planning) technology to find
local optimal solution based on multiple QoS constraints in
dynamic service composition. Work [14] found the optimal
Pareto front in the dependency graph for multi-objective opti-
mization. Work [11] proposed to generate the Pareto optimal
solutions in a parallel setting. This approach fails to con-
sider common situations when constructing the dependency
graph.Work [10] first proposes a continuous query mecha-
nism for single QoS criteria.
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Work [33]’s graphplan algorithm has emerged as the fastest
planner for solving classical planning problems. It is a
technology using the planning graph to search plans [34].
The state of the art proposals [35] usually transform the
planning graph to a DAG(directed acyclic graph) and use
Dijkstra’s algorithm to find the optimal solution. This
approach only treats the planning graph as a dependency ana-
lyzer while wasting the heuristics contained in the planning
graph. A number of heuristic functions to extract the heuris-
tics from the planning graph have been proposed and proved
effective and admissible to optimize the searching process in
graphplan. Work [34] proposed HSP-R [25], a state-search
planner, providing heuristic functions to extracting heuristics
from the planning graph. HSP-R follows a variation of A*
search algorithm, called Greedy Best First, which uses the
cost function f (S) = g(S) + h(S), where g(S) is the accu-
mulated cost and h(S) is the heuristic value of state S. A*
search has been used abundantly for low-dimensional path
planning [36]. The performance of A* search are mainly
influenced by the heuristic functions. Work [37] proposed a
series of heuristic functions based on HSP-R and proves the
usability and efficiency. Work [38] first combined graphplan
and A* search with considering QoS constraints to ASC
problem. Work [38], [39] all failed to deal with redundancies
in constructing the planning graphs.

Q-Graphplan considers multiple QoS criteria in finding
the optimal solution, constructs the redundancy-free planning
graph, extracts admissible heuristic from the planning graph
and use backward A* algorithm to find a optimal solution.

III. PROBLEM FORMULATION
In this section, we first describe the relative concepts of the
QoS-aware ASC problem by a set of formal definitions.

A. QoS-AWARE ASC PROBLEM
Definition 1 (Elementary Web Service): An elementary

web service w could be denoted as a tuple (I (w),O(w),Q(w)),
where I (w) = {I1(w), I2(w) . . .} is a set of input parameters,
where O(w) = {O1(w),O2(w) . . .} is a set of output parame-
ters, where Q(w) = {Q1(w),Q2(w) . . .} is a set of QoS values.
Each elementary web service has one operation. A set of

elementary web services consist of a web service composi-
tion. In this paper we call the elementary web service as the
web service for short.

The QoS criteria described in the context of elementary
web services are also used to evaluate the QoS of a set of
composite web services. In the composite web services, there
could exist sequential and parallel relation among different
web services. Considering a set of composite web services C
including n services {w1,w2, . . . ,wn}, the QoS values Qi(C)
are calculated according to the equations in table 1.

Some of the above criteria are negative, i.e., the lower the
value, the higher the quality. The other criteria are positive,
i.e.,the higher the value, the higher the quality. The QoS
criteria above have different range. Therefore, we use a set
of equations to scale these values to the range of [0, 1] and

TABLE 1. QoS criteria of the composite services.

unified them to be negative before using them. Given a QoS
criteria Qi for an elementary web service wj, we calculate
an utility value Si(wj). For negative criteria, such as response
time and execution time, values are scaled using equation (1).
For positive and non-multiplication criteria, values are scaled
using equation (2). For positive and multiplication criteria,
values are scaled using equation (3). Similarly, we could
calculate scaled QoS values of the composite web services
Si(C).

Si(wj) =


Qi(wj)− Qmini

Qmaxi − Qmini

, Qmaxi − Qmini 6= 0

1, Qmaxi − Qmini = 0
(1)

Si(wj) =


Qmaxi − Qi(wj)

Qmaxi − Qmini

, Qmaxi − Qmini 6= 0

1, Qmaxi − Qmini = 0
(2)

Si(wj) =


ln(Qmaxi )− ln(Qi(wj))

ln(Qmaxi )− ln(Qmini )
, Qmaxi − Qmini 6=0

1, Qmaxi − Qmini =0
(3)

Given a set of elementary web services σ including a set
of web services {w1,w2, . . . ,wn}, to measure the multiple
QoS criteria of the composite web services, we aggregate the
multiple criteria to a single criteria using equation (4).

S(σ ) =
∑
i

Si(σ )Wi + ln
∑
j

Sj(σ )Wj (4)

where i ∈ {rt, tp, ep}, j ∈ {rel, suc, ava},Wi,Wj ∈ [0, 1] and∑
i,jW = 1.
Definition 2 (QoS-Aware ASC Problem): A QoS-Aware

ASC problem is denoted as a tuple (W ,P,Rin,Rout ,Q), where
W = {w1,w2 . . .} is a set of web services, P = {P1,P2, . . .}
is set of applicable parameters, Rin = {r1in, r

2
in . . .} is a set of

provided input parameters, Rout = {r1out , r
2
out . . .} is a set of

expected output results, and Q = {Q1,Q2 . . .} is a finite set
of composite web services’ QoS criteria.

In the above definition, we use Q to denote QoS criteria.
In the problem solving process, to simplify the calculation,
we use equation (4) to scale the values denoted as S =
{S1, S2, . . .}.

IV. Q-GRAPHPLAN
In this section, we convert the QoS-aware ASC problem to
a QoS-aware graphplan problem and describe the process
of Q-Graphplan to solve the problem in detail. Generally
speaking, our approach consists of three phase. The first
phase is generating the planning graph and deriving heuristic
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information. The second phase is converting the planning
graph to a directed path generation(DPG) graph to find opti-
mal path. The third phase is extracting the optimal solution
from the LPG graph using a backward A* algorithm.

In this section we will consider a QoS-aware ASC problem
(W ,P,Rin,Rout ,Q) which is mapped to a graphplan problem
(O, s0, g) and a cost function, we will show the detailed
process and algorithms of how to find the optimal web service
composition solution using Q-Graphplan.

A. QoS-AWARE GRAPHPLAN PROBLEM
In this section, we define the relative concepts of the classi-
cal Graphplan, and map the QoS-aware ASC problem to a
graphplan problem.
Definition 3 (Graphplan Problem): Given a finite propo-

sition symbol set L = {p1, p2, . . . , pn}, a Graphplan problem
is defined as a tuple (O, s0, g), where:

• O = (S,A, γ ) is a STRIPS planning domain.
• S = {s1, s2, . . .} is a finite or recursively enumerable
set of states.S ⊆ 2L indicates that each state s ∈ S is a
subset of L.

• A = {a1, a2, . . .} is a finite or recursively enumerable
set of actions. An action is a couple (pre(a), effect+(a))
where pre(a) ⊆ S denotes the preconditions and
effect+(a) ⊆ S denotes the positive effects of the action.

• γ : S × A → 2S is a state transition function. For an
action a and a state s, if and only if pre(a) ⊆ s, we call
a is applicable in s, and γ (s, a) = s ∪ effects+(a).

• s0 ∈ S is the initial state and g is the goal.
An ASC problem could be mapped to a graphplan prob-

lem as the following rules. The proposition set L could be
mapped to the parameter set P, and each parameter could be
seen as a proposition p. The web service set W in the ASC
problem could be mapped to the action set A in the graphplan
problem. Correspondingly, each elementary web service w
could be mapped to an action a. The input parameter set I (w)
could be mapped to the preconditions pre(a), and the output
parameter set O(w) could be mapped to the positive effects
effect+(a). Same as the graphplan problem, all the input
and output parameter set in the ASC problem are positive.
The input parameter set Rin of the ASC problem could be
mapped to the initial state s0 of the graphplan problem. Sim-
ilarly, the output parameter set Rout are mapped to the goal
set g.
Definition 4 (Planning Graph): A planning graph Gp is a

directed layered graph denoted as a set of proposition layers
and action layers 〈P0,A1,P1, . . . ,An,Pn〉 where, the layer
P0 denotes the initial state s0 of the graphplan problem,
the layer A1 denotes the applicable action set of the layer
P0, and the layer P1 is the union set of the layer A1’s positive
effects and the layer P1.
In the ASC problem, an action layer could be mapped to a

set of web services, and a proposition layer could be mapped
to a set of input and output parameters.
Definition 5 (Extended Layer): An extended layer is a set

of sequential hashtables 〈H1,H2, . . . ,Hn〉 recording the

FIGURE 1. The extended planning graph.

extended information of each layer in the planning graph.
A hashtable Hi maps each proposition p in layer i a list
of reachable action tags with a tuple (p,ActionTagList).
An action tag is a tuple (a,Level) recording the layer number
in which the proposition p is reached by action a.

The extended layer is an assistant layer for the clas-
sical planning graph. It indicates each proposition in the
current layer in which layer by what action the propo-
sition is reached. As is shown in figure 1, adding the
hash layer, the new planning graph could be denoted as
〈P0,A1,P1,H1 . . . ,An,Pn,Hn〉. The hashtable in each layer
could be generated when constructing the corresponding
proposition and action layer. It records extended information
beyond the classical planning graph.
Definition 6 (Cost Function): cost(A) is a cost function

for actions, cost : A→ R, where R is the real numbers.
Corresponding to the QoS-aware ASC problem, the cost

values of the actions are the QoS values of executing the web
services after scaling using equation (1)-(3).
Definition 7 (Graphplan Solution): A sequence set of

actions’ sets 〈π1, π2, . . . , πn〉 is a solution of the graph-
plan (O, s0, g), if and only if each πi ∈ 5 is inde-
pendent and each action in πi is parallel, where π1 is
applicable to s0, π2 is applicable to γ (s0, π1), etc., and
g ⊆ γ (. . . γ (γ (s0, π1), π2) . . . πn).
A solution of an ASC problem could be mapped to a

graphplan solution. Each action in the graphplan solution
corresponds to a elementary web service in the service set.
A set of parallel actions correspond to a set of web services
which could be accessed concurrently. The cost of a solution
could be calculated using equation (4). An optimal solution
of the QoS-aware ASC problem is the solution which has the
least cost. Correspondingly, finding the optimal solution of
theQoS-awareASC problem could bemapped to the problem
finding the shortest executing sequence in the planning graph.
We call this process QoS-aware graphplan(Q-Graphplan) in
this paper.

B. CONSTRUCTING THE PLANNING GRAPH
Constructing a planning graph is to generate reachable lay-
ers according to the dependency and reachability analysis.
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Algorithm 1 Constructing the Planning Graph
1: function CONSTRUCT(A, s0, g)
2: Candidates← ∅,P0← s0,Gp← 〈P0〉,
3: Label ← 0
4: if g ⊆ s0 or Fixedpoint(Gp) then
5: return true
6: end if
7: for a ∈ A do
8: if pre(a) ⊆ Pi then
9: Candidates← Candidates ∪ {a}
10: end if
11: end for
12: if Expand(Candidates,A, s0, g,Label) then
13: add Candidates to Gp as the new action layer
14: add s0 to Gp as the new proposition layer
15: generate a new hashtable for this layer
16: end if
17: if Construct(A, s0, g) then
18: return true
19: end if
20: return false
21: end function

The dependency indicates that each layer is independent to
its last layer. The reachability indicates that a proposition
layer is generated indicates that all the propositions in this
layer is reachable.The planning graph is expanded layer
by layer until the goal state or the fixed layer is arrived.
In each layer, the action layer, the proposition layer and
the extended layer are generated sequentially. The planning
graph acts as a heuristic generator. The construction pro-
cess is the process of extracting heuristics from reachability
analysis.

As is shown in algorithm 1, constructing the planning
graph includes two recursive processes. In line 4-6, it esti-
mates whether the planning graph is completely constructed.
Two conditions are considered, which are the goal state or
the fixed point is reached. It has been proved that all the
planning graph would reach a layer after which the state
will not change and this layer is called a fixed point. The
function Fixedpoint(Gp) is used to decide if this layer is
reached. Line 7-11 find an applicable action set Candidates
for the present proposition layer Pi. Line 12-15 recursively
analyze the reachability of each service and filter the redun-
dant services in Candidates with the function Expand(),
then add the remaining reachable services the new action
layer. Correspondingly, the initial set s0 is updated and
added as the new proposition layer, and the new extended
layer is generated. Line 17-19 recursively construct the plan-
ning graph until the terminated conditions in line 4-6 are
satisfied.

C. EXPANDING THE GRAPH WITHOUT REDUNDANCIES
Expanding a planning graph is a process to establish a new
layer from the existing layers. Usual approach generating

a new layer is similar to a BFS(band-first-search), which
means it will add all the actions applicable to the existing
proposition layer to the new action layer. This will obviously
cause redundancies in the action layer. A redundancy is an
action that could not be expanded or whose follow-up actions
could not be expanded to the final layer. To avoid this situa-
tion, we filter the candidate actions using a DFS(deep-first-
search)-like backtracking to analyze the actions’ reachability
before adding to the new layer. This approach has been proved
usable to guarantee all the involved actions are expandable.

Algorithm 2 demonstrates the detailed process of expand-
ing the planning graph. The input includes the unprocessed
applicable action set Candidates, the action set A, the initial
set s0, the goal set g, and a positive integer to label the
recursive level num. Each time it gets into a new recursion,
num will add 1. As is shown in line 6-7, num is an indicator
identifying if it needs to scan all actions in the candidate
set, since it is necessary to analyze all candidate actions’
reachability in the first level, while the internal recursive
levels only have to find one existing path to arrive the goal
set. In line 11-14, a subset of the candidate is including all
applicable actions for updated initial state s′0 is generated to
get into the internal recursions. As is shown in line 15-19,
once the goal set arrives, it will backtrack to the first level and
keep this action in the candidate set, otherwise, the candidate
will be removed. This backtracking approach is a DFS-like
process which could not only analyze reachability but update
the heuristics at the same time.

D. HEURISTICS OF THE PLANNING GRAPH
Our approach of extracting heuristics is based on HSP-R.
It casts planning as search through the regression space of
world states. The heuristic can be seen as estimating the
proposition distance required to reach a state (either from the
goal state or the initial state. Given a goal state g, we use h(g)
to denote the estimating cost from the initial state s0 to s. The
value of h(g) could be calculated via an estimating function
1 representing the minimum cost from s0 to g, which could
be denoted as:

h(g) = 1(s0, g) (5)

1(s0, g) could be determined by the minimum cost of each
proposition p in the goal state g, denoted as 1(s0, p). The
value of1 could be calculated following the equation below:

1(s0, p) = 0 p ∈ s
1(s0, p) = ∞ ∀a ∈ A, p 6∈ effect+(a), p 6∈ s
1(s0, g) = 0 g ⊆ s
Otherwise :
if p ∈ effect+(a) :
1(s, p) = min{1(s0, p), cost(a)+maxq∈pre(a)1(s0, q)}
1(s, g) = maxp∈g1(s0, p)

(6)

Equation 5 has been proved admissible, therefore, it will
be used as heuristic function in the searching phase. As is
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Algorithm 2 Expanding the Planning Graph and Extracting
Heuristics
Require: Candidates is a set of services to expand, A, s0, g,

num is a label of the recursive level
Ensure: reachability
1: function EXPAND(Candidates,A, s0, g, num)
2: SubCan← ∅, num← num+ 1
3: for a ∈ Candidates do
4: s′0← s0 ∪ effect+(a)
5: if g ⊆ s′0 then s0← s′0,UpdateDelta(a)
6: if num 6= 1 then return true
7: end if
8: else
9: if s′0 = s0 then delete a from Candiadates
10: end if
11: for a′ ∈ A do
12: if pre(a′) ⊆ s′0 then add a′ to SubCan
13: end if
14: end for
15: if SubCan 6= ∅ and
16: Expand(SubCan,A, s′0, g, num) then
17: s0← s′0, UpdateDelta(a)
18: elsedelete a from Candiadates
19: end if
20: end if
21: end for
22: if Candidates 6= ∅ then return true
23: end if
24: return false
25: end function

shown in algorithm 2, we update the heuristic values with
the function UpdateDelta(a) in line 7 and 23 when finding
an reachable action a. For each proposition in effect+(a),
UpdateDelta(a) updates the value of 1(s0, p) according to
equation 5.

Following the rules above, after constructing the planning
graph, we will obtain a complete estimating distance function
h(S) from initial state s0 to all the reachable state S. In the
following phase of searching solution, it will be used as a
heuristic function in the backward A* searching process.

E. GRAPH CONVERSION
In this section, we will describe the process of converting the
planning graph to an directed path generation(DPG) graph in
detail.
Definition 8 (Directed Path Generation Graph): A

directed path generation graph could be denoted as a
tuple G = (V ,E). V represents a set of graph ver-
texes {vstart , vtarget , v1, v2, . . . , vn}. Each ordinary vertex vi
includes a set of parallel composite actions {a1, a2, . . . , an}.
Specially, vstart and vtarget are two special vertexes which
effectively records initial state s0 and goal set g. E represents
a set of directed edges {e1, e2, . . . , en}. An edge ei = 〈vj, vk 〉
consists of two different vertexes from vertex vj to vertex vk .

Algorithm 3 Planning Graph Conversion
Require: Gp = 〈P0,A1,P1,H1, . . . ,An,Pn,Hn〉, s0, g, k
Ensure: G = (V ,E)
1: function GRAPHCONVERSION(Gp, s0, g)
2: DPG G← ∅, vstart ← s0, vtarget ,← g
3: i← n,Ti← Combination(g,Hi, k),
4: while i 6= 1 do
5: i← i− 1,Ti−1← ∅
6: for each t ∈ Ti do
7: w← {tag|t.Level = i}
8: if w 6= ∅ then
9: T ′← GetParents(Pi−1,Hi−1,w, t, k)
10: Ti−1← Ti−1 ∪ T ′

11: V ← GetVertexes(T ′)
12: UpdateGraph(G,V )
13: else
14: Ti−1← Ti−1 ∪ t
15: end if
16: end for
17: end while
18: add vstart and vtarget to G
19: return G
20: end function

FIGURE 2. An example of the DPG graph.

As is shown in algorithm 3, the input is the planning
graph Gp with the extended layer H , and the output is a
DPG graph G. Line 2-3 initialize the essential variables.,
where G is the DPG graph to return, vstart and vtarget is two
terminal vertexes, i is a counter from the last layer to the
first layer, and Ti is set of the action tags corresponding to
the vertexes to generate. The function Combination(g,Hi, k)
picks action tags in Hi and divides them into different sets
according to the proposition p their corresponding actions’
positive effective include. Pick one action tag from each
set and combine them as a tag vertex t , then return top k
sorted by heuristic values of all the possible results as a tag
vertex set Ti in case of the vertex explosion. The function
GetVertexes() extracts the action part from Ti and receive a
vertex set. Line 4-19 extract vertex from the last layer to the
first layer. Line 6-18 construct vertexes and edges for each tag
vertex t . Line 7 finds the tag vertexes including actions in
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the current layer. If these actions exist, which means the goal
state could be reached via actions in current action layer,
in line 8-12, the function GetParents constructs a new action
tag set T ′ from the previous layer and keeps top k tags in
the set, then assigns them to the tag set Ti−1 to be used in
the next circulation. The function UpdateGraph(G,V ) add
the new vertex set and establish new edges to graph G.
Otherwise, in line 13-16, the current tag is assigned to the
next tag set Ti−1. After traversing thewhole layers, the special
terminal vertexes,vstart and vtarget , are installed to the graph.

F. BACKWARD A* ALGORITHM
After the DPG graph is generated, a search over it must
be performed. Unlikely to ordinary search approach, As is
mentioned before, our search approach is based on the heuris-
tic search strategy, A* algorithm. This algorithm takes full
advantage of our extracted heuristics from the planning graph
to accelerate the searching process.

The search algorithm will traverse the graph backward,
from the target vertex vtarget to the start vertex vstart . Search-
ing backward is given to the features of our extracted heuris-
tics, that the estimating distances are based on the start
point of the initial state, therefore, search forward requires
extra extraction calculation while searching backward could
greatly decrease the calculating complexity and the searching
space.

In order to perform the A* search, a set of principal con-
cepts will be explained. The backward A* algorithm is based
on classical concepts. The classical A* algorithm depends on
the evaluation function f (n) = g(n)+h(n), where n represents
the next node on the path, g(n) represents the cost of the path
from the start node to n, and h(n) is a heuristic function that
estimates the cost of the cheapest path from n to the goal.
An admissible heuristic function h(n), h(n) ≤ h∗(n) for each
node n, where h∗(n) represents the actual cost from n to the
goal, guarantee to find an optimal path to the goal.

In order to match the backward traverse, a backtrack func-
tion and relative concepts are imported to calculate the previ-
ous state. Given a goal g and an action a, we call action a is
related to g, if and only if g∩effective+(a) 6= ∅. The previous
state could be denoted as:

γ−1(g, a) = (g− effective+(a)) ∪ pre(a) (7)

Therefore, for a set of related actions A, the previous state
could be denoted as:

0−1(g,A) = (g−
⋃
a∈A

effective+(a)) ∪
⋃
a∈A

pre(a) (8)

Equation could be used to calculate the previous state of
a vertex. Furthermore, the heuristic function is derived
according to equation 5 which has been proved admissible.
Algorithm 4 shows the process of searching the optimal
solution with the backward A* algorithm. The essential input
parameters include a DPG graph and its start and target
vertexes. The output is an optimal solution. Line 2-4 is
initializing the variables, where 5 represents the solution,

Algorithm 4 Backward A* Search
Require: G = (V ,E), vstart , vtarget
Ensure: 5 = 〈π1, π2, . . . , πn〉
1: function BACKWARDASTAR(G, vstart , vtarget )
2: 5← ∅,Open← ∅,Close← ∅,CameFrom← ∅
3: Open← Open ∪ {vtarget },
4: gs← vtarget , gneighbor ←∞
5: while Open 6= ∅ do
6: Current = mini∈Open f (0−1(gs, i))
7: gs← 0−1(gs,Current)
8: if Current = Start then
9: PathConstruct(5,CameFrom,Current)
10: return 5
11: end if
12: add Current to Close
13: remove Current from Open
14: for each predecessor pre of Current do
15: if pre ∈ Close then continue
16: end if
17: gtemp← g(gs)+ cost(pre)
18: if pre 6∈ Open then add pre to Open
19: else
20: if gtemp ≥ gneighbor then continue
21: end if
22: end if
23: CameFrom(pre)← Current
24: gneighbor ← gtemp
25: fneighbor ← gneighbor + h(gs)
26: end for
27: end while
28: return false
29: end function

Open and Close are two set recording vertexes to be vis-
ited and visited vertexes, CameFrom is a hash map record-
ing the path that has been chosen, gs is the current state.
Line 5-28 is the main part of the searching process. First,
choose the minimum evaluation function values in Open
as the current vertex Current . Line 8-11 identify if exist-
ing the circulation. If the start vertex has arrived, the func-
tionPathConstruct(5,CameFrom,Current) will traverse the
whole set and generate the solution. Line 12-13 updates the
Open and Close set. Line 14-26 traverse the predecessors of
current vertex, then choose the vertex with theminimum eval-
uation function and update the path track map CameFrom,
until the set Open stops adding new vertexes.

V. EXPERIMENT RESULTS
Our experiments were carried out on a PC with Intel(R) Core
TM i3-8100, with 3.6GHz processor and 16GB RAM, under
Arch Linux kernel 4.19.66-1-Manjaro and Java SE build
1.8.0_171-b11.

We applied our algorithm on a well-known bench-
mark of Web Services Challenge 2009(WSC-2009) [40].
WSC-2009 dataset provides five test sets, effectively
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FIGURE 3. The optimality of Q-Graphplan’s composition solution.

containing around 500, 4000, 8000 and 15000 services with
respectively more than 1500, 10000, 15000 and 25000 data.
Each test set consists of four files: a WSDL file, describing
services of the registry by their inputs/outputs, hierarchically
organized in terms of concepts using an ontology recorded in
an OWL file, a WSLA file, storing the QoS (response time
and throughput) criteria values of each service, and an XML
file storing the inputs and outputs of the query associated
with the service registry. Since the dataset WSC-2009 only
includes data of two QoS parameters, response time and
throughput, we use the monitor data from [38] which have
monitored six QoS criteria (response time, execution price,
latency, availability, successful rate, and reliability) from the
real website data in this experiment.

At first we evaluated the optimality of the solution. In this
experiment, we calculated the optimal values for the test sets
in the WSC-2009 data set. Then, we set each QoS to the
same weight and find solutions of test sets with Q-Graphplan.
We compared the QoS values of Q-Graphplan’s solution and
the optimal values of each criterion. In figure 3, the red line
represents the QoS values of the Q-Graphplan’s composition
solution and the black line represents the optimal values using
single-objective optimization. To make the data more read-
able, we used the scaled value to demonstrate the results of
the availability, the reliability and the success rate. The result
showed that the Q-Graphplan could find a solution whose
each QoS criterion have an approximation of the optimal
value.

FIGURE 4. The number of services in the planning graph.

Second we evaluated the effectiveness of our redundancy-
free algorithm of constructing the planning graph. We com-
pared the number of service in the planning graph with
the datasets in WSC-2009. Figure 4 shows the comparison
of the service number between [35]’s algorithm that uses
the classical algorithm to construct the planning graph and
Q-Graphplan’s redundancy-free algorithm. The result indi-
cates that Q-Graphplan effectively avoids generating redun-
dancies in constructing the planning graph. For the test
set 1 to 4, Q-Graphplan’s service number decrease to the
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FIGURE 5. The search time of Q-Graphplan and Chen and Yan 2014.

nearly a half of the [35] in average. For the test set 5,
the service number of the Q-Graphplan is only approximately
one-tenth of the baseline.

Finally we evaluated the efficiency of Q-Graphplan. Our
approach was compared to the algorithm in [35]. We tested
the searching time on each test 100 times using two algo-
rithms and calculate the average searching time. The result
is depicted in figure 5. Due to the scope of the test set 1 and
the test set 2 are relatively small, therefore the performance of
two algorithms are almost same. However, with the increase
the test sets’ scope, our algorithm performs better. In average,
our approach’s searching time reduces approximately 25%
of [35] according to figure 5.

VI. CONCLUSION AND FUTURE WORK
This paper proposes an approach, Q-Graphplan, to solve the
QoS-aware ASC problem with multiple QoS criteria con-
straints using an extended version of the classical graphplan
and backward A* search algorithm. We derive the heuristic
from the planning graph which is used to accelerate the
searching process. Experimental results on benchmarks show
the effectiveness of our proposal. We believe that our work
will open up a lot of new research directions in the general
paradigm of automatic service composition with AI planning
algorithm.

In the future, we will be focused on optimizing our algo-
rithm to lower the complexity and increasing the efficiency.
We wish to propose a more effective heuristic function of
extracting the heuristics. The present problem is that out
experiments are conducted under the ideal condition ignoring
the dynamic states of the service set and user’s requests.
We wish to improve our algorithms to adapt to the actual web
service environment.
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