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ABSTRACT Although semi-supervised clustering ensemble methods have achieved satisfactory per-
formance, they fail to effectively utilize the constrained knowledge such as cannot-link and must-link
when generating diverse ensemble members. In addition, they ignore negative effects brought about by
redundancies and noisy data. To address the above shortcomings, in this paper we propose an approach to
combine multiple semi-supervised clustering solutions via adaptively regularizing the weights of clustering
ensemble members, which is referred to as ARSCE. First, we generate a series of feature subspaces by
randomly selecting feature without replacement to avoid the scenario where there are two identical feature
subspaces. Second, we conduct feature transformation on the above obtained feature subspaces while
considering the pairwise constraints to find new clustering-friendly spaces, where clustering methods are
exploited to generate various clustering solutions. Finally, we design a novel fusion strategy to integrate
multiple clustering solutions into a unified clustering partition, where weights are designated for each
clustering ensemble member. Extensive experiments are conducted on multiple real-world benchmarks, and
experimental results demonstrate the effectiveness and superiority of our proposed method ARSCE over
other counterparts.

INDEX TERMS Clustering ensemble, semi-supervised clustering, constraint selection, clustering fusion.

I. INTRODUCTION
Clustering, as one of unsupervised learning methods, aims
to split data into several disjoint groups, so that data in the
same group aremore similar than those from different groups.
Despite the success of clustering methods in exploring the
underlying structure of data, they suffer from the sensitiv-
ity of parameter setting, i. e., the clustering performance
is not robust and stable. Additionally, with the available of
large-scale data collection devices, we are facing a huge
amount of data, most of which are high-dimensional. The
high dimensionality of these data has posed a challenge
to us, since it requires prohibitively expensive hardware
to process them. In this setting, random subspace method
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provides a possible alternative by randomly selecting features
to explore the underlying structure of data. Thus, we bypass
the hardware requirement. Besides, inspired by ensemble
supervised learning methods, recent years have witnessed
the development of clustering ensemble, which is divided
into two steps: the generations of clustering solutions and
the fusion of clustering solutions. In this first step, it is
expected to provide diverse information about the structures
of data by adopting variousmethods, like random feature sub-
spaces, random sample subspaces, random initiation or ran-
dom feature transformations. Many researchers have focused
on generating diverse base clustering solutions. For exam-
ple, Ye et al. [1] handle the data with a limited number
of labeled data by designing an improved semi-supervised
K-means clustering method. Yu et al. [2] combine constraint
weights and ensemble member weights to distinguish the
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contribution differences between pairwise constraints and
ensemble members. Rathore et al. [3] fuse random projection
and fuzzy c-means into a semi-supervised clustering ensem-
ble framework designed for handling high-dimensional data.
Li et al. [4] considers labeled data and pairwise constraints
in a hybrid constrained semi-supervised clustering scheme
in generating base clustering solutions. In the second step,
clustering ensemble methods adopt a consensus method for
integrating multiple base solutions in order to obtain a better
clustering partition. For example, Strehl and Ghosh [5] for-
mulate the clustering ensemble problem as an optimization
problem, which is solved based on a hyper-graph model for
the fusion of clustering solutions. Yu et al. [6] design a Gaus-
sian distribution-based cluster structure, followed by that the
most representative unified cluster structures are found to
facilitate the process of clustering by using distribution-based
distances. Bai et al. [7] propose a weighted consensus mea-
sure based on information entropy to evaluate the clustering
quality.

Although these clustering ensemble methods have
achieved satisfactory performance, they seldom consider
the issues below: 1) how to fully exploit prior information
provided by experts, denoted as must-link and cannot-link
constraints, and 2) how to design a better fusion strategy to
integrate all the clustering solutions into a more robust and
stable solution, compared with each base clustering solution
component. To achieve the above two goals, we propose an
adaptative regularized semi-supervised clustering ensemble
framework, which is referred to as ARSCE. Specifically, we
first generate multiple random feature subspaces, followed
by performing transformations on these feature subspaces
while considering pairwise constraints. Secondly, we adopt
clustering algorithm on the transformed features to generate
diverse clustering solutions. Thirdly, we design a new fusion
strategy to integrate these clustering partitions into a unified
clustering solution by assigning suitable weights for clus-
tering ensemble members. To evaluate the effectiveness of
our method, we conducted extensive experiments on multiple
real-world benchmark data sets. Experimental results indicate
that our method ARSCE achieves better or at least compara-
ble performance, compared with other related counterparts,
which verifies its effectiveness and superiority.

The contributions of this work are summarized as follows:
1) We propose a transformation working in random fea-

ture subspaces while considering pairwise constraints
for finding a clustering-friendly space, where cluster-
ing solutions are generated via using traditional clus-
tering methods.

2) We design a strategy to fuse all the clustering solu-
tions into a unified clustering solution by adaptively
assigning weights for each clustering ensemble solu-
tion member.

3) We perform experiments over multiple real-world data
sets; experimental results verify the effectiveness of our
proposed ARSCE in selecting informative constraints
and reducing the constraint redundancies.

The remainder of this work is organized as follows.
Section II reviews related works on random subspace
methods, semi-supervised clustering and clustering ensem-
ble. Section III illustrates our proposed method in detail.
In Section IVwe present the experimental results and perform
analysis. Section V draws the conclusion of this work and
describes the possible future directions.

II. RELATED WORK
In this section, we review the related literatures about ran-
dom subspace, semi-supervised clustering and clustering
ensemble.

Random subspace approaches show remarkable advantage
when reducing the relativity between different base classi-
fiers. Practically, there are ensemble classification methods
based on random subspace. For example, Ho [8] adopts
the pseudo-randomly selected subsets of feature vectors
to construct multiple trees in randomly chosen subspaces.
To deal with high-dimensional data, Yu et al. [9] pro-
pose a graph-based semi-supervised dimension reduction
scheme in random subspaces and perform semi-supervised
linear classification in the random feature subspaces. Semi-
supervised clustering approaches have been proposed to
improve the clustering performance by using prior of label
constraints like ‘‘cannot-link’’ and ‘‘must-link’’. There are
many semi-supervised clustering methods proposed in the
past years. Specifically, semi-supervised maximum margin
clustering [10] extends the margin maximum framework in
supervised learning to clustering and penalizes the violation
of the given pairwise constraint conditions, which shows a
promising performance. In [11], Anand et al. utilize pair-
wise constraints as supervised information for mean shift
clustering, where data are projected into a high-dimensional
kernel space, followed by imposing pairwise constraints via
a linear transformation on them. In [12], Fang et al. integrate
low-rank representation together with Gaussian fields into a
unified framework, allowing pairwise constraints to guide the
construction of the affinity matrix. Liu et al. [13] combine
K-means clustering and linear discriminant analysis, in which
the latter aims to find a space via dimensionality reduction
where clustering task can achieve satisfactory performance.
Wang et al. [14] utilize constraint neighborhood projections
to mitigate the issue of constraint conflicts while reduc-
ing the required number of labeled data. Xiong et al. [15]
propose to select both pairwise must-link and cannot-link
constraints using active learning strategy for semi-supervised
clustering iteratively. Huang et al. [16] combine pairwise
constraints and constraint projections to achieve both sam-
ple and feature constraint projections. Chang and Chen [17]
adopt discriminative random fields for evaluating the con-
sistency between the results obtained by certain clustering
approach and supervised information derived from pairwise
constraints.Wang et al. [18] obtain all the labels for unlabeled
data via propagating pairwise constraints, where supervision
information helps to adjust a weight matrix as a regulariza-
tion term imposed on the objective function of nonnegative
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FIGURE 1. The overall framework of our proposed adaptive regularized semi-supervised clustering ensemble.

matrix factorization. Yang et al. [19] use the prior about pair-
wise constraints to improve the community detection perfor-
mances in a semi-supervised learning framework, where the
network topology is integrated with supervised information.

Tomitigate these issues, clustering ensemblemethods have
been proposed to fuse multiple clustering solutions into a
unified solution. Specifically, Yu et al. [20] adopt random
transformations in both the sample and feature spaces with a
hybrid strategy. Mimaroglu and Aksehirli [21] design a divi-
sive clustering ensemble scheme by combining high-quality
clustering solutions into a final result, which does not require
input arguments. Yang and Jiang [22] proposed a sampling-
based clustering ensemble approach by adopting boosting
and bagging strategies for both the global and the local con-
stitutions respectively. Yu andWong [23] use the perturbation
on input to generate the perturbed data, on which partitions
are generated by using Neural Gas as the base clustering
method. Iam-On et al. [24] design a new link-based method
that improves the clustering quality via discovering unknown
entries with clusters in an ensemble. Huang et al. [25] design
an ensemble-driven clustering scheme by estimating the
clustering uncertainty and locally weighting co-association
matrix. Huang et al. [26] perform the ensemble clustering
by computing trajectories of random walkers over sparse
graph representations, based on which consensus functions
help to fuse clustering solutions. Topchy et al. [27] convert
clustering ensemble as a maximum-likelihood problem and
rewrite the consensus function using certain mutual infor-
mation criterion. Liu et al. [28] prove the theoretical equiv-
alence between spectral clustering ensemble and weighted
k-means. Yousefnezhad et al. [29] adopt the wisdom of
crowds like diversity, independencies, decentralization and
aggregation to enhance the clustering ensemble. Yu et al. [30]
integrate random subspace, constraint propagation as well
as normalized cut algorithm into a semi-supervised clus-
tering. Yang and Jiang [31] propose a bi-weighted ensem-
ble scheme for time series data clustering via HMM-based
K-models to reduce dependencies on initializations while
automatically performing model selection. Yu et al. [32]
propose a double selection-based semi-supervised clustering

method working in both features and samples for tumor
clustering, which pairwise constraints are as supervised infor-
mation. Yu et al. [33] design an adaptive semi-supervised
clustering ensemble method by fully exploiting pairwise con-
straints via affinity propagation.

Additionally, researchers have made effects to clustering
ensemble, in which they need to trade off between quality
and diversity. Shi et al. [34] transfer the learnt relationship
between quality and diversity in a source domain into a target
domain based on certain optimization objective functions.
For better performance of spectral clustering over large-scale
data with very limited resources, Huang et al. [35] convert
sparse sub-matrix as a bipartite graph and use transferred cut
to obtain the clustering result.

III. PROPOSED METHODOLOGY
In this section, we describe the adaptive Regularized semi-
supervised clustering ensemble method (ARSCE) in detail.
The framework of our method is shown in Figure 1, which
is mainly divided into three stages. First, we randomly select
features from all the feature candidates to form a series of
subspaces. Second, we conduct a weighted constraint selec-
tion and constraint mapping in the above subspaces to con-
tribute to improving the clustering quality. Third, we design
a scheme to integrate clustering solutions generated in each
subspace for a more robust clustering solution.

A. PROBLEM FROMULATION
Suppose there is a data set X = {x1, x2, . . . , xn} ∈ Rm×n,
where n and m are the number of samples and the number of
features, semi-supervised clustering ensemble aims to cluster
X into k groups, thereby pairwise samples in the same group
are more similar to pairwise samples from different groups
and satisfy as many constraints as possible simultaneously.

B. THE DETAILED PROCEDURE OF OUR METHOD
1) THE GENERATION OF RANDOM FEATURE SUBSPACES
Given m features, we generate multiple subspaces by ran-
domly selecting bm ∗ ρc features one by one, where τ is the
sampling rate, and b·c denotes the greatest integer less than
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or equal to a number. This selection procedure is repeated
B times, which leads to B random subspaces, denoted as
S = {S1, S2, . . . , SB}. Specifically, the index Idx of a feature
selected into a subspace is determined by

Idx = 1+ bρ (m− 1)c , (1)

where ρ denotes a random variable sampled from a uniform
distribution whose range is in the interval between 0 and 1.
We adopt sampling without replacement to avoid that features
are selected repeatedly in each random subspace. Meanwhile,
we avoid two identical feature subspaces whose features are
perfectly overlapped. These above obtained subspaces pro-
vide various perspectives of exploring the structural informa-
tion of data while ensuring the diversity of information, which
plays a key role in ensemble learning.

2) THE WEIGHTED CONSTRAINT SELECTION
AND PROJECTION
Since the generated random subspaces contains different
features for exploring the underlying structure of the data
manifold, they have their own preferable constraint sets.
In this setting, we perform the pairwise constraint selection
accordingly. When conducting constraint selection and pro-
jections, the assumptions shall be held: 1) a must-link con-
straint indicates a smaller distance between the corresponding
data points, and 2) a cannot-link constraint indicates a larger
distance between the corresponding data samples. In the
constraint selection process, we consider that a must-link
constraint with a large distance or a cannot-link constraint
with a small distance plays an important role in the clustering,
and we should penalize these two cases.

For a given random feature subspace, the objective function
of combining the semi-supervised clustering and searching
a clustering-friendly space into a unified framework can be
defined as follows:

min FiP tr
(
PTLP

)
+ α

∥∥P − XSiFi
∥∥2
F + δ ‖Fi‖2,1

+

∑
(xi,x ′i )∈M

γi,i′1(ci 6=c′i)+
∑

(xi,x ′i)∈C

θi,i′1
(
ci = c′i

)
,

s.t., PTP = I i, (2)

where P is the partition matrix. XSi is the data matrix in
the ith feature subspace. Fi denotes a feature transforma-
tion from random subspace to a clustering-friendly space. L
denotes the Laplacian matrix. C and M denote the cannot-
link constraint set and must-link constraint set, respec-
tively. γi,i′ and θi,i′ denote the penalty weights for violating
must-link constraint and cannot-link constraints, respectively.
1(x, y) is an indicator function, which equals 1 if x = y and
0 otherwise.

Generally, an ideal transformation Fi enjoys the following
properties: 1) allowing a better clustering performance, and
2) meeting the pairwise constraints as many as possible.

3) THE INTEGRATION OF AFFINITIES WITH THE FUSION
OF DIFFUSION
Suppose that we have obtained multiple clustering-friendly
space, then we compute the corresponding affinity graphs and
adopt a regularized ensemble diffusion to fuse the similarity
information by

minβ,A
∑B

v=1
βvH

v
+µ

∑n

k,i=1
(Aki−Iki)2 +

1

2
λ ‖β‖22,

s.t., 0 ≤ βv ≤ 1,
∑B

v=1
βv = 1. (3)

where

Hv
=

1
2
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i,j,k,l=1
W v

ijW
v
kl (

Aki√
Dv
iiD

v
kk
−

Alj√
Dv
jjD

v
ll

)2, (4)

and λ is a trade-off parameter used to adjust the distribution of
the learnedweights. I is an identitymatrixwith an appropriate
size. β = {β1, . . . , βM } is a vector of weights whose vth

element βv is the weight of the vth affinity graph. wvij denotes
the weight of the edge that connects the ith and the jth data
points in the vth graph of the vth subspace. A is the final
similarity that not only captures the structure of data but
also leverages the complementary information in multiple
clustering-friendly spaces. The first term in Eq. (3) evaluates
the smoothness of the weighted tensor product graph. The
motivation is that if data points xi and xj are similar to each
other and data points xk and xl are similar to each other, there
should be a small difference between Aki and Alj . The second
term is used to preserve the self-similarity in each learnt
affinity graph.

After optimizing Eq. (3), we obtain the similarity A∈
Rm×n that integrates all the discriminative and informative
features in clustering-friendly spaces. Then we compute the
normalized Laplacian matrix Lsys together with its first k
eigenvectors, denoted as U = {µ1, . . . ,µk} ∈ Rn×k, fol-
lowed by adopting k-means clustering, which is defined as
follows:

minC,P ‖U − PC‖2 ,

s.t.,P ∈ {0, 1}n×k , (5)

where C ∈ Rk×k and P denote the cluster center matrix and
the partition matrix, respectively.

The detailed pseudo-code of how to optimize our proposed
method ARSCE is illustrated in Algorithm 1.

IV. EXPERIMENTS
In this section, we evaluate the effectiveness of our method on
multiple real-world data sets in terms of normalized mutual
information (NMI). The statistical descriptions of these data
sets are shown in Table 1. Among these data sets there are
8 data sets collected from GENE repository. Besides, we use
2 data sets collected from the UCI machine learning repos-
itory and another 5 data sets collected from the ASU data
repository.
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Algorithm 1 Adaptive Regularize Semi-Supervised Cluster-
ing Ensemble (ARSCE)
Require: input data matrix X , the number of subspaces

B, the sampling rate τ , trade-off parameters α, δ, γ , θ
and β and λ;

Ensure: the clustering partition matrix P.
1: Generate B random feature subspaces via Eq. (1) for

the ith feature subspace;
2: while i ≤ B do
3: Compute the feature transformation matrix Fi via

optimizing Eq. (2);
4: Compute the affinities for the transformed data XSiFi

in a new space;
5: Denote the edge weight matrix asW;
6: end while
7: Compute the final similarity via optimizing Eq. (3);
8: Compute the corresponding Laplacian matrix Lsys;
9: Compute the first-k eigenvectors U = {u1, . . . , uk}
10: Perform clustering on U by using K-means via

optimizing Eq. (5);

TABLE 1. The statistical information of the data sets used to evaluate the
clustering performance.

A. EVALUATION CRITERION
We adopt the normalized mutual information (NMI) to eval-
uate the quality of a clustering result, as defined below:

NMI
(
Y ,Y ′

)
=

∑c
l=1

∑c
h=1 t l,hlog(

n×tl,h
tl t̃h

)√
(
∑c

l=1 t l log
tl
n )(
∑c

h=1 t̃h
t̃h
n )
, (6)

where Y and Y ′ are the ground-true labels and the clustering
results, respectively. c denotes the number of clusters. tl and
t̃h denote the numbers of samples in the l th ground-truth class
and the hth cluster, respectively. tl,h denotes the number of
samples in the intersection of the l th ground-truth class and
the hth cluster. Generally, a larger NMI value indicates a better
clustering performance.

FIGURE 2. The effects of sampling rate on the clustering performance in
terms of normalized mutual information (NMI).

B. PARAMETER SETTING
There are eight trade-off parameters in our proposed
method ARSCE. For the sampling rate τ , we search
the optimal value in the range {0.1, 0.2, 0.3, 0.4, 0.5}.
For α, δ and β, we search the optimal values in the
range {0.1, 0.2, 0.3, . . . , 0.9}, respectively. For γ and θ ,
we search the optimal values in the range {10−3, 10−2,
10−1, 0, 101, 102, 103}. Similarly, we search the optimal
λ in the interval {0.1, 0.2, 0.3, . . . , 0.9}. Apart from these
trade-off parameters, we need to explore effects of pairwise
constraint ratio on performance by searching in the range
{0.05, 0.1, 0.15, . . . , 0.4}. Another factor needed to be con-
sidered is the number of ensemble members, and we search
the optimal value of ensemble member numbers in the range
{3, 6, 9, . . . , 24}. Concerning parameter settings of compara-
tive counterparts, we choose the optimal values by following
the original papers.

C. EXPERIMENTAL ANALYSIS
1) THE EFFECTS OF PARAMETERS
In this part, we first explore effects of sampling rate on clus-
tering performance in terms of normalized mutual informa-
tion (NMI), where the sampling rate determines the number
of features in each subspace. This experiment is conducted
over six data sets in Table 1, namely Alizadeh-2000-v3,
Armstrong-2002-v2, lung disease, lymphoma, mfeat and
nci9. Here the sampling rate varies in the range between
0.1 and 0.5. Figure 2 illustrates effects of sampling rate on
clustering performance. From this figure, we observe that
in general, performance becomes better with the increase
of sampling rate initially. It means that there are increas-
ing informative features selected to facilitate the clustering.
However, when the sampling ratio reaches a certain value,
we notice that the clustering performance shows an obvious
downward trend. A possible reason is that redundant features
are selected in this setting, which produces negative effects
on clustering. In the majority of cases, the optimal sample
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FIGURE 3. The effects of pairwise constraints on the clustering
performance in terms of normalized mutual information (NMI).

ratio falls in the range between 0.3 and 0.4, while for the
data set nci9, the optimal value of the sampling ratio is in
the range between 0.2 and 0.3. In other words, different data
have their respective preferable sampling rates. In this setting,
we need to choose the optimal sampling ratio dedicatedly.
From the perspective of feature selection, we consider that
it is necessary to explore a more reasonable strategy when
constructing the random feature subspaces by selecting more
effective informative features. Thus, it can allow generate
multiple diverse clustering partitions with satisfactory perfor-
mances.

In the following, we would explore the effects of pairwise
constraints on clustering performance by increasing the per-
centages of pairwise constraints. Generally speaking, a larger
percentage of pairwise constraints indicates that we have
more supervised information to drive clustering methods
to find a better clustering performance. Figure 3 illustrates
the effects of pairwise constraints on performance over six
data sets in Table 1. From this figure, we find that with an
increasing number of pairwise constraints available, the per-
formances show upward trends of different levels. It means
that these pairwise constraints provide effective supervised
information, which contributes to the clustering process when
finding a clustering-friendly space.

In addition, we explore the effects of the ensemble member
number on clustering performance with respect to normal-
ized mutual information (NMI), which is shown in Figure 4.
From this figure, we find that the performance shows an
upward trend with the increase of ensemble member num-
bers. It means that more ensemble members can provide
much more informative and complementary information for
a better clustering. However, when the number of ensem-
ble members approaches a value, the performance shows a
slight improvement, and the improvement gap is diminishing.
In this setting, we shall tradeoff between the performance
improvement and the computation cost, since an increasing
number of ensemble members indicates a larger computation
cost and time.

Besides, we study the effects of λ on clustering perfor-
mance concerning normalized mutual information (NMI),

FIGURE 4. The effects of the ensemble member numbers on the clustering
performances in terms of normalized mutual information (NMI).

FIGURE 5. The effects of λ on the clustering performances in terms of
normalized mutual information (NMI).

which is shown in Figure 5. In this exploration, we change
the value of λ in the range between 0.1 and 0.9. From Fig. 5,
we notice that when λ increases, the clustering performance
shows a quick upward trend before heating the peak, followed
by showing downward trends with different extents. Apart
from this observation, we find that different data sets have
their respective preferable λ. It indicates that our proposed
method is sensitive to λ, which is used to control the distri-
butions of the weight affinity graphs for new learnt spaces.
Basically speaking, we find that in the majority cases the
optimal value of the trade-off parameter λ is in the range
between 0.4 and 0.6 except on the data nci9, in which case
the optimal λ in the range between 0.6 and 0.8. We consider
that there exists some differences between the distribution of
data samples over the clusters and those of other data sets.
As a result, we need to select its perferable value to adjust the
weights of the learnt affinity graph for a better performance.

Next, we analyze the comparative results obtained by
recent semi-supervised clustering ensemble approaches and
our proposed one. The counterparts include neural gas-
based clustering ensemble algorithm (NGCE [36]), random
K-means-based clustering ensemble algorithm (RSKE [37]),
bagging-based K-means clustering ensemble algorithm
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TABLE 2. Comparison of semi-supervised clustering ensemble methods on the data sets in Table 1 in TRMS of normalized mutual information (NMI).

(BAGKE [38]), hierarchical clustering ensemble algorithm
(HCCE [39]), exhaustive and efficient clustering ensem-
ble algorithm through constraint propagation (E2CPE [40]),
incremental semi-supervised clustering ensemble algorithm
(ISSCE [30]), and double weighting semi-supervised ensem-
ble clustering algorithm (DCECP [2]). The comparison
results are shown in Table 2, where we do not provide stan-
dard deviation whose values are smaller than 0.001. From this
table, we have the following observations:

1) E2CPE can achieve better performances, compared with
NGCE, RSKE, BAGKE and HCCE, since it uses constraint
propagation tricks to leverage the supervised information,
which helps to guide the clustering process. It indicates the
efficiency of pairwise constraints in boosting the clustering
quality.

2) Both the constraint weighting and constraint projec-
tion weighting transform feature subspaces into a clustering-
friendly space, where high-quality clustering solutions with
enough diversity are obtained. It is reflected by the fact that
ISSCE and DCECP have achieved much better performances
than E2CPE in the majority of data sets.

3) Our proposed method has achieved the best or at least
comparable performances on all the data sets, which indicates
that it is necessary to adopt an adaptive clustering ensemble
via assigning proper weights for base clustering solutions to
combine them for a better clustering partition. In other words,
it verifies the effectiveness of fusion via diffusion.

V. CONCLUSION
In this paper, we propose a novel constraint-selection based
clustering ensemble. First, we design a scheme to learn effec-
tive features that are beneficial clustering and meeting the
prior clustering constraint conditions. Second, we propose
to fuse all the clustering solutions by using the fusion of
diffusion rather than the voting mechanism. We conduct
experiments on multiple real-world benchmark data sets
by comparing other recent related algorithms. Experimental
results demonstrate both the effectiveness and the superiority
of our proposed method ARSCE. In future, we shall explore

the feasibility of using deep neural networks to learn infor-
mative and discriminative features. Besides, we shall improve
new strategies of integrating multiple clustering solutions for
a better performance. We will further improve our method
ARSCE in terms of its sensitivity to the sample ratio. Mean-
while, we shall extend our method ARSCE to real-world
application in computer vision fields.
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