IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON DATA-ENABLED INTELLIGENCE FOR DIGITAL HEALTH

Received November 15, 2019, accepted December 18, 2019, date of publication December 31, 2019,
date of current version February 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963343

Application and Performance Optimization of
MapReduce Model in Image Segmentation

MAOZHEN LI"“12, LU MENG "1, JIAYING WANG?, YONG JIN“1,
BINYU HU"“1, AND YOUXING CHEN !

!'School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
2Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UBS 3PH, U.K.
3School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia

Corresponding author: Yong Jin (xiandaijiance601@ 163.com)

This work was supported in part by the Shanxi Scholarship Council of China under Grant 2016084, and in part by the Shanxi Province
Natural Science Foundation under Grant 201901D111155.

ABSTRACT With the increase of glass detection speed, some defects of MapReduce distributed computing
framework are exposed, and the processing speed and timeliness cannot meet the requirements of glass-
defect detection in industrial technology. Based on the MapReduce distributed computing framework,
this paper designs a threshold segmentation method to complete the segmentation of glass-defect images.
By improving the replication placement strategy and pipeline scheduling mechanism, the computing and
storage are localized, and the timeliness of data processing is accelerated. The experimental results show
that the improved MapReduce computing framework has an average increase of 14.8% in processing speed.
It can detect the glass ribbon running at 800m/h and also detect the number, position and type of defects on
the glass ribbon.

INDEX TERMS Defects detection, data locality, image segmentation, MapReduce model, pipeline

scheduling.

I. INTRODUCTION
With the development of digital technology, digital image
processing is widely used in industrial production. Many
applications need to analyze current production status in a
timely manner, and traditional digital image detection sys-
tems are hard to meet the needs of industrial production [1].
Taking the glass production industry as an example, during
the period of production processes such as raw material pro-
cessing, preparation, melting, clarification and cooling, due
to the destruction of the process system or the errors in the
operation process, the glass ribbon from the annealing kiln
often exists defects of different types and sizes. The cross-
cutting machine will cut off the section which contain too
many defects or does not meet the requirements of national
standards. So according to the characteristics of the glass
production line, cross-cutting machine should be installed at
the exit of the annealing kiln [2].

Due to the faster transmission speed of the glass rib-
bon, a large amount of high-resolution image data will

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongtao Hao.

VOLUME 8, 2020

be generated in a short time. To realize the timely defect
detection of the glass ribbon on the production line, it is
necessary to use a timely and uninterrupted online detection
system which matches the production speed. The emergence
of MapReduce has alleviated the problem of big data pro-
cessing to some extent. The MapReduce framework was first
used to process textual data collections, it has been recently
used to process large images such as remote sensing images,
high resolution images etc [3]. It is a data model based
on key/value pairs. This model divides complex distributed
computing into two phases: Map phase and Reduce phase.
The Map phase is usually calculated locally in the data store
and then maps the output results to the corresponding Reduce
tasks. The Reduce phase summarizes the results of the Map
phase and finally arrive at calculation results [4].

As the demand for data processing increases, some flaws
in the distributed computing framework MapReduce are
exposed [5]. MapReduce has its performance bottleneck:
between Map and Reduce, there is an invisible intermediate
processing part. For example, in order to distribute different
results to the corresponding processing nodes, all the results

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 31835

https://orcid.org/0000-0003-1951-8136
https://orcid.org/0000-0002-5990-4106
https://orcid.org/0000-0002-7664-1416
https://orcid.org/0000-0003-4668-9459
https://orcid.org/0000-0002-8915-2689

IEEE Access

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation

need to be summarized on each node and then sorted. Each
node intercepts the data in the corresponding interval (shuffle
phase) [6]. This process is the key for MapReduce to operate
correctly, but it affects the speed of the system processing.

In order to improve the performance of MapReduce com-
puting framework. Some recent work focused on overlapping
different phases of MapReduce to enhance job performance.
Guo et al. [7] proposed iShufflfle, a framework that overlaps
the map and shufflfle phases by predicting the distribution
of partitions. Besides, Wang et al. [8] introduced a merge
algorithm to avoid data repetition and disk access and also
proposed the use of a pipeline with which to overlap the shuf-
flfle, merge, and reduce phases. Other researchers have also
proposed optimizations on the data locality. In [9], the authors
conducted a comprehensive investigation of the data locality
of Hadoop jobs and analyzed its impact on job performance.
The authors in [10] optimized MapReduce jobs based on data
locality. Some approaches were also proposed to optimize the
execution process of MapReduce from other aspects, such as
a large number of temporary result data generated by multiple
Map tasks of the same job on the Map node are combined
as a total, replacing the original MapReduce architecture to
merge the result data of a single Map task [11]. Generally,
the existing systems lack of research on improving the per-
formance of MapReduce on large scale images processing.
For example, the Hadoop Image Processing Framework only
allows uploading images at a very slow rate [12].

Based on the above background, this paper uses the
MapReduce parallel framework as the research basis to real-
ize the threshold segmentation of defect images. By adding
streaming data processing module and data partitioning mod-
ule, localization of computing and storage is realized, and
accelerate the timeliness of data processing. We also take a
large number of glass images which are collected online as
test objects, realizing timely and accurate detection of various
glass defects.

Il. PRINCIPLE OF SYSTEM OPERATION

The system consists of a light source, an encoder, a high-
speed linear array CCD, a high-speed data acquisition card,
and a Hadoop cluster processor. The light source and the
high-speed linear array CCD camera are respectively located
below and above the glass ribbon and on the same vertical
plane. The light emitted by the light source passes through
the glass ribbon and is received by the CCD camera. The
high-speed data acquisition card collects the light intensity
signal continuously through the dual DMA mode, convert-
ing it into grayscale images data and transmitting to the
upper computer. The tasks are submitted by a client to the
resource manager. The data collected by the CCD camera
is transmitted to the Namenode of the Hadoop cluster. The
Namenode is responsible to run DataNodes, and maintains
the images data stored on the HDFS. Then, the DataNodes
running assigned map tasks which complete the segmentation
algorithm. Finally, the final processing results are returned to
the Namenode. Once the defect is excessive, the cross-cutting

31836

> [-y
(Hadoop -

Linear array
CCD camera

A\

|

Encoder . Roller
light source

FIGURE 1. Glass defect online inspection design.

machine which controlled by the system will remove the
section with too many defects.

Ill. MapReduce-BASED CLUSTERING

FOR IMAGES ANALYSE

A. DESIGNING THE IMAGE STORAGE STRUCTURE

Image segmentation is the key technology based on MapRe-
duce defect detection. The difficulty is to ensure that the
segmentation results of Map and Reduce tasks can be restored
to the original images [13]. In the process of MapReduce
model calculation, if the image files in the image sequences
are not preprocessed, the MapReduce calculation model will
directly block the images. Since each partition block does
not have corresponding index number, coordinate number
and other information, the aggregation of defect detection
results cannot be completed after the block defect detection.
The method adopted in this paper is to pre-process the glass
defect image before the MapReduce task is started, and save
the meta-information after the block. The meta-information
includes the index information and coordinate information
of the block image data which relative to the original image
data. In the process of distributed defect detection, each image
segmentation is processed separately by the map task. After
the image segmentation is detected, the data information can
be quickly and accurately aggregated in the Reduce tasks by
reading the pre-stored meta information.

The size of the preprocessed images is far less than the
default file block size of HDFS, which will affect the storage
resource utilization of Hadoop. At the same time, accessing a
large number of small images will also increase file address-
ing time and reduce read and write speed. Therefore, this
paper uses the HipilmageBundle class of the HIPI interface
to upload the local images through the file traversal method.
The image file forms a storage structure which containing
data and indexes. The hib file stores displacement and index
information, and the hib.dat file stores images data. The
designed storage structure is shown in Figure 2. Through the

VOLUME 8, 2020

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation IEEEACC@SS

Meta
Image
Inform .
X Information
ation
Original image sequence l
Displace Displace | Displace | Displace | Displace Displace
Index ment1l| ment2 | ment3 | ment4 | ment5 ment N
FIGURE 2. Image storage structure design.
<k1,valuel>
<Text,Image Writable>
. Image Record <k2 list(value2)>
Read Image Split 1 Reader Map | < list(Image Writable)>
HDFS -
3 2
- -) Image Record [
% Image Split 2 »| 'M38 » Map ®
= Reader 0
Image 3 g
. c Reduce — o
File - <
J) Image Record
S Image Split 3 y| M8 Map iy
3 Reader 3
o . 3
~+ V]
. ~+
Image Record
Image Split n > Ma
ge>p Reader P

FIGURE 3. The processing of Image file.

HIPI method, the impact of large number of image fragments
on Hadoop scalability and performance is alleviated.

B. DESIGNING THE MapReduce FUNCTIONS
The MapReduce implementation process of defect detection
is as follows: First, each image in the images sequence is
divided into multiple small image segments, and the image
fragments are distributed to the Hadoop data nodes. Then,
each Map process on the data node complete the defect
segmentation tasks. Finally, the detected image fragments are
aggregated in the Reduce process to obtain the final detection
result. The workflow of MapReduce is shown in Figure 3:
In the Map stage, image fragments are read through the
ImagelnputFormat interface. The ImageRecordReader func-
tion is responsible for inputting and reading the records,

VOLUME 8, 2020

obtaining the split records, and generating input fragments.
The MapReduce program passes the input <key, value> pairs
to the map tasks, and uses algorithm of threshold segmenta-
tion to complete the defect detection for each image. After
the map tasks are finished, the detection results are output as
a key value pair <Text, image>, and the results are sent to
the reduce tasks, wherein the key saves the index number and
the coordinate number obtained from the image segmentation
meta information, the value saves the defect detection result
of the images.

In the Reduce stage, for the metadata information is saved
in the key and the detection results in the value, the detec-
tion result is merged according to the index number and
the pixel coordinate which stored in the metadata, and the
detection results are saved in different folders of the HDFS.

31837

IEEE Access

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation

Mapper

Image
three-valued
threshold

three-valued
threshold

FIGURE 4. The processing of Image file.

Once the execution of the processing function for the images
are completed, the reduce program start merging the images
after the execution of the processing and other operations.

As shown in Fig. 4, the figure shows the specific running
process of the MapReduce program, and the stored images
are taken as an input, the obtained new images are processed
as an output. For other image input types, only the corre-
sponding file input format needs to be set, and different file
output formats can be set to obtain different storage forms.
The process of MapReduce processing internally does not
change. The above process is equally applicable to other
image batch tasks, except for the image processing algorithms
used in Mapper. The Reducer is mainly used to merge the
output of Mapper in the whole process above. It combines
the output images into one large file, which avoids storing
multiple small files on HDES. If the output of new images is
relatively small and needs to be stored separately, the number
of task reducers can be set to 0, so that new images processed
by Mapper will be directly output. Without the Reducer
process, data transmission, grouping, sorting, and networks
are not required, and the efficiency of the algorithm is
improved.

IV. OPTIMIZATION OF THE MapReduce PROCESSING

The MapReduce job is mainly composed of the Map phase
and the Reduce phase. The intermediate data generated by
the data nodes in the Map phase needs to be transmitted
to the compute nodes in the Reduce phase through the net-
work. This intermediate phase is called Shuffle [14]. The
resource consumption of the network bandwidth caused by
the data transmission in the Shuffle phase and the data storage

31838

Image merge

<Filename,Image>

<

NN

1.jpg ‘ Pimage | 2.jpg

Reducer

Pimage

\

Image merge 3.jpg ‘ Pimage | 4.jpg | Pimage
Map memory Reduce memory
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, : . — _
Intermediate ! Intermediate assemble
| s
dat h
data cache i ata cache <key, list (value)
Tb" data_L
T stream
» ‘
| 5’0@6
et L
& &
! /.»:”
L&
&
$ i
[
: 4
|
I
i I
! |
! I
i I
L N i L N _

FIGURE 5. Pipeline scheduling.

in the Reduce phase is time consuming. How to reduce
unnecessary network bandwidth usage in the Map phase is the
key to improving the efficiency of MapReduce job execution.
The network bandwidth usage in the Map phase is related
to its data localization and scheduling method. Therefore,
improving data localization and using pipeline scheduling can
effectively improve the execution efficiency of MapReduce
jobs.

A. DATA LOCALIZATION

Data localization refers to dividing the data set to each
node without redundancy, each node runs independently, and
processes the data by dividing the data set [15]. Hadoop based
on MapReduce uses static replication-placement technology,
that is, in a distributed file system, the number of each

VOLUME 8, 2020

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation IEEEACC@SS

ALEG LT B EL T © 2 hadoop2-hadoop © 3 hadoop3-hadoop O 4 hadoop4-hador

Reduce input records=12
Reduce output records=12
Spilled Records=24
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=219
CPU time spent (ms)=1780
Physical memory (bytes) snapshot=297762816
Virtual memory (bytes) snapshot=4127473664
Total committed heap usage (bytes)=137498624
Shuffle Errors
BAD_ID=0
CONNECTION=0
I0_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=119
File Output Format Counters
Bytes Written=72
[hadoop@hadoopl mapreducel]$

FIGURE 6. Map-Reduce processing results on Hadoop cluster.

(a)Original glass defect image

L] T
-

(b) Block detection intermediate result

(¢) Threshold segmentation result
FIGURE 7. Defect detection result based on MapReduce.
replication is three. Although this static replication- the storage space of the cluster to a certain extent, which

placement method can meet the service requirements of gen- reduces the data localization of tasks and the performance
eral applications in Hadoop clusters, it does not fully utilize of task schedulers.

VOLUME 8, 2020 31839

IEEE Access

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation

<

FIGURE 8. Defect images segmentation result based on MapReduce.

o 128128

time(sec)

 -256°256
50 - -512°51

-1024*1024
B -2048°2048

number of nodes

FIGURE 9. Processing time of using Hadoop with different slave nodes.

In view of the above problems, this section improves the
localized copy placement algorithm. The algorithm dynami-
cally changes the number of data block replications by calcu-
lating the access frequency of data blocks in HDFS, which
increases the replications of data blocks with high access
frequency and reduces the replications of low-frequency.
Increasing the replication of data blocks with high access
frequency can improve the effectiveness of data localization.
Through this algorithm, the data localization of the task is
improved, thereby improving the efficiency of the traditional
MapReduce framework. Algorithm 1 shows the pseudo code
of the improved framework.

Algorithm 1 is described as follows:

First, sort the compute nodes in the Hadoop cluster based
on the historical data access frequency. Then, initialize the
data block and iterate over the collection of the data blocks.
If the block access frequency is higher than the average value
of the data blocks, and the number of tasks that need to
access the data blocks is higher than the current number of

31840

the data blocks, increase the number of block replication.
Last, if the data block satisfies the condition of increasing
the replication, the DataNode with the low frequency of the
data block is sequentially taken out from the DataNode queue,
and a replication is added to the node, so as to repeatedly find
the appropriate one. The DataNode increases the remaining
replications until the number of replication that need to be
increased is completed.

B. PIPELINE SCHEDULING

At the same time, this paper also improve the pipeline mech-
anism for MapReduce, that is, the intermediate results which
obtained in the Map phase can be quickly transferred to the
Reduce phase, making the MapReduce operation pipelined
[16]. The specific design is to make each Reduce task estab-
lish a TCP link with all Map tasks in the initialization phase.
When the Map produces an output, it is delivered to the corre-
sponding TCP link and sent to the specified processing node

VOLUME 8, 2020

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation

IEEE Access

time(sec)
50

40

30

128*128
256*256
-5124512
1024*1024
2048%2048

number of nodes

FIGURE 10. Processing time of using optimization MapReduce with different slave nodes.

ratio improvement (%)
24

21+

num of nodes

FIGURE 11. Ratio improvement using 512*512 images with different slave nodes.

through the interval partition. Figure 5 shows the improved
pipeline mechanism of MapReduce. Pipeline scheduling can
improve CPU usage, and selecting the appropriate multi-
threading can also maximize data throughput. The improved
MapReduce framework passes the calculation results directly
to the next stage, which also alleviate the I/O load of the
current nodes.

V. EXPERIMENTS

The experimental Hadoop cluster consists of one master node
and four slave nodes. The reason for this configuration is to
consider the memory space of the cluster and the needs of the
actual test. The software and hardware settings for the node
are shown in Table 1 and Table 2. In addition, we use glass
defect images as the experimental object, and the average size
of the image used in the experiment was about 235 KB.

The processing results are shown in Figure 6, we can
see the memory usage of the cluster and the execution time
of the program. The image processing results are shown in
Figure 7. Figure 7(a) is an image of a glass defect containing

VOLUME 8, 2020

TABLE 1. Software specifications.

128%128 256%256 512*512 1024*10 2048*20
24 48
1 2.1 5.5 7.4 26.2 48.8
2 1.2 39 6.1 20.1 28.3
3 1 3.6 4.8 182 26.2
4 0.8 3 3.9 16.9 25
TABLE 2. Hardware specifications.
128*128 256%256 512*512 1024*10 2048*20
24 48
1 1.9 49 6.7 233 43.6
2 1.1 35 53 17.6 24.6
3 1 3 4.1 15.1 21.9
4 0.6 24 32 13.8 20.4

a inclusion, Figure 7(b) is an intermediate result of block
defect detection on MapReduce, and Figure 7(c) is a final test
obtained by aggregating the intermediate results. Fig. 8 shows

31841

IEEE Access

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation

ratio improvement (%)
22

num of nodes

FIGURE 12. Ratio improvement using 1024*1024 images with different slave nodes.

Algorithm 1 Localized Replication Placement Algorithm
sort Query(DataNode);
Addreplicate=0;
for (take each elment) do
old_replicate=replicate_factor(b;);
if(F(b;)>averageFre(b;))
ifiNum(Query)>=replicate_factor(b;))
Addreplicate=Num(Query)-replicate_factor(b;);
else
Addreplicate+ =1;
end if
NewBlockQuery.add(b;,Addreplicate);
update replicate_factor(b;);
while(Addreplicate!=0)
for each take Query(DataNode) do
if(FreeSpace(D)& & NotExist(b;))
AddBlock();
Addreplicate— —;

end
end
end

that the threshold segmentation results of scratches, inclu-
sions, stains, and tumors.

In order to verify that the improved MapReduce frame-
work has improved processing efficiency and timeliness,
the improved MapReduce framework runs on the same
Hadoop cluster with the same amount of computing nodes.
Selecting glass defect images with resolutions of 128*128,
256*256, 512*512, 1024*1024 and 2048*2048, and process
the defect images of the same resolution for each experiment
to detect the efficiency of the two frame’s operations. It can
be seen from Fig.9 and Fig.10, with different resolutions, the
processing time is significantly faster with different resolu-
tions, and the main reason for the faster processing speeds of
resolutions 1024*1024 and 2048*2048 is not only because of
the amount of image data becomes larger, but also related to
the size of the slice when the Mapper is started.

31842

TABLE 3. The result of computing defect image under Hadoop.

128%128 256*256 512*512 1024*10 2048*20
24 48

1 2.1 55 7.4 26.2 488

2 12 39 6.1 20.1 283

3 1 3.6 48 18.2 26.2

4 0.8 3 3.9 16.9 25

TABLE 4. The result of computing defect image under optimization
MapReduce.

128128 256%256 512%512 1024*10 2048%20
24 48
1 1.9 49 6.7 233 43.6
2 1.1 3.5 5.3 17.6 24.6
3 1 3 4.1 15.1 21.9
4 0.6 24 32 13.8 20.4

Through the experimental data, we found that the linear
resolution of cluster computing time and node number are
more obvious when the image resolution is 512*512 and
1024*1024. Therefore, the speedup ratio of MapReduce
architecture under different computing nodes is improved by
comparing the two resolution image data. It can be seen from
the comparison between Fig. 11 and Fig. 12 that with the
increase of the number of nodes, the operation efficiency
of MapReduce will be improved, and the acceleration ratio
is about 1.1 to 1.23. The more number of cluster nodes,
the higher speedup ratio will be, which shows the improved
scheduling plays an important role on the multi-node clusters.
The main reason for the acceleration ratio change: First,
the more cluster nodes, the higher the speedup ratio, which
shows that the improved scheduling algorithm is more effec-
tive on multi-node clusters. Secondly, the output data must
be backed up by the network. Using pipeline scheduling will
improve the efficiency of backup. Finally, the actual Hadoop
cluster is separated from the node CPU and IO, and can be
read and written at the same time. The cluster is built on
the virtual machine, and the performance is different from

VOLUME 8, 2020

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation

IEEE Access

the complete distributed cluster, which affects the overall
computing performance. In summary, the improved MapRe-
duce framework speeds up the processing performance, so the
improvements made in this article are obvious compared to
traditional Hadoop’s MapReduce framework.

VI. CONCLUSION

This paper implements the image threshold segmentation
based on Hadoop framework by studying the application of
distributed system to image processing. By designing the log-
ical structure and image read/write interface of MapReduce
parallel computing framework, the threshold segmentation of
massive glass defect images are completed.

In addition, based on the original MapReduce parallel
computing framework, we further improved the intermediate
processing process Shuffle, and complete the Shuffle oper-
ation parallelization through data localization and pipeline
scheduling to improve the operation delay. Experiments show
that the data processing speed of improved MapReduce paral-
lel computing framework is not only significantly improved,
but also the timeliness of the system is improved. In our
future work, we will focus on three areas. First, we will
try some image segmentation methods to find the best seg-
mentation effect. Secondly, while improving the MapReduce
delay, it will also reduce the accuracy of the operation. How
to improve the contradiction between the two is also an
important direction in the future work. Third, we will study
how to extend the Hadoop cluster adaptively. The number of
the data nodes in the cluster can be adjusted according to the
size of the task. In this way, the system can save computing
resources when the input data is small, and expand when the
input data is large, so as to ensure the stability of the system
performance.

REFERENCES

[1] Y. Jin, Z. Wang, L. Zhu, J. Yang, and B. Wei, “Study on glass defect
inspection based on projecting grating method,” J. Test. Eval., vol. 41,
no. 2, Mar. 2013, Art. no. 20120008.

[2] K. Sachdeva and A. Girdhar, “A technique for glass defect detec-
tion,” Int. J. Innov. Res. Develop., vol. 2, no. 13, pp. 25-31,
2013.

[3] J. Xing, R. Sieber, and M. Kalacska, ““The challenges of image segmenta-
tion in big remotely sensed imagery data,” Geographic Inf. Sci., vol. 20,
no. 4, pp. 233-244, Oct. 2014.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.

[51 S. Vemula and C. Crick, “Hadoop image processing frame-
work,” in Proc. [IEEE Int. Congr. Big Data, Jun. 2015,
pp. 506-513.

[6] K. Bok, J. Hwang, J. Lim, Y. Kim, and J. Yoo, “An efficient MapReduce
scheduling scheme for processing large multimedia data,” Multimedia
Tools Appl., vol. 76, no. 16, pp. 17273-17296, Aug. 2017.

[71 Y. Guo, J. Rao, D. Cheng, and X. Zhou, “IShuffle: Improving Hadoop
performance with shuffle-on-write,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 6, pp. 1649-1662, Jun. 2017.

[8] Y.D.Wang, X. Y. Que, W. K. Yu, D. Goldenberg, and D. Sehgal, “Hadoop
acceleration through network levitated merge,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., New York, NY, USA, 2011,
pp. 1-10.

[9] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in MapRe-
duce,” in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.
(CCGRID), May 2012, pp. 419-426.

VOLUME 8, 2020

[10] Y. R. Zhao, W. P. Wang, D. Meng, X. F. Yang, S. B. Zhang, J. Li, and
G. Guan, “A data locality optimization algorithm for large-scale data
processing in Hadoop,” presented at the IEEE Symp. Comput. Com-
mun. (ISCC), Cappadocia, Turkey, 2012, pp. 72-81

[11] W. C. Kim, C. Baek, and D. Lee ‘“Measuring the optimality of Hadoop
optimization,” Comput. Sci., to be published.

[12] H. Vo, J. Kong, and D. Teng, “Cloud-based whole slide image analysis
using MapReduce,” in Proc. VLDB Workshop Data Manage. Anal. Med.
Healthcare. Cham, Switzerland: Springer, 2016, pp. 62-77

[13] E. Fujishima and S. Yamaguchi, “Improving the I/O performance in the
reduce phase of Hadoop,” in Proc. 3rd Int. Symp. Comput. Netw. (CAN-
DAR), 2015, pp. 82-88.

[14] J.J. Li, J. Wu, X. L. Yang, and S. Q. Zhong, “Optimizing MapReduce
based on locality of K-V pairs and overlap between shuffle and local
reduce,” presented at the 44th Int. Conf. Parallel Process., Beijing, China,
2015.

[15] J.Li, J. Wang, B. Lyu, J. Wu, and X. Yang, “An improved algorithm for
optimizing MapReduce based on locality and overlapping,” Tinshhua Sci.
Technol., vol. 23, no. 6, pp. 744-753, Dec. 2018.

[16] Y. Khalil, M. Alshayeji, and I. Ahmad, “Distributed whale optimiza-
tion algorithm based on MapReduce,” Concurrency Comput. Pract. Exp.,
vol. 31, no. 1, p. e4872, Jan. 2019.

MAOZHEN LI received the Ph.D. degree from
the Institute of Software, Chinese Academy of
Sciences, in 1997. He is currently a Professor with
the Department of Electronic and Computer Engi-
neering, Brunel University London, U.K. His main
research interests include high performance com-
puting, big data analytics, and intelligent systems
with applications to smart grid, smart manufactur-
ing, and smart cities. He has over 180 research

e publications in these areas, including four books.
He has served over 30 IEEE conferences. He is also a Fellow of the British
Computer Society and the IET. He is on the editorial board of a number of
journals.

LU MENG received the master’s degree from the
School of Information and Communication Engi-
neering, North University of China, in 2020. His
research interest is in big data analytics.

JIAYING WANG is currently pursuing the mas-
ter’s degree with the School of Electrical Engi-
neering and Telecommunications, University of
New South Wales. Her research interests are in
the fields of image processing and optical fiber
communications.

31843

IEEE Access

M. Li et al.: Application and Performance Optimization of MapReduce Model in Image Segmentation

31844

YONG JIN received the Ph.D. degree from the
North University of China, in 2013. He is currently
a Professor with the School of Information and
Communication Engineering, North University of
China. His research interests are in the areas of
image processing, online inspections, and big data
analytics.

BINYU HU received the master’s degree from the
School of Information and Communication Engi-
neering, North University of China, in 2020. Her
research interests are in deep learning and image
processing.

YOUXING CHEN received the Ph.D. degree from
the North University of China, in 2010. He is cur-
rently a Professor with the School of Information
and Communication Engineering, North Univer-
sity of China. His research interests are in the areas
of image processing, signal processing, and non-
destructive testing.

VOLUME 8, 2020

	INTRODUCTION
	PRINCIPLE OF SYSTEM OPERATION
	MapReduce-BASED CLUSTERING FOR IMAGES ANALYSE
	DESIGNING THE IMAGE STORAGE STRUCTURE
	DESIGNING THE MapReduce FUNCTIONS

	OPTIMIZATION OF THE MapReduce PROCESSING
	DATA LOCALIZATION
	PIPELINE SCHEDULING

	EXPERIMENTS
	CONCLUSION
	REFERENCES
	Biographies
	MAOZHEN LI
	LU MENG
	JIAYING WANG
	YONG JIN
	BINYU HU
	YOUXING CHEN

