
SPECIAL SECTION ON EMERGING APPROACHES TO CYBER SECURITY

Received December 5, 2019, accepted December 23, 2019, date of publication December 31, 2019, date of current version January 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963096

A Privacy-Preserving Multi-Keyword Ranked
Search Over Encrypted Data in Hybrid Clouds
HUA DAI 1,2, YAN JI 1, GENG YANG 1,2, HAIPING HUANG 1, AND XUN YI 3
1Nanjing University of Post and Telecommunication, Nanjing 210023, China
2Jiangsu Security and Intelligent Processing Lab of Big Data, Nanjing 210023, China
3Royal Melbourne Institute of Technology University, Melbourne, VIC 3001, Australia

Corresponding author: Hua Dai (daihua@njupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61872197, Grant 61572263, Grant
61902199, Grant 61972209, Grant 61672297, and Grant 61872193, in part by the Postdoctoral Science Foundation of China under Grant
2019M651919r2, in part by the Natural Science Foundation of Anhui Province under Grant 1608085MF127, in part by the University
Natural Science Foundation of Anhui Province under Grant KJ2017A419, and in part by the Natural Research Foundation of the Nanjing
University of Posts and Telecommunications under Grant NY217119 and Grant NY219142.

ABSTRACT With the rapid development of cloud computing services, more and more individuals and
enterprises prefer to outsource their data or computing to clouds. In order to preserve data privacy, the data
should be encrypted before outsourcing and it is a challenge to perform searches over encrypted data. In this
paper, we propose a privacy-preserving multi-keyword ranked search scheme over encrypted data in hybrid
clouds, which is denoted as MRSE-HC. The keyword dictionary of documents is clustered into balanced
partitions by a bisecting k-means clustering based keyword partition algorithm. According to the partitions,
the keyword partition based bit vectors are adopted for documents and queries which are utilized as the
index of searches. The private cloud filters out the candidate documents by the keyword partition based bit
vectors, and then the public cloud uses the trapdoor to determine the result in the candidates. On the basis
of the MRSE-HC scheme, an enhancement scheme EMRSE-HC is proposed, which adds complete binary
pruning tree to further improve search efficiency. The security analysis and performance evaluation show
that MRSE-HC and EMRSE-HC are privacy-preserving multi-keyword ranked search schemes for hybrid
clouds and outperforms the existing scheme FMRS in terms of search efficiency.

INDEX TERMS Hybrid cloud, multi-keyword ranked search, privacy-preserving, searchable encryption.

I. INTRODUCTION
Nowadays, the cloud computing technology is considered as
a rapid developing and popular model of distributed comput-
ing and storage, which has the advantages of high-quality data
storage, quick and convenient computing and ‘‘on-demand
service’’, etc. Outsourcing service built on the cloud can
effectively reduce the maintenance cost of enterprises pur-
chasing hardware and software and managing data. Attracted
by the convenience, economy and high scalability appeal-
ing features, more and more individuals and enterprises
are motivated to outsource their data or computing to the
cloud. However, in the outsourcing cloud, Data Owner(DO)
is unable to directly control and manage data stored on the
Cloud Server(CS), thus, DO cannot certain data whether be
protected and whether be legally and reasonably used and
computed, which leads to the privacy of data is seriously

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

threatened. At present, the privacy protection exists in the
outsourcing cloud has become a major obstacle impeding its
further development [2].

In the outsourced cloud, a native scheme proposed to pro-
tect data confidentiality is to encrypt data before outsourcing
data to cloud. However, encrypted data cannot be directly
searched and used. When the scale of data is smaller, DO can
download all data to local computer and then decrypt these
data, thereby obtain needed information from plaintext data.
But in the current increasingly popular Big Data applications,
utilize this method will cause a huge cost of time and band-
width in terms of acquiring needed information, therefore this
method does not possess essential practicality. Therefore, it is
a challenge to perform privacy-preserving ranked search over
encrypted cloud data.

In this paper, we propose a privacy-preserving multi-
keyword ranked search over encrypted data in hybrid clouds.
The keyword partition vector model is presented, in which
the keywords of documents are clustered by a given bisecting

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 4895

https://orcid.org/0000-0003-2465-8977
https://orcid.org/0000-0003-2120-7476
https://orcid.org/0000-0001-7740-2401
https://orcid.org/0000-0002-4392-3599
https://orcid.org/0000-0001-7351-5724
https://orcid.org/0000-0001-7573-6272

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

k-means clustering algorithm and multiple balanced parti-
tions are generated. Keywords are with high relevance scores
in a partition. And the relevance score is calculated by the
Normalized Google-Distance [3]. According to the generated
partitions, the document filtering bit vector (DFB-vectors)
and the query filtering bit vector (QFB-vector) are defined
for documents and queries respectively. The former is the
index for performing efficient searches while the later is
used as the query command. There are two mainly stages
in the proposed scheme which are the setup stage and the
search stage. In the setup stage, the keyword partitions are
first clustered and then DFB-vectors are created and deployed
in Pri-Cloud. Documents and the corresponding vectors are
encrypted and outsourced to Pub-Cloud. In the search stage,
when a query having multi-keywords is started, the corre-
spondingQFB-vector and trapdoor are respectively generated
and submitted to Pri-Cloud and Pub-Cloud. In Pri-Cloud,
the QFB-vector and DFB-vectors are used to filter out the
candidate documents corresponding to the target partitions
of the query, and then the IDs of the candidate documents
are given to Pub-Cloud. After that, Pub-Cloud use the trap-
door and candidate IDs are used to determine the result
encrypted documents. Because keywords in a partition are in
high relevance with each other and the keywords of a query
are usually relevant to each other in practice, the number
of target partitions is small and the candidate documents
are less correspondingly. Therefore, the proposed scheme is
efficient which is indicated in the performance evaluation
result. To improve the search efficiency, an enhanced scheme
EMRSE-HC is proposed, which introduces a complete
binary tree-based index structure and an optimized filtering
algorithm.

The contributions of this paper are as follows.
(1) We proposed a keyword partition vector model. In this

model, a bisecting k-means clustering based keyword parti-
tion algorithm is proposed, which generates the balanced key-
word partitions and the keyword partition based bit vectors
(DFB-vector and QFB-vector). DFB-vectors are the index for
searches.

(2) On the basis of the keyword partition vector model and
the complete binary tree structure, we propose an efficient
ranked search scheme over encrypted data in hybrid clouds.
The private cloud filters out the candidate documents, and
then the public cloud determines the result.

(3) We analyze the security of the proposed scheme
and evaluate its search performance. The result shows that
the proposed scheme is a privacy-preserving multi-keyword
ranked search scheme for hybrid clouds and outperforms the
existing scheme FMRS in terms of search efficiency.

II. RELATED WORK
To support the multi-keyword search over the outsourced
encrypted cloud data, researchers have proposed many
Searchable Encryption (SE) schemes [4]–[18].

Song et al. [4] proposed the first symmetric searchable
encryption (SSE) scheme. Cao et al. [5], [6] proposed
the first multi-keyword ranked search scheme. The vec-
tor space model (VSM) [19] and secure KNN [20] are
adopted to achieve the privacy-preserving ranked searches.
Xu et al. [7] proposed a two-step-ranking search scheme
over encrypted cloud data which adopts the order-preserving
encryption (OPE) [21], [22]. Yang et al. [8] proposed a fast
privacy-preserving multi-keyword search scheme. It supports
dynamic updates on documents. Li et al. [9], [10] proposed
a fine-grained multi-keyword search scheme over encrypted
cloud data. However, only boolean queries are supported.
Xia et al. [11] proposed a secure and dynamic multi-keyword
ranked search scheme by adopting a balanced binary tree
index. Chen et al. [13] and Zhu et al. [12] proposed two
different privacy-preserving ranked search schemes, which
both utilize clustering algorithm to improve search efficiency.

Fu et al. [15] andWang et al. [14] proposed multi-keyword
fuzzy search schemes over encrypted outsourced data.
To achieve fuzzy search, the locality-sensitive hashing
functions [23], wordnet and secure KNN are adopted.
Wang et al. [16] presented a multi-keyword fuzzy search
scheme which supports range queries by adopting the
locality-sensitive hashing functions, bloom filtering [24]
and order-preserving encryption. Fu et al. [17] proposed
a synonym expansion of document keywords and realized
the synonym-based multi-keyword ranked search scheme.
Xia et al. [18] proposed a multi-keyword semantic ranked
search scheme where the inverted index for documents and
the semantic relationship library for keywords are adopted.
Fu et al. [25] proposed a different semantic-aware ranked
search scheme which adopts the concept hierarchy and the
semantic relationship between concepts.

According to the state-of-art, most of the existing works
focus on the public clouds. Only Yang et al. [26] proposed
a search scheme for the hybrid clouds which consist of the
public cloud (Pub-Cloud) and the private cloud (Pri-Cloud).
In the scheme, Pri-Cloud is assumed trust while Pub-Cloud
is assumed honest-but-curious. Keywords of documents are
equally divided into multiple partitions and document index
vectors are created for each document according to the par-
titions. Pri-Cloud utilizes document index vectors to obtain
candidate document identities and then Pub-Cloud deter-
mines the result encrypted documents whose identities are
the candidates. The more partitions the searched keywords
cover, the more candidate document identities Pri-Cloud
obtains. The search efficiency is proportional to the number
of partitions covering the queried keywords. In practical,
the searched keywords are usually relevant to each other. For
example, basketball, NBA, slam dunk could be the queried
keywords for retrieving the interested news, and they are
obviously relevant. Therefore, if the keywords with high
relevance are gathered in fewer partitions, then the search
efficiency will be improved when the searched keywords are
relevant.

4896 VOLUME 8, 2020

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

III. NOTATIONS AND PRELIMINARIES
A. NOTATIONS
• di —A plaintext document.
• D—A plaintext document collection, D = {d1, d2,
, dm}.

• Vdi — The n-dimensional document vector of di.
• VD — The set of document vectors of documents in D,
VD = {Vd1 ,Vd2 , . . . ,Vdm}.

• d̃i — The encrypted document of di.
• D̃ — The encrypted document collection of D,
D̃ = {̃d1, d̃2, . . . , d̃m}.

• Ṽdi — The encrypted n-dimensional document vector
of di.

• ṼD — The set of encrypted documents vectors,
ṼD = {Ṽd1 , Ṽd2 , . . . , Ṽdm}.

• W — A keyword dictionary having n keywords,
W = {w1,w2, . . . ,wn}.

• PL — A list of keyword partitions, PL = {P1,P2, . . . ,
Pτ }.

• VFdi — The τ -dimensional DFB-vector of di.
• VFD — The set of DFB-vectors of the documents,
VFD = {VFd1 ,VFd2 , . . . ,VFdm}.

• Q—A query request with multi-keywords.
• VQ — The n-dimensional query vector of Q.
• ṼQ — The trapdoor of Q which is the encrypted
n-dimensional query vector.

• VFQ — The τ -dimensional QFB-vector of Q.
• CID—A set of candidate document IDs for the queryQ.

B. PRELIMINARIES
1) VECTOR SPACE MODEL
The vector space model [19] adopting TF-IDF model [27]
is widely adopted in secure multi-keyword search [5], [6],
[11]–[13]. We also use such models in this paper. TF and IDF
are the term frequency (TF) and inverse document frequency
(IDF). The former is the number of times a given keyword
or term exists in documents while the later is calculated by
dividing the total number of all documents by the number of
documents having the given keyword or term. Each document
di is described by a n-dimensional vector where n is the scale
of the keyword dictionary. Vdi [j] stores the normalized TF
value of the keyword wj as shown in Eq.(1). For a query
Q having multiple searched keywords, the n-dimensional
vector VQ stores the normalized IDF values of the searched
keywords in Q. The calculation of VQ[j] is shown in Eq.(2).

Vdi [j] = TFdi,wj/
√ ∑
wj∈di∧di∈D

(TFdi,wj)2 (1)

VQ[j] = IDFwj/
√ ∑
wj∈Q

(IDFwj)2 (2)

2) RELEVANCE SCORE MEASUREMENT
We adopt the same calculations in [13] to measure the rel-
evance scores between documents and the search requests
in this paper. We assume that di is a document and Q is a

query request having multiple searched keywords, the rel-
evance score between di and Q is calculated by the inner
product between the corresponding document vector Vdi and
the query vector VQ, i.e.

score(Vdi ,VQ) = Vdi · VQ =
n∑
j=1

Vdi [j]× VQ[j] (3)

3) SECURE INNER PRODUCT OPERATION
The secure inner product operation [20] is adopted in this
paper. The operation is capable of computing the inner prod-
uct of two encrypted vectors even their plaintext values are
unknown. We assume that p and q are two n-dimensional
vectors and M is a random n × n-dimensional invertible
matrix. Here, M is used as the secure key. We denote p̃ and
q̃ as the the encrypted form of plaintext vectors p and q
respectively. And p̃ and q̃ is calculated by p̃ = pM−1 and
q̃ = qMT . Then we have

p̃ · q̃ = (pM−1) · (qMT)

= pM−1(qMT)T

= pM−1Mq

= p · q (4)

Therefore, p̃ · q̃ = p · q holds which indicates that the inner
product of two encrypted vectors equals the inner product of
the corresponding plaintext vectors.

4) NORMALIZED GOOGLE-DISTANCE
Given two keywords wi and wj, the Normalized Google-
Distance [3] between them is denoted as Dist(wi,wj) where

Dist(wi,wj) =
max{log2Fi, log2Fi,j} − log2Fi,j
log2m− min{log2Fi, log2Fj}

(5)

In Eq.(5), Fi and Fj are the total frequencies of wi and wj
appearing in the documents ofD respectively, Fi,j is the num-
ber of documents where wi and wj both appear in the same
documents, m is the number of documents of D and min{X}
is to get the minimum from the set X . According to [3],
the distance can be used to represent the relevance between
keywords. The relevance between wi and wj increases as
Dist(wi,wj) decreases. The Normalized Google-Distance in
the paper is only used for calculating the relevance between
keywords.

IV. MODELS AND PROBLEM DESCRIPTION
A. SYSTEM MODEL
The system model adopted in this paper is the same as [26]
which has four entities: the data owner (DO), the data
user (DU), the private cloud (Pri-Cloud) and the pub-
lic cloud (Pub-Cloud). The cooperation of them is shown
in FIGURE 1.

1) DO owns the sensitive data. To protect the privacy
of its data, DO encrypts documents and the corresponding
vectors and then outsources the encrypted data in Pub-Cloud.
DO constructs DFB-vectors as the index to speed the search

VOLUME 8, 2020 4897

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

FIGURE 1. System model.

efficiency which are stored in Pri-Cloud. Besides, DO has
the privilege to grant the authorization of accessing the out-
sourced data to DU.

2) DU is the user authorized by DO, who is authorized
to search the data outsourced in Pub-Cloud. Once DU starts
a ranked multi-keyword search, the queried keywords are
transformed into a corresponding trapdoor and a QFB-vector
which are submitted to Pub-Cloud and Pri-Cloud respectively
for processing ranked searches. After DU receives the search
result from Pub-Cloud, it decrypts the encrypted data to get
the plaintext result.

3) Pri-Cloud is in charge of storing the index which are
DFB-vectors of documents. Once receiving the QFB-vector
of a query from DU, it performs the bitwise AND operations
between the QFB-vector and DFB-vectors and filters out the
candidate document IDs for the query and then transmits the
IDs to Pub-Cloud for the further search processing.

4) Pub-Cloud is in charge of storing the outsourced data
from DO. Once receiving the trapdoor and the candidate doc-
ument IDs from DU and Pri-Cloud respectively, it performs
the ranked search on the encrypted documents whose IDs are
in the received candidate document IDs and then returns the
result encrypted documents to DU.

B. SEARCH MODEL
Given a set of t queried keywords Q = {w1,w2, . . . ,wt },
a multi-keyword ranked search is to retrieve the k ranked
documents that are most relevant to Q. Formally, we define
a multi-keyword search as Query = (D,Q, k) where k is the
number of requested documents and k � |D| generally. For
simplicity, we use the notation Q to represent the search. The
result of the queryQ, denoted as R, satisfies the following two
conditions.

1) |R| = k ∧ ∀di, dj(di ∈ R ∧ dj ∈ (D − R)) →
score(Vdi ,VQ) ≥ score(Vdj ,VQ).

2) The documents in R are ranked according to the rele-
vance scores between them and Q.

C. PROBLEM DESCRIPTION
In our scheme, we consider the same threat model as [26],
which assumes that DO, DU and Pri-Cloud are trusted, but
Pub-Cloud is considered as "honest-but-curious". It means
that Pub-Cloud always processes the pre-deployed algorithms
honestly and returns results correctly, but it is curious of
peeping the plaintext of the outsourced data, which could
cause privacy leakage through data analysis and deduction.
We assume that Pub-Cloud has the encrypted data outsourced
by DO, but it does not have the secure keys. In accordance
with the background of Pub-Cloud, two threat models are
adopted as follows, which are also adopted in many related
works [5], [6], [11]–[13], [15], [17], [25].

• Known Encryption Model. In this model, Pub-Cloud
only knows the encrypted documents D̃ and the trap-
door ṼQ but it does not have any plaintext infor-
mation about them. It means that Pub-Cloud has to
perform ciphertext-only attack (COA) [28] to observe
the plaintext data.

• Known Background Model. In this model, Pub-Cloud
is assumed to have more knowledge than the known
ciphertext threat model, such as the keyword frequency
statistics of document collection. The statistical infor-
mation reveals the quantity of documents of specific
keywords in D, which could be used by Pub-Cloud
to apply TF statistical attacks and hence infer or even
recognize certain keywords through analyzing the his-
togram or value range of the corresponding frequency
distributions [11], [12], [29].

In this paper, we focus on the multi-keyword ranked search
scheme over encrypted data in hybrid clouds. The designed
goals are as follows.

1) MULTI-KEYWORDS RANKED SEARCH
The proposed scheme is designed that Pub-Cloud can deter-
mine the ranked k encrypted documents which have the k

4898 VOLUME 8, 2020

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

highest relevance scores to the searched keywords through
the cooperation with Pri-Cloud.

2) SEARCH EFFICIENCY
The proposed scheme is able to perform efficient multi-
keyword ranked searches by using a special index constructed
on the basis of the given keyword partition vector model and
the complete binary tree structure. The index can filter out
candidate documents and prune a large number of irrelevant
documents.

3) PRIVACY-PRESERVING
The proposed scheme is able to preserve privacy from the
curious Pub-Cloud. Particularly, the plaintext of documents,
index and queried keywords should be kept in private and the
trapdoor unlinkability [5], [6], [11]–[13] should be protected.

V. KEYWORD PARTITION VECTOR MODEL
To describe the keyword partition vector model (KPVM),
the clustering based keyword partition algorithm is first intro-
duced in this section. Then the keyword partition based bit
vectors are defined formally, which are the index of the
proposed scheme.

A. CLUSTERING BASED KEYWORD PARTITION
We design the algorithm GenPartitions to partition the key-
word dictionary W which is on the basis of the bisecting
k-means clustering [30] and shown in Algorithm 1. The
Normalized Google-Distance [3] is adopted to measure the
distance between keywords. A partition list, denoted as PL =
{P1,P2, . . . ,Pτ }, is the output of this algorithm where τ is a
threshold to control the number of partitions.

Algorithm 1 GenPartitions(W , τ)
Input: The keyword dictionary W .
Output: The keyword partition list PL.
1: Initialize PL = ∅;
2: AddW to PL whereW is treated as a keyword partition;

3: while |PL| < τ do
4: Pmax = max(PL);
5: Apply the bisecting k-means clustering algorithm

to the partition Pmax by using the Normalized
Google-Distance of keywords, and then append the
generated two keyword clusters as two partitions in
PL;

6: end while
7: return PL

In Algorithm 1, max(PL) is the function to get the biggest
partition of PL which has the most documents. In each round
of bisecting k-means clustering, the biggest partition of PL is
divided into two smaller partitions. Therefore, Algorithm 1
is a balanced keyword partition algorithm which tends to
balance the number of keywords of generated partitions even

with different default parameter setting of clustering algo-
rithm. Meanwhile, keywords with high relevance are clus-
tered into partitions because of the adoption of the bisecting
k-means clustering and the Normalized Google-Distance.
In addition, there are two reasons for the selection of the

bisecting k-means algorithm. First, the bisecting k-means
algorithm has the advantage of processing documents, com-
paring with other clustering algorithm like DBSCAN [31].
The second reason for choosing the bisecting k-means algo-
rithm is that it can generate the balanced clusters.
Observation 1: According to Algorithm 1, we have

the following two properties about the generated keyword
partitions.

(1)
⋃

Pi∈PL Pi = W
(2) ∀Pi,Pj ∈ PL → Pi ∩ Pj = ∅
Observation 1 can be deduced from the procedures of

Algorithm 1. This observation indicates that the generated
partitions are the divisions of the keyword dictionary and
there are no intersections between any two partitions.
Definition 1 (Involved Partitions): Given a document

di ∈ D, the involved partitions of di are the partitions that
have at least a keyword of di. We denote the set of involved
partitions of di as IPS(di), then we have

IPS(di) = {pj|pj ∩ di 6= ∅ ∧ Pj ∈ PL} (6)

Definition 2 (Covered Documents): Given a keyword par-
tition Pi ∈ PL, the covered documents of Pi are the docu-
ments that have at least a keyword of Pi. We denote the set of
covered documents of Pi as CDS(Pi), then we have

CDS(Pi) = {dj|dj ∩ Pi 6= ∅ ∧ dj ∈ D} (7)

According to Definition 1 and 2, we can deduce Observa-
tion 2 as follows.
Observation 2: Given a document di and a keyword parti-

tion Pj, if di is in the covered documents of Pj, then Pj is in
the involved partitions of di, and vice versa.

di ∈ CDS(Pj)↔ Pj ∈ IPS(di) (8)

Definition 3 (Target Partitions): Given a query Q with
multi-keyword, the target partitions ofQ is the keyword parti-
tions that have at least one queried keywords ofQ. We denote
the set of target partitions of Q as TPS(Q), then we have

TPS(Q) = {Pi|Q ∩ Pi 6= ∅ ∧ Pi ∈ PL} (9)

Definition 4 (Candidate Documents): Given a query Q,
the candidate documents of Q are the covered documents of
the target partitions ofQ. We denote the candidate documents
of Q as CDocs(Q), then we have

CDocs(Q) =
⋃

Pi∈TPS(Q)

CDS(Pi) (10)

We give the example to describe the above algorithm and
definitions.
Example 1: FIGURE 2 illustrates an example of keyword

partitions generated byGenPartitions. As shown in the figure,

VOLUME 8, 2020 4899

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

FIGURE 2. Example of GenPartitions.

we assume that document collectionD has 10 documents and
the threshold of keyword partitions e.g. τ is set to be 5. The
list of keyword partitions is PL = {P1,P2,P3,P4,P5} and
the detailed descriptions are shown in the figure. According
to Definition 1, the involved partitions of D are described as
IPS(d1) = {P1,P2,P3}, IPS(d2) = {P2,P3,P4}, IPS(d3) =
{P3,P4,P5}, etc. According to Definition 2, the covered doc-
uments of P1, P2, P3, P4 and P5 are expressed as CDS(P1) =
{d1, d4, d9}, CDS(P2) = {d1, d2, d4, d9}, etc. Suppose the
query Q = {w1,w4,w7,w16}, according to Definition 3 and
4, then we have the target partitions TPS(Q) = {P1,P2}
and the corresponding candidate documents CDocs(Q) =
CDS(P1) ∪ CDS(P2) = {d1, d2, d4, d9}. Obviously, the query
result must be in CDocs(Q) and the other documents could be
out of consideration directly.

B. KEYWORD PARTITION BASED BIT VECTORS
Definition 5 (Document Filtering Bit Vector (DFB-

Vector)): Given a document di ∈ D, the DFB-vector of di is a
τ -dimensional bit vector which is denoted asVFdi . If there is a
keyword in di belongs to a partitionPj ∈ PL, thenVFdi [j] = 1
otherwise VFdi [j] = 0, i.e.

VFdi [j] =

{
1, ∃wP ∈ di(wP ∈ Pj)
0, Else

j ∈ {1, 2, . . . , τ } (11)

Definition 6 (Query Filtering Bit Vector (QFB-Vector)):
Given a query Q with multiple keywords, the QFB-vector
of Q is τ -dimensional bit vector which is denoted as VFQ.
If there is a keyword in Q belongs to a partition Pi ∈ PL,
then VFQ[i] = 1 otherwise VFQ[i] = 0, i.e.

VFQ[i] =

{
1, ∃wP ∈ Q(wP ∈ Pi)
0, Else

i ∈ {1, 2, . . . , τ } (12)

According to Definition 5 and 6, we have that the
DFB-vector indicates the involved partitions of the corre-
sponding document while the QFB-Vector indicates the target
partitions of a query. For example, if VFdi [j] = 1, then Pj is
a involved partition of di, which means that di is a covered
document of Pj. And if VFQ[j] = 1, then Pj is the target
partition of the query Q and di is a candidate document of Q.
Therefore, we can deduce Observation 3 as follows.

FIGURE 3. VFD and VFQ.

Observation 3. Given a query Q, we have

CDocs(Q) = {di|VFdi&VFQ 6= {0}
τ
∧ di ∈ D} (13)

where ’’&’’ is the bitwise AND operator and {0}τ represents
a τ -dimensional zero bit vector.

Observation 3 indicates that, given a document di, if the
bitwise AND operation result between the DFB-vector of di
and the QFB-vector of Q is not a zero bit vector, then di
is a candidate document of Q. Therefore, the DFB-vectors
and QFB-vector are the index for filtering out the candidate
documents and speeding up the searches.

We also take Example 1 as an example where ten docu-
ments and the query Q = {w1,w4,w7,w16} are assumed.
According to Definition 5 and 6, the DFB-vectors of the
documents and the QFB-vector ofQ are shown in FIGURE 3,
which are all 5-dimensional vectors. According to Obser-
vation 3, we apply the bitwise AND operation between the
DFB-vectors and the QFB-vector, then we have CDocs(Q) =
CDS(P1) ∪ CDS(P2) = {d1, d2, d4, d9} which coincides the
result of Definition 4.

VI. MRSE-HC SCHEME
Based on the keyword partition vector model, we give the
details procedures of our scheme.We first give the framework
of MRSE-HC shown in FIGURE 4. It consists of two stages
which are setup stage and search stage. Before providing
ranked search services, DO performs the algorithms,GenKey,
GenPatitions, GenVector , EncData and StoreData, to set up
the system. Once a query is applied, the search stage is

4900 VOLUME 8, 2020

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

FIGURE 4. The framework of MRSE-HC.

performed by the algorithms,GenTrapdoor ,GenQFBVector ,
Filtering and Searching. Detailed statements about the above
algorithms are then given in the following two sub-sections.

A. ALGORITHMS IN SETUP STAGE
1) SK ← GenKey(1l(n))
DO generates the secure key SK = {S,M1,M2, g} where S is
a random generated n-dimensional bit vector,M1 andM2 are
random n × n-dimensional invertible matrices, and g is the
key for document encryption. SK is shared by DO and DU.

2) PL← GenPartitions(W , τ)
This algorithm is given in Algorithm 1 in detail. It is on
the basis of the bisecting k-means clustering and the Nor-
malizedGoogle-Distancemeasurement. After performing the
algorithm, keywords with high relevance in the keyword
dictionary are clustered into partitions and the partition list
PL = {P1,P2, . . . ,Pτ } is generated where τ is a threshold to
control the number of output partitions.

3) {VD,VFD} ← GenVectors(D,PL)
For each di ∈ D, DO generates the corresponding doc-
ument vector Vdi according to Eq.(1), and then gener-
ates the corresponding DFB-vector VFdi according to Def-
inition 5. The sets of generated document vectors and
DFB-vectors are VD = {Vd1 ,Vd2 , . . . ,Vdm} and VFD =
{VFd1 ,VFd2 , . . . ,VFdm} respectively. Here, the generated
DFB-vectors will be utilized as the index in our scheme
to filter out the candidate documents and speed the ranked
searches.

4) {D̃, ṼD} ← EncData(D,VD,SK)
For each di ∈ D and the corresponding document vec-
tor Vdi ∈ VD, DO first encrypts di into d̃i by a symmetric

encryption (such as DES, AES, et al.) with the secret key
g in SK . Second, DO generates two random n-dimensional
vectors {V 1

di ,V
2
di} according to the random bit vector S in SK .

Specifically, if S[j] = 0, then V 1
di [j] = V 2

di [j] = Vdi [j]; other-
wise V 1

di [j] = GenRand() and V 2
di [j] = Vdi [j] − V

1
di [j] where

GenRand() is a random value generator. Then, the encrypted
document vector Ṽdi is calculated,Ṽdi = {V

1
diM

T
1 ,V

2
diM

T
2 }.

Through the above operations, the encrypted documents D̃ =
{̃d1, d̃2, . . . , d̃m} and the corresponding encrypted document
vectors ṼD = {Ṽd1 , Ṽd2 , . . . , Ṽdm} are generated.

5) StoreData(VFD, D̃, ṼD)
After the above steps, DO outsources the encrypted docu-
ments D̃ and the corresponding encrypted document vectors
ṼD to Pub-Cloud. And then DO uploads the DFB-vectors
VFD to Pri-Cloud. It is noticeable that the corresponding
document IDs are both stored in Pub-Cloud and Pri-Cloud.
Obviously, the shared data between Pub-Cloud and Pri-Cloud
are only the document IDs.

After the five steps, the setup stage is finished and the sys-
tem is prepared for the multi-keyword search over encrypted
documents.

B. ALGORITHMS IN SEARCH STAGE
1) ṼQ ← GenTrapdoor(Q,SK)
Once a queryQwithmulti-keywords is applied, DUgenerates
the query vector VQ according to Eq.(2) and two random
n-dimensional vectors {V 1

Q,V
2
Q} according to the random bit

vector S in SK . Specifically, if S[i] = 1, then V 1
Q[i] =

V 2
Q[i] = VQ[i]; otherwise V 1

Q[i] = GenRand() and V 2
Q[i] =

VQ[i] − V 1
Q[i]. Then, the encrypted query vector ṼQ is cal-

culated, ṼQ = {V 1
QM
−1
1 ,V 2

QM
−1
2 }, which is the trapdoor of Q

and submitted to Pub-Cloud.

VOLUME 8, 2020 4901

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

2) VFQ ← GenQFBVector(Q,PL)
According to Definition 6, DU generates the QFB-vector
of Q, VFQ, which indicates the target partitions of Q. And
then DU transmits VFQ to Pri-Cloud.

3) CID← Filtering(VFQ,VFD)
Pri-Cloud utilizes the DFB-vectors as the index to filter out
the candidate documents for the query. It performs the bitwise
AND operation between each DFB-vector and the received
QFB-vector and then find out the corresponding IDs of the
candidate documents for the query Q according to Obser-
vation 3. Specifically, for each VFdi ∈ VFD, if VFdi&VFQ
is not a zero-vector, then Identity(di) is added in the ID set
CID. Here, Identity(di) is the ID of di. After processing all the
DFB-vectors of VFD, Pri-Cloud only transmits CID to Pub-
Cloud. CID is the only shared data between Pri-Cloud and
Pub-Cloud. The complexity of this algorithm isO(m∗τ) since
there are m ∗ τ bitwise AND operations.

4) < ← Searching(D̃, ṼD, ṼQ,CID, k)
Pub-Cloud computes the inner products between the trap-
door ṼQ and the encrypted document vectors {Ṽdi |Ṽdi ∈
ṼD ∧ Identity(di) ∈ CID}. According to Lemma 1, the inner
products between the trapdoor and the encrypted document
vectors equal the inner products between the corresponding
plaintext query vector and document vectors respectively, and
the inner products represent the relevance scores between
the queried keywords and the documents according to the
relevance score measurement in the Preliminaries Section.
The ranked k encrypted documents with the highest k inner
products are the result encrypted documents R which is
returned to DU. The complexity of this algorithm isO(|CID|∗
n + k ∗ |CID|) ≈ O(|CID| ∗ n) since k � n holds generally.
|X | represents the item number of the set X .
At last, when DU receives the result encrypted documents
< from Pub-Cloud, it uses the shared secure key to decrypts
the encrypted documents and get the plaintext result docu-
ments.
Lemma 1: ṼQ · Ṽdi = VQ · Vdi
Proof:

ṼQ · Ṽdi = {V
1
QM
−1
1 ,V 2

QM
−1
2 } · {V

1
diM

T
1 ,V

2
diM

T
2 }

T

= (V 1
QM
−1
1) · (V 1

diM
T
1)

T
+ (V 2

QM
−1
2) · (V 2

diM
T
2)

T

= V 1
QM
−1
1 M1(V 1

di)
T
+ V 2

QM
−1
2 M2(V 2

di)
T

= V 1
Q(V

1
di)

T
+ V 2

Q(V
2
di)

T

= VQ · Vdi

In the above algorithms, DU transforms the query request
into two vectors, one is the trapdoor (the encrypted query
vector) generated in GenTrapdoor and the other is the
QFB-vector generated in GenQFBVector . The latter is
submitted to Pri-Cloud and Pri-Cloud uses it and the
DFB-vectors of documents to filter out the candidate docu-
ment IDs in Filtering. According to the received candidate

document IDs, Pub-Cloud determines the result encrypted
documents and return them to DU in Searching. Since
the searching space is shrunk in the candidate documents,
the ranked search efficiency is improved. We will give the
performance evaluation on search efficiency in Section VIII .

VII. THE ENHANCED SCHEME
In this section, we propose the enhanced scheme EMRSE-HC
which is designed to improve the efficiency of MRSE-HC.
EMRSE-HC utilizes the complete binary pruning tree
(CBP-Tree) instead of the sequential DFB-vectors and
the corresponding CBP-Tree based filtering algorithm is
adopted. Compared with MRSE-HC, EMRSE-HC adds the
CBP-Tree construction algorithm BuildCBPT and updates
the StoreData and Flitering algorithms. The three algorithms
are briefly introduced as follows.

• I ← BulidCBPT (D). In EMRSE-HC scheme, the CBP-
Tree, denoted as I, is constructed as index. Each node in
I stores theDFB-vector and the pruning vector, the latter
of which is used for improving the search efficiency.
Details of this algorithm is illustrated in Section VII .A.

• StoreData(I, D̃, ṼD). In EMRSE-HC scheme, I is
stored in Pri-Cloud. And the storage of D̃ and ṼD are
the same as MRSE-HC.

• CID ← Filtering(I, i,VFQ). In EMRSE-HC scheme,
the Filtering algorithm utilizes the CBP-Tree to filter out
the unqualified documents efficiently and generates the
candidate documents. Details of the updated Filtering
algorithm is shown in Section VII .B.

A. CBP-TREE CONSTRUCTION ALGORITHM
The CBP-Tree is the index of EMRSE-HC, which is a com-
plete binary tree. Each node corresponds to a document. The
data structure of the node is defined as:

< docID, dfv, pv >, (14)

where docID and dfv are the identity and DFB-vector of a
document respectively, pv is the pruning vector of the node
which is used for filtering out unqualified nodes.

According to [32], we know that an array is an appropri-
ate structure to store a complete binary tree. Thus, we uti-
lize the array I[1, 2, . . . ,m] to represent the CBP-Tree.
The conclusion of [32] show that for the node I[i],
if i = 1, I[i] is the root node; if i > 1, the parent
node of I[i] is denoted as I[bi/2c]; if the left and right
children of I[i] are I[2i] and I[2i + 1] respectively if
they exist. The CBP-Tree construction algorithm is shown
in Algorithm 2.

In Algorithm 2, if the node I[i] is a leaf node, its pruning
vector is set to equal the DFB-vector of the node. If I[i] is
an internal node, the pruning vector of I[i] is generated by
the bitwise OR operation, depending on whether it has right
child node. Since the CBP-Tree is a complete binary tree with
m nodes, the height is dlog2(m+ 1)e which is the shortest of
the binary trees with m nodes.

4902 VOLUME 8, 2020

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

FIGURE 5. CBP-Tree.

Algorithm 2 BulidCBPT (D, I)
Input: The document collection D.
Output: CBP-Tree I[1, 2, . . . ,m] where I[i] is a node of

the tree.
1: for i = 1, 2, . . . ,m do
2: Settle the node I[i] where I[i].docID = id(di),

I[i].pv = I[i].dfv = VFdi ;
3: end for
4: for i = d(m− 1)/2e, . . . , 1 do
5: if 2i+ 1 ≤ n then
6: I[i].pv = I[i].pv | I[2i].pv | I[2i+ 1].pv;
7: else
8: I[i].pv = I[i].pv | I[2i].pv;
9: end if
10: end for
11: return I

We take the same example as Example 1 to illustrate
Algorithm 2. The DFB-vectors of documents in Example 1 is
shown in FIGURE 4. Taking those DFB-vectors as the input
of Algorithm 2 and the constructed CBP-Tree is shown in
FIGURE 5.

B. CBP-TREE BASED FILTERING ALGORITHM
DO stores the CBP-Tree to Pri-Cloud. Pri-Cloud utilizes the
pruning vectors of nodes in the CBP-Tree to prune unqual-
ified subtrees. The CBP-Tree based Filtering algorithm is
shown in Algorithm 3.

Algorithm 3 is a recursion algorithm that starts with the
root node. Algorithm 3 can find all candidate nodes which
are coinciding the result of bitwise AND operation between
its DFB-vector and QFB-vector is not equal to 0. DFB-vector
in each node is utilized to early prune unqualified nodes.
The pruning vector is used to improve the filter efficiency.
Because the height of the CBP-Tree is log2m and the
unqualified nodes are early filtered out, the complexity of this
algorithm is O(τ ∗ log2m).

The enhanced Filtering algorithm improves the filter-
ing efficiency and promotes the search efficiency. Addi-
tionally, we give the detailed performance evaluation in
Section VIII .

Algorithm 3 Filtering(I, i,VFQ,CID)
Input: I[i] is the current processed node, VFQ is the QFB-

vector.
Output: CID is the candidate documents ID collection.
1: if i ≤ n then
2: if 2i > n then
3: if I[i].dfv&VFQ 6= 0 then
4: Add I[i].docID into CID;
5: end if
6: else
7: if I[i].pv&VFQ 6= 0 then
8: if I[i].dfv&VFQ 6= 0 then
9: Add I[i].docID into CID;
10: end if
11: Filtering(I, 2i,VFQ,CID);
12: Filtering(I, 2i+ 1,VFQ,CID);
13: end if
14: end if
15: end if

C. SECURITY ENHANCEMENT
In the search stage, the Pub-Cloud generates different trap-
doors when the same queries are applied but the candidate
documents and the calculated relevance scores are the same.
Pub-Cloud could use those convert channels to link the same
search requests and deduce the hot keywords with high fre-
quency in documents. To overcome this problem, it is a
practical and effective countermeasure to extend dimension
by adding some phantom terms into vectors to break such
convert channels [5], [6], [11], [13]. We also introduce this
method to enhance the security of our scheme and to protect
the document confidentiality, index and trapdoor privacy and
trapdoor unlinkability.

We adopt the similar phantom item addition method of [5],
[6], [11], [13] for providing trapdoor unlinkability. The brief
idea is introduced as follows. First, DO randomly generates
two (n+ L + 1)-dimensional vectors by S ′ and two (n+ L +
1) × (n + L + 1)-dimensional invertible matrices {M ′1,M

′

2}.
Then, the document vectors and query vectors are extended
to (n + L + 1)-dimensional vector where L is the number

VOLUME 8, 2020 4903

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

dummy keywords inserted. The (n + j + 1)-th entry in the
extended document vector V ′di is set to a random number εj
where j ∈ {1, 2, . . . ,L} and the (n + L + 1)-th is set to 1.
Finally, by randomly selecting G out of L dummy keywords
and the corresponding values in the extended query vector V ′Q
are set to 1 and then V ′Q multiple by a random parameter r ,
the (n + L + 1)-th is set to a random entry λ. The above
extended vectors are used for computing the ranked encrypted
documents. Due to the adoption of the secure inner product
operation, the phantom items are hidden in the encrypted
extended vectors and it is hard to distinguish between the
phantom items and the real items. What is noteworthy is
that some added phantom terms will slightly decrease the
accuracy of the query result but the trapdoor unlinkability is
preserved.

Adding the phantom item in the document vectors and the
query vectors affects the accuracy of the relevance score and
the query results. But the trapdoor unlinkability is preserved.
In addition, the standard deviation parameter σ could be
adjusted to balance the accuracy and the trapdoor unlinka-
bility. Analysis of the effects of adding phantom items can be
referred in [6], [11].

D. SECURITY ANALYSIS
In this section, we analyze the EMRSE-HC scheme according
to the three privacy demands.

1) DOCUMENT CONFIDENTIALITY
In the scheme, the documents and the corresponding vec-
tors are encrypted and then outsourced in Pub-Cloud. The
encryption procedures are given in the EncData algorithm.
Documents are encrypted by a symmetric encryption algo-
rithm (such as AES) with the secret key g in SK while
the corresponding vectors are encrypted by the secure inner
product operationwith one random bit vector and two random
invertible matrix in SK . Since SK generated by DO is only
shared with the authorized DU, Pub-Cloud has no idea of
those secret keys in SK . Thus, it is computation infeasible
for Pub-Cloud to obtain the plaintext information from the
encrypted documents and vectors and document confidential-
ity is guaranteed.

2) INDEX AND TRAPDOOR PRIVACY
In the scheme, the index is the CBP-Tree stored in Pri-Cloud
which is isolated from Pub-Cloud. Trapdoors are generated
by performing secure inner product operation on the query
vectors with the secret key SK which is only shared by DO
and DU. Additionally, several random items are added in the
trapdoor generation process, which increases the randomness
of values in vectors. Without the secret key and the phantom
item addition method, it is hard for Pub-Cloud to get the
plaintext query vectors. As a result, the scheme can protect
the privacy of the index and the trapdoor.

TABLE 1. Default values of parameters.

3) TRAPDOOR UNLINKABILITY
In this scheme, the probability that GenTrapdoor algorithm
generates the same trapdoor by the same query is extremely
low and can be considered negligible. We analyze the reason
under the known background model. According to the phan-
tom item addition procedures in Section VII .C , the original
query vector is extended into n + L + 1-dimensional, has
n + L + 1 bits after adding L + 1 dimensions in the o for
adding phantom items. r is the noise parameter for enhancing
trapdoors by performing multiplication between r and each
dimension of trapdoor. The length of r is denoted as lr . The
former n bits of the extended trapdoor has 2n possibilities.
The possibility of the same query generates the same trap-

door p = 1
x×2lr , and the larger the denominator, the smaller

the p. In other words, the bigger the parameters, the smaller
the probability of generating the same trapdoor, the safer the
scheme. For example, we assume r is a 1024 bit parameter,
then we have p< 1

21024
which is considered negligible. There-

fore, trapdoor is unlinkability in this scheme.

VIII. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our pro-
posed basic scheme MRSE-HC, efficiency enhanced scheme
EMRSE-HC and compare them with the scheme pre-
sented in [26] which is denoted as FMRS. We implement
MRSE-HC, EMRSE-HC and FMRS and perform the eval-
uations on the search time cost on the real data set of NSF
Research Award Abstracts provided by UCI [33]. The real
dataset includes about 129000 abstracts. We use IK Ana-
lyzer [34] to extract the keywords of documents and then
process the extracted keywords.

The experimental hardware environment is INTEL
Core(TM) I5-8250 CPU, 4G memory, and 588G hard disk;
and software environment is Eclipse development platform.
Since the queried keywords are usually relevant with each
other in practice, we assume that the default number of target
partitions of a query is one. Other default parameters are sum-
marized in Table 1 where m, n, τ , t and k are the number of
documents, keywords in the dictionary, clustered partitions,
queried keywords and request documents respectively.

In the following experiments, we evaluate the time cost
of searches where one of the above parameters changes and
the other parameters adopt the default values. The results are
shown in FIGURE 6-10.

FIGURE 6-10 all show that the proposed MRSE-HC and
EMRSE-HC both outperform FMRS in the time cost of
ranked searches. Among them, EMRSE-HC is the most effi-
ciently. On average, EMRSE-HC saves about 20% and 80%
of the time cost respectively. The reason is that: (1) The
target partitions of MRSE-HC and EMRSE-HC are usually

4904 VOLUME 8, 2020

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

FIGURE 6. Search time cost vs τ .

FIGURE 7. Search time cost vs k .

less than FMRS when a query is applied because the par-
titions generated in MRSE-HC or EMRSE-HC is clustered
according to the relevance between keywords and the queried
keywords are usually relevant to each other. The less are the
target partitions, the less are the candidate documents deter-
mined, which improves the search efficiency. (2) In EMRSE-
HC, the tree index, CBP-Tree is adopted and a large number
of irrelevant documents are filtered out. Thus, the search
efficiency is improved.

We analyze the impacts of the changes of τ , k , t ,m and n on
the search time cost of MRSE-HC, EMRSE-HC and FMRS
as follows.

1) FIGURE 6 indicates that, as τ grows up, the time cost of
MRSE-HC, EMRSE-HC and FRMS all decrease. The reason
is that, when τ grows up, more partitions are generated, and
the keywords in each partition and the covered documents of
partitions both decrease. Since the target partitions are settled
constantly, the total covered documents of the target parti-
tions, which are the candidate documents, decrease simulta-
neously. Thus, the time cost of both schemes decreases.

FIGURE 8. Search time cost vs t .

FIGURE 9. Search time cost vs m.

2) FIGURE 7 shows that the increase of the number of
request documents k have little impact on the time cost of
MRSE-HC, EMRSE-HC and FMRS. The reason is that the
search conditions (such as partitions, vectors and documents)
remain unchanged as k growing up, thus the candidate docu-
ments in both schemes are still the same and the time cost of
both schemes just randomly oscillate around a certain level.

3) FIGURE 8 indicates that as the number of queried
keywords t grows up, the time cost of FMRS increases while
the time cost of MRSE-HC and EMRSE-HC just have ran-
dom oscillations. The reason is that keywords in FMRS are
equally divided and randomly distributed in partitions while
keywords in MRSE-HC and EMRSE-HC are clustered with
high relevance in partitions. When t grows up, the number
of target partitions proportionally increases in FMRS. But
it has slight changes in MRSE-HC and EMSE-HC. Since
the corresponding candidate documents have proportional
relations with the target partitions, the time cost of FMRS
increases while the time cost of MRSE-HC and EMRSE-HC
just have slight changes.

VOLUME 8, 2020 4905

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

FIGURE 10. Search time cost vs n.

FIGURE 11. Space cost of index vs τ .

4) FIGURE 9 indicates that the time cost of MRSE-HC,
EMRSE-HC and FMRS all increase as m grows up. The
reason is that, when the number of documents m increases,
the average number of covered documents of each parti-
tion grows up simultaneously. Since the target partitions of
both schemes do not change, the total covered documents of
the target partitions increase. Thus the candidate documents
increase which consumes more time cost to perform the
ranked searches.

5) FIGURE 10 shows that, as n grows up, the time cost
of MRSE-HC, EMSE-HC and FMRS increase. The reason is
that the average number of keywords in each partition grows
up as the dictionary capacity n increases, which causes the
covered documents of each partition increase. Since the target
partitions of both schemes have no changes, the candidate
documents (which is the covered documents of the target par-
titions) increase simultaneously. In addition, the dimensions
of document vectors and query vectors are both enlarged
when n grows up. It will consume more time in the relevance

score calculations. Thus, all schemes consume more time to
accomplish ranked searches.

6) FIGURE 11 shows that the space cost of the indexes in
MRSE-HC, EMRSE-HC and FMRS all increase as τ grows
up. The reason is that, when τ grows up, more partitions
are generated and the dimensions of document filtering bit
vectors increase simultaneous. The space cost of indexes in
MRSE-HC and FMRS are the same. The reason is that the
keywords in MRSE-HC and FMRS are the same thus the
vectors in the indexes of them are also the same. In addition,
the space cost of index in EMRSE-HC is about twice as it in
MRSE-HC. The reason is that the index in EMRSE-HC is a
complete binary tree, where the total nodes are nearly twice
as the leaf nodes. Here, the leaf nodes store the same vectors
of MRSE-HC and the internal nodes store the same structure
of vectors as the leaf nodes.

IX. CONCLUSION
It is still a challenge to ensure the efficiency of the search
under the premise of ensuring the accuracy of the search
results. And most of the existing multi-keyword ranked
search over encrypted data are for the public cloud. In this
paper, we propose a privacy-preserving Multi-Keyword
Ranked Search over Encrypted data in hybrid clouds,which is
denoted asMRSE-HC. In our scheme, the keyword dictionary
of documents are balancing clustered in partitions by the
keyword partition algorithm on the basis of the bisecting
k-means clustering. Based on the generated keywords par-
titions, construct the DFB-vector indicates the involved par-
titions of the corresponding document and the QFB-Vector
indicates the target partitions of a query. And then Pri-Cloud
uses the QFB-vector and DFB-vectors to find the candidate
document IDs which can efficiently cut most irrelevant docu-
ments. Finally, Pub-Cloud uses the IDs and the query trapdoor
to determine the result encrypted documents and returns them
to users. Besides, we utilize secure inner product algorithm
against two threat models. The experimental results show that
the scheme proposed in this paper has better performance in
terms of efficiency compared with the existing methods.

ACKNOWLEDGMENT
Compared with the preliminary version [1].

REFERENCES
[1] H. Dai, Y. Ji, L. Liu, G. Yang, and X. Yi, ‘‘A privacy-preserving multi-

keyword ranked search over encrypted data in hybrid clouds,’’ in Proc. 5th
Int. Conf. Artif. Intell. Secur. (ICAIS), New York, USA, 2019, pp. 68–80.

[2] S. Grzonkowski, P. M. Corcoran, and T. Coughlin, ‘‘Security analysis of
authentication protocols for next-generation mobile and CE cloud ser-
vices,’’ in Proc. IEEE Int. Conf. Consum. Electron., Berlin, Germany,
Sep. 2011, pp. 83–87.

[3] R. L. Cilibrasi and P. M. Vitanyi, ‘‘The Google similarity distance,’’ IEEE
Trans. Knowl. Data Eng., vol. 19, no. 3, pp. 370–383, Mar. 2007.

[4] D. Xiaoding Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for
searches on encrypted data,’’ inProc. IEEE Symp. Secur. Privacy, Berkeley,
CA, USA, May 2000, pp. 44–55.

[5] N. Cao, M. Li, and W. J. Lou, ‘‘Privacy-preserving multi-keyword ranked
search over encrypted cloud data,’’ in Proc. IEEE INFOCOM, Shanghai,
China, Apr. 2011, pp. 829–839.

4906 VOLUME 8, 2020

H. Dai et al.: Privacy-Preserving Multi-Keyword Ranked Search Over Encrypted Data in Hybrid Clouds

[6] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy–preserving multi–
keyword ranked search over encrypted cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[7] J. Xu, W. Zhang, C. Yang, J. Xu, and N. Yu, ‘‘Two-step-ranking secure
multi–keyword search over encrypted cloud data,’’ in Proc. Int. Conf.
Cloud Service Comput., Shanghai, China, Nov. 2012, pp. 124–130.

[8] C. Yang, W. Zhang, J. Xu, J. Xu, and N. Yu, ‘‘A fast privacy–preserving
multi-keyword search scheme on cloud data,’’ in Proc. Int. Conf. Cloud
Service Comput., Shanghai, China, Nov. 2012, pp. 22–24.

[9] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen, ‘‘Enabling
fine–grained multi–keyword search supporting classified sub–dictionaries
over encrypted cloud data,’’ IEEE Trans. Dependable Secure Comput.,
vol. 13, no. 3, pp. 312–325, May 2016.

[10] H. Li, D. Liu, Y. Dai, and T. H. Luan, ‘‘Engineering searchable encryp-
tion of mobile cloud networks: When QoE meets QoP,’’ IEEE Wireless
Commun., vol. 22, no. 4, pp. 74–80, Aug. 2015.

[11] Z. Xia, X. Wang, X. Sun, and Q. Wang, ‘‘A secure and dynamic multi–
keyword ranked search scheme over encrypted cloud data,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352, Feb. 2016.

[12] Z. Xiangyang, D. Hua, Y. Xun, Y. Geng, and L. Xiao, ‘‘MUSE: An efficient
and accurate verifiable privacy-preserving multikeyword text search over
encrypted cloud data,’’ Secur. Commun. Netw., vol. 2017, Nov. 2017,
Art. no. 1923476.

[13] C. Chen, X. Zhu, P. Shen, J. Hu, S. Guo, Z. Tari, and A. Y. Zomaya,
‘‘An efficient privacy-preserving ranked keyword search method,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 4, pp. 951–963, Apr. 2016.

[14] B. Wang, S. Yu, W. Lou, and Y. T. Hou, ‘‘Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,’’ in Proc. IEEE
INFOCOM Conf. Comput. Commun., Piscataway, NJ, USA, May 2014,
pp. 2112–2120.

[15] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, ‘‘Toward efficient multi–
keyword fuzzy search over encrypted outsourced data with accuracy
improvement,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 12,
pp. 2706–2716, Dec. 2016.

[16] J. Wang, X. Yu, and M. Zhao, ‘‘Privacy–preserving ranked multi-keyword
fuzzy search on cloud encrypted data supporting range query,’’ Arabian
J. Sci. Eng., vol. 40, no. 8, pp. 2375–2388, Aug. 2015.

[17] Z. Fu, X. Sun, N. Linge, and L. Zhou, ‘‘Achieving effective cloud search
services: Multi-keyword ranked search over encrypted cloud data sup-
porting synonym query,’’ IEEE Trans. Consum. Electron., vol. 60, no. 1,
pp. 164–172, Feb. 2014.

[18] Z. Xia, Y. Zhu, X. Sun, and L. Chen, ‘‘Secure semantic expansion based
search over encrypted cloud data supporting similarity ranking,’’ J. Cloud
Comput., vol. 3, no. 1, Dec. 2014.

[19] I. H. Witten, A. Moffat, and T. C. Bell,Managing Gigabytes: Compressing
and Indexing Documents and Images. New York, NY, USA: Van Nostrand,
1994.

[20] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, ‘‘Secure kNN
computation on encrypted databases,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, Providence, RI, USA, Jun. 2009, pp. 139–152.

[21] D. Liu and S. Wang, ‘‘Nonlinear order preserving index for encrypted
database query in service cloud environments,’’ Concurrency Computat.,
Pract. Exper., vol. 25, no. 13, pp. 1967–1984, Sep. 2013.

[22] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, ‘‘Order–preserving
symmetric encryption,’’ in Advances in Cryptology—EUROCRYPT.
Heidelberg, Germany: Springer, Nov. 2009, pp. 224–241.

[23] P. Indyk and R. Motwani, ‘‘Approximate nearest neighbors: Towards
removing the curse of dimensionality,’’ in Proc. 13th Annu. ACM Symp.
Theory Comput., Dallas, TX, USA, May 1998, pp. 604–613.

[24] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable
errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[25] Z. Fu, L. Xia, X. Sun, A. X. Liu, and G. Xie, ‘‘Semantic–aware searching
over encrypted data for cloud computing,’’ IEEE Trans. Inf. Forensics
Security, vol. 13, no. 9, pp. 2359–2371, Sep. 2018.

[26] Y. Yang, J. Liu, S. Cai, and S. Yang, ‘‘Fast multi-keyword semantic ranked
search in cloud computing,’’ Chin. J. Comput., vol. 40, pp. 158–171,
Jun. 2017.

[27] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[28] H. Delfs and H. Knebl,UCIMachine Learning Repository. NewYork, NY,
USA: Springer, 2013.

[29] C. Wang, N. Cao, K. Ren, and W. Lou, ‘‘Enabling secure and efficient
ranked keyword search over outsourced cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, Aug. 2012.

[30] Y. Zhuang, ‘‘Symmetric repositioning of bisecting K-means centers for
increased reduction of distance calculations for big data clustering,’’ in
Proc. IEEE Int. Conf. Big Data, Washington, DC, USA, Dec. 2016,
pp. 2709–2715.

[31] S. Chakraborty, N. K. Nagwani, and L. Dey, ‘‘Performance comparison
of incremental k-means and incremental DBSCAN algorithms,’’ CoRR,
vol. abs/1406.4751, Jun. 2014.

[32] M. Bulut, ‘‘ReducedCBT and SuperCBT, two new and improved complete
binary tree structures,’’ CoRR, vol. abs/1401.7741, Jan. 2014.

[33] M. Lichman, UCI Machine Learning Repository. Irvine, CA, USA: Univ.
California, 2013.

[34] Z. Wang and B. Meng, ‘‘A comparison of approaches to chinese word
segmentation in hadoop,’’ in Proc. IEEE Int. Conf. Data MiningWorkshop,
Shenzhen, China, Dec. 2014, pp. 844–850.

HUA DAI was born in 1982. He is currently an
Associate Professor with the Nanjing University
of Posts and Telecommunications and a member
of CCF. His research interests include data man-
agement and security and database security.

YAN JI was born in 1995. She is currently pursuing
the M.S. degree with the Nanjing University of
Posts and Telecommunications. Her research inter-
ests include data management and security and
cloud computing.

GENG YANG was born in 1961. He is currently a
Professor and Ph.D. Supervisor with the Nanjing
University of Posts and Telecommunications and
a Senior Member of CCF. His research interests
include cloud computing and security, data secu-
rity, and privacy protection.

HAIPING HUANG was born in 1981. He is cur-
rently a Professor and Ph.D. Supervisor with the
Nanjing University of Posts and Telecommunica-
tions. His current research interests are wireless
sensor networks and information security.

XUN YI was born in 1967. He is currently a
Professor and Ph.D. Supervisor with the Royal
Melbourne Institute of Technology University.
His research interests include information security
and distributed data processing.

VOLUME 8, 2020 4907

	INTRODUCTION
	RELATED WORK
	NOTATIONS AND PRELIMINARIES
	NOTATIONS
	PRELIMINARIES
	VECTOR SPACE MODEL
	RELEVANCE SCORE MEASUREMENT
	SECURE INNER PRODUCT OPERATION
	NORMALIZED GOOGLE-DISTANCE

	MODELS AND PROBLEM DESCRIPTION
	SYSTEM MODEL
	SEARCH MODEL
	PROBLEM DESCRIPTION
	MULTI-KEYWORDS RANKED SEARCH
	SEARCH EFFICIENCY
	PRIVACY-PRESERVING

	KEYWORD PARTITION VECTOR MODEL
	CLUSTERING BASED KEYWORD PARTITION
	KEYWORD PARTITION BASED BIT VECTORS

	MRSE-HC SCHEME
	ALGORITHMS IN SETUP STAGE
	SK GenKey(1l(n))
	PL GenPartitions(W,)
	{VD,VFD} GenVectors(D,PL)
	{D"0365D,V"0365VD } EncData(D,VD,SK)
	StoreData(VFD,D"0365D,V"0365VD)

	ALGORITHMS IN SEARCH STAGE
	V"0365VQ GenTrapdoor(Q,SK)
	VFQ GenQFBVector(Q,PL)
	CIDFiltering(VFQ,VFD)
	Searching(D"0365D,V"0365VD,V"0365VQ,CID,k)

	THE ENHANCED SCHEME
	CBP-TREE CONSTRUCTION ALGORITHM
	CBP-TREE BASED FILTERING ALGORITHM
	SECURITY ENHANCEMENT
	SECURITY ANALYSIS
	DOCUMENT CONFIDENTIALITY
	INDEX AND TRAPDOOR PRIVACY
	TRAPDOOR UNLINKABILITY

	PERFORMANCE EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	HUA DAI
	YAN JI
	GENG YANG
	HAIPING HUANG
	XUN YI

