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ABSTRACT Although there exist many researches on the compression of original non-encrypted binary
images, few approaches focus on the compression of encrypted binary images. As binary images like
contract, signature, halftone images are still used widely in practice, how to compress efficiently encrypted
binary images in a lossy way deserves further exploration. To this end, this paper develops a lossy
compression scheme for encrypted binary images by exploiting the Markov random field (MRF) model.
Considering that the third-party in scenarios of cloud or distributed computing cannot access to the
encryption key, we develop the concatenated down-sampling and LDPC-based encoding to perform the
compression, in which four different down-samplingmethods are designed to facilitate improving the quality
of reconstructed image. In reconstruction, we first formulate the lossy reconstruction from the encrypted
and compressed binary image as an optimization problem, and then build a joint factor graph involving the
LDPC-decoding, decryption, and MRF to solve this optimization problem, in which the MRF is exploited
to well infer pixels discarded in the down-sampling process. By adapting the sum-product algorithm (SPA)
to the constructed joint factor graph for lossy reconstruction (JFG-LR) and running the adapted SPA on the
JFG-LR, we thus recover the original binary image in a lossy way. By integrating the stream-cipher-based
encryption, the down-sampling and LDPC-based compression, and the JFG-LR-involved reconstruction,
we thus propose a new lossy compression scheme for encrypted binary images. Experimental results show
that the proposed scheme achieves desirable compression efficiency, which is comparable to or even better
than that of the JBIG2 with the original unencrypted binary image as input.

INDEX TERMS Compression of encrypted binary images, lossy compression, Markov random field, factor
graph, LDPC.

I. INTRODUCTION
Nowadays, images are generally taken to convey information.
As an image contains a large number of pixels, the sender
usually compresses the image, then encrypts the compressed
image, and finally transmits it to the receiver through the
public communication channel, aiming to save the commu-
nication bandwidth and ensure the secrecy. This is the con-
ventional compression-then-compression (CTE) system.

In the situation of cloud computing, distributed process-
ing, etc, however, compression and encryption need to be
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swapped. This is because the sender (e.g., sensors) may have
limited computing resources or lack of interest motivation,
and thus it would only encrypt the cover image but not con-
duct the compression before encryption. As a result, to save
the communication bandwidth and storage space, the cloud
server would have to compress the encrypted image without
accessing to the encryption key. At the receiver side, joint
decompression and decryption is performed to recover the
original image. This then gives rise to the encryption-then-
compression (ETC) case.

Intuitively, as the encryption masks the cover image,
it would be impossible to compress the encrypted image.
By formulating the ETC system as the problem of distributed
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source coding with side information at the receiver, how-
ever, Johnson et al. [1] demonstrated via the information
theory that the ETC system neither sacrifices the compres-
sion efficiency nor degrades the security in comparison to
the conventional CTE system. They also developed in [1]
both the lossless and lossy compression schemes to illus-
trate the practical feasibility of the demonstration. By further
exploiting theMarkov model to characterize the cover image,
Schonberg et al. significantly improved the compression effi-
ciency of encrypted binary images and videos [2], [3].
By sufficiently leveraging the statistical correlation among
spatial pixels, bitplanes, and color bands before encryption,
Lazzeretti and Barni [4] later further enhanced the com-
pression performance of encrypted gray and color images.
Later, Kumar and Makur [5] succeeded to better improve
the compression efficiency of encrypted gray images by gen-
erating prediction errors and conducting the encryption on
prediction errors. By using the rate-compatible punctured
turbo code for compression and the resolution-progressive
way for reconstruction, Liu et al. [6] proposed a lossless
compression method for encrypted gray images, which can
well compress the four most significant bitplanes. Via the
clustering on prediction errors and the permutation-based
encryption, Zhou et al. [7] achieved the compression effi-
ciency close to the conventional state-of-the-art compression
approaches taking the original, unencrypted grey images as
input. Recently, Wang et al. [8] exploited the Markov ran-
dom field (MRF) to characterize the binary image and con-
structed the joint factor graph involving the LDPC decoding,
decryption, and MRF for binary image reconstruction, which
significantly improves the compression efficiency against
the state-of-the-art counterpart using the 2-D Markov source
model. Later on, they extended it to gray images [9] by
deploying the MRF to characterize statistical characteris-
tics for each bitplane and that between successive bitplanes,
achieving remarkable improvement in terms of compression
efficiency over the method adopting the 2-D Markov source
model [2] and obtaining the performance slightly comparable
or inferior to the resolution-progressive approach of [6].

Attempting to reach higher compression efficiency at
the cost of tolerable distortions, researchers turn to lossy
compression methods for encrypted images. According to
the techniques of lossy compression, the lossy compression
methods for encrypted grey images can be roughly catego-
rized into three categories. The first category exploits the
technique of compressive sensing [10]–[12]. The methods
in [10], [11], and [12] employ the conventional measure-
ment matrix of compressive sensing, the gradient projection
matrix, and the learned dictionary to compress the encrypted
signal, respectively, and adopt the modified basis pursuit to
reconstruct the original signal.

The second category deploys the technique of scalar
quantization for compression [13]–[21]. In [13], Zhang com-
pressed the encrypted grey image by imposing the scalar
quantization on transformed coefficients of part of permuted
image pixels, which essentially discards the excessively

rough and fine transformed coefficients, and recovered the
original image via an iterative way. By decomposing the
stream-ciphered image into several parts and quantizing
each part separately, Zhang et al. developed a lossy scal-
able compression system for encrypted gray images [14].
Later, Zhang et al. [15] proposed another lossy compression
scheme, which decomposes the permuted grey image into
multi-layers and seeks an optimum quantization step via the
rate-distortion optimization for quantization of each layer.
In [16], the auxiliary information is first generated from the
original grey image at the content owner side, and it is then
exploited at the cloud side to facilitate the optimization of
quantization step and further leveraged at the receiver side to
improve the reconstruction quality. In [17], Hu et al. exploited
the spatial correlation due to the specially designed blockwise
mod-256 addition and block permutation to generate predic-
tion errors at the cloud side, deployed the quantization to
reduce the encrypted data, and reconstructed the image using
the content-adaptive interpolation. Recently, Wang et al.
first decomposed the gray image with the lifting integer
wavelet, and then optimized the quantizer on transformed
coefficients by means of the heuristic strategy [18], the rate-
distortion theory [19], and the weighted rate-distortion opti-
mization [20]. Very recently, Qin et al. [21] arranged the
selective encrypted blocks of the cover image into four sets
according to block complexity, compressed different blocks
with different quantizer, and reconstructed the missing pixels
via the total-variation-based inpainting, which well improves
the compression efficiency for encrypted grey images.

For the third category, the uniform down-sampling is
adopted to compress the encrypted image [22], [23]. In [22],
the uniformly down-sampled portion of the stream-ciphered
grey image is taken as the base layer while other
down-sampled portions are selectively sent in a recursive way
to the receiver as the enhancement layer. At the receiver side,
the base layer and the available enhancement layers are used
to reconstruct the original image in a lossy way, in which the
content-adaptive interpolation is employed to recovermissing
portions of the cover image. In [23], Zhou et al. produced
the base layer by coding a series of non-overlapping patches
of uniformly down-sampling version of the stream-ciphered
grey image, select image pixels adaptively according to the
off-line learned error model to form the enhancement layer,
and designed the iterative and multiscale technique to recon-
struct the original image form all available pixel samples.

From the above brief introduction, one can observe that
there are a number of schemes [1], [2], [7] focusing on the
lossless compression of encrypted binary images, but there
is few methods concentrating on the lossy compression of
encrypted binary images. Actually, binary images are still
used widely in practical scenarios like signature, contract,
and halftoning. Therefore, it is vital to investigate the lossly
compression for encrypted binary images.

To this end, by taking into account the fact that the
MRF well characterizes the spatial statistical correlation
and really facilities the lossless compression of encrypted
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binary images, as demonstrated in our previous work [8],
in this paper we propose a new MRF-based lossy compres-
sion scheme for the encrypted binary image. In more detail,
the content owner encrypts the binary image via the stream
cipher, the cloud side down-samples the encrypted binary
image via a certain manner followed by generating the LDPC
syndrome for the down-sampled sequence, and the receiver
recovers the original image by constructing a joint factor
graph involving the LDPC decoding, decryption, and MRF
and executing the sum-product algorithm (SPA) on the con-
structed joint factor graph. Extensive simulations show that
the proposed scheme achieves high compression efficiency
for encrypted binary images and is comparable to or even
better than the JBIG2 that works in a lossy way and takes
the original unencrypted binary image as input. This thus
demonstrates the feasibility and effectiveness of the proposed
scheme.

Contributions of this paper are three-fold: 1) Develop
a down-sampling method that both achieves any practical
compression rate and obtains desirable trade-off between
uniformness and randomness of the down-sampled pixels;
2) Formulate the lossy reconstruction as an optimization
problem, and solve it by constructing a joint factor graph
that involves the LDPC decoding, decryption, and MRF and
deriving the SPA that adapts to the constructed joint factor
graph; and 3) Propose a new lossy compression scheme for
the encrypted binary image, obtaining the compression effi-
ciency comparable to or even better than the JBIG2.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the preliminary knowledge about
the factor graph and the MRF. The proposed scheme for the
lossy compression of encrypted binary images is presented
in Section 3, and experimental results are given in Section 4.
Section 5 finally draws the conclusion.

II. PRELIMIARY KNOWLEDGE
A. FACTOR GRAPH AND SUM-PRODUCT ALGORITHM
Suppose that a global function, f (x1, x2, . . . , xn), can be
factorized as a product of local functions fj(Xj), i.e.,

f (x1, x1, ..., xn) =
∏
j∈J

fj(Xj), (1)

where xi(i = 1, 2, . . . , n) are independent variables, and
Xj(j = 1, 2, . . . , J ) denotes a proper subset of the variable set,
{x1, x1, ..., xn}. Assume that f i(xi) is a marginal function for
variable xi, and then it is calculated as:

f i (xi) =
∑
∼{xi}

f (x1, x2, . . . , xn) , (2)

where ∼ {xi} denotes the set containing all variables exclud-
ing the xi.
According to [24], (1) and (2) can be well represented

and efficiently computed with the factor graph, respectively.
Specifically, by denoting the xi and fj(Xj) with a blank circle
and a black square, respectively, and connecting the circle
and square in case of xi ∈ Xj, a factor graph can thus

be built, where the circle and square are termed the vari-
able node (VN) and the factor node (FN), respectively. For
instance, consider the case of g(x1, x2, x3, x4, x5) =
fA(x1) fB(x2) fC (x1, x2, x3) fD(x3, x4) fE (x3, x5), where J =

{A, B, C, D, E}, XA = {x1}, XB = {x2}, XC = {x1, x2, x3},
XD = {x3, x4}, and XE = {x3, x5} [24]. Then the factor graph
for this case can be constructed as shown in Fig. 1.

FIGURE 1. The factor graph for g(x1, x2, x3, x4, x5), where circles and
squares denote xi (i = 1, . . . , 5) and fj (Xj ), respectively.

By running the SPA (sum-product algorithm) on the con-
structed factor graph, the marginal function f i(xi) can be
efficiently computed [24]. To illustrate this, consider the
factor graph shown in Fig. 2, which can actually be obtained
from a certain factor graph via a proper arrangement and thus
would not lose the generality. Let vx→f (x) andµf→x(x) be the
message fromVN x to FN f and that from f to x, respectively.
Then the vx→f (x) is calculated via the PRODUCT operation,
i.e.,

vx→f (x) =
∏

h∈N (x)\f

µh→x (x) , (3)

where N (x) \f denotes the neighborhood of x (i.e., all FNs
connecting to x) excluding f . The µf→x(x) can be computed
via the SUM operation, i.e.

µf→x (x) =
∑
∼{x}

f (X) ∏
y∈N (f )\x

vy→f (x)

. (4)

After completing product and sum operations, summing
up all messages from the neighborhood of x results in the
marginal function for x, says f (x), i.e.,

f (x) =
∏

h∈N (x)

µh→x (x) . (5)

where N (x) stands for the neighborhood of x.

FIGURE 2. Illustration of the SPA.
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FIGURE 3. Illustration of neighborhood systems with different orders.

For a factor graph with cycles, the SPA can be iteratively
conducted until a certain convergent condition is reached.
After convergence, all marginal functions can be obtained in
a way similar to (5).

B. MARKOV RANDOM FIELD
The Markov random field is a kind of statistical model that
well characterizes the spatial statistics of natural images and
thus has been widely used in many research fields like image
denoising, segmentation, computer stereo vision [25], [26].
It is briefly introduced as follows.

Suppose that I (x, y) denotes a Q-bit image of size W × B
and L = {(x, y)|x ∈ [1,W ], y ∈ [1,B]} stands for its
coordinate set, where Q is the bit depth. If each pixel is
represented with a random variable, Fs(s ∈ L), that takes on
values in the state space, 8 = {0, 1, . . . , 2Q − 1}, then all Fs
s form a random filed, F = {Fs|Fs ∈ 8, s ∈ L}. Clearly,
each image of size W × B, says F = (F1 = f1, F2 =
f2, . . . , FWH = fWH ) becomes an instance of the F.
If the F satisfies the following characteristics of positivity

and Markovian, i.e.,

p (F = F) ≥ 0, ∀F ∈ F (6)

p (Fs|FL−s) = p
(
Fs|Fδ(s)

)
(7)

then the F turns to be a Markov random field. In (6) and (7),
the p(F = F), L−s, and δ(s) denote the probability of instance
F , the coordinate set excluding s, and the neighborhood of
s, respectively. The two equations imply that the probability
p(Fs) for any pixel is non-negative and only depends on its
neighbors.

The δ(s) is also called the neighborhood system defined
on L. It is defined as:

δ (s) =
{
s′|
∥∥ss′∥∥ ≤ d, s 6= s′,

{
s, s′

}
⊆ L

}
(8)

where ‖·‖ denotes the distance between s and s′, and d is a
positive number. Fig. 3 illustrates 5 neighborhood systems.
The number in Fig. 3 represents the distance with respect to
the center location s = (x, y), and elements with numbers
equal to or less than k(k ≥ 1) form a k-th neighborhood
system.

According to the Hammersley-Clifford theorem [27], [28],
the MRF is equivalent to the Gibbs random field. Thus,
the MRF can be equivalently calculated as:

p (F = F) =
1
Z
exp

(
−
U (F)
T

)
, (9)

where Z and T are normalizing and temperature constants,
respectively, and U (F) is an energy function

U (F) =
∑
c∈C

Vc (F), (10)

where C and Vc(·) denote a set of cliques formed by the
neighborhood system δ(s) and a potential function defined
on a given clique c (c ∈ C), respectively. Clique’s structure
depends on the order of δ(s), which is omitted here for com-
pactness and recommended to refer to [26], [27], [7].

In case of one clique, i.e., (fs, fc), fs, fc ∈ F, s, c ∈ L,
the probability of fs conditioned on fc is calculated as:

p(fs|fc) =
1
Z
exp

(
−
Vc(fs|fc)

T

)
. (11)

III. JOINT FACTOR GRAPH FOR LOSSY RECONSTRUCTION
AND THE ADAPTED SPA
In our scheme, the content owner encrypts the binary image
with stream cipher, the cloud side performs the lossy com-
pression by down-sampling the encrypted image and gen-
erating the LDPC (low-density parity check) syndrome for
the down-sampled encrypted pixels, and the receiver recov-
ers the down-sampled portion through LDPC decoding and
decryption followed by reconstructing the missing pixels via
the MRF.

As the encryption by the content owner and the compres-
sion at the cloud side are relatively simple, in this section
we mainly focus on the lossy reconstruction of the original
binary image. To achieve desirable reconstruction perfor-
mance, we first formulate the reconstruction problem as an
optimization one, and then employ the factor graph to solve
it. Details for the design of joint factor graph for lossy recon-
struction (JFG-LR) and the derivation of the SPA adapted to
the JFG-LR are presented below.

A. PROBLEM FORMULATION
Assume that I r (x, y) and I (x, y) are the reconstructed and
original binary images, respectively. Then the objective of
lossy reconstruction is to make I r (x, y) be sufficiently close
to I (x, y). This is equivalent to maximize the peak signal-to-
noise ratio (PSNR) between I r (x, y) and I (x, y) and keep the
MRF of I r (x, y) to be nearly identical to that of I (x, y).
By deploying the Kullback-Leibler divergence,

DKL(p(F r )||p(F)), to measure the MRF difference, where
F r and F are MRFs for I r (x, y) and I (x, y), respectively,
we formulate the lossy reconstruction problem as follows,
i.e.,

max
F r

PSNR
(
I r (x, y), I (x, y)

)
− λDKL

(
p(F r )||p(F)

)
subject to I r (Ldwn) = I (Ldwn), (12)

where PSNR(I r (x, y), I (x, y)) denotes the function comput-
ing the PSNR between I r (x, y) and I (x, y), λ is a positivemul-
tiplier, and Ldwn contains coordinates for the down-sampled
pixels of the encrypted image.
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As the optimization problem in (12) is troublesome to solve
in a qualitative way, we turn to the factor graph to address it
by taking into account the fact that the factor graph can well
represent the MRF and facilitate the efficient computation of
the marginal function. In more detail, we represent the MRF
of I r (x, y) with a factor graph and fix its VNs (variable nodes)
at coordinates Ldwn to be I (Ldwn), which satisfies the con-
straint in (12).We then use a potential function to characterize
the statistical relationship between the connected VN and FN
(factor node), which would probably keep the MRF of Fr

to be nearly identical to that of F when the same potential
function is adopted for both F r and F . We finally run the
SPA on the constructed factor graph iteratively to recover the
missing pixels of I (x, y), which sufficiently exploits the spa-
tial statistics represented with the MRF and thus would result
in a PSNR as high as one could. In this way, the optimization
problem in (12) can be well solved.

Actually, employing the factor graph to solve (12) leads
to another advantage. That is, the factor graph for lossy
reconstruction can be seamlessly integrated with those for
LPDC decoding and decryption since the LPDC decoding
and decryption can be well represented with the factor graph,
in which the statistics may also facilitate the LDPC decoding
and consequently improve the compression efficiency. This
gives rise to the JFG-LR, which is designed in the next
subsection.

B. CONSTRUCTION OF JFG-LR
As aforementioned, the receiver conducts the successive
operations of LDPC decoding, decryption, and MRF-based
recovery of missing pixels to reconstruct the original image
in a lossy way. Therefore, by applying the theory of factor
graph [24] to construct separate factor graphs for LPDC
decoding, decryption, and MRF followed by cascading them
together, we can build the JFG-LR accordingly, as illustrated
in Fig. 4. Specific design for three separate factor graphs is
given below.

FIGURE 4. Illustration of the JFG-LR.

1) FACTOR GRAPH FOR LDPC DECODING
According to [1], channel codes like the LDPC can be used
to compress encrypted signals. Specifically, letH be a parity-
check matrix of the LDPC with sizeM ×N and Y = {Yi|i =
1, ..., N } be the encrypted one-dimensional (D) sequence.

Then the Y can be compressed by generating the LDPC
syndrome, i.e., S = H · Y .
Through the LDPC decoding, the compressed signal S can

be de-compressed, which is denoted as Ŷ . According to [28],
the LDPC decoding can be conducted via the Tanner graph,
which denotes message bits and the parity-check constraint
with VNs and check nodes (CNs), respectively, and connects
VN i (i = 1, ..., N ) and CN j (j = 1, ..., M ) if
Hij is equal to 1. Considering that the MRF is represented
with the factor graph, we modify the Tanner graph for LDPC
decoding to be a factor graph, aiming to integrate the LDPC
decoding, decryption, and MRF-based lossy reconstruction
seamlessly. In more detail, by taking into account the fact
that the conventional LDPC constrains the parity check to
be zero while the LDPC decoding in our case requires the
parity check to be Sj (j = 1, ..., M ), we characterize
each parity check of the LDPC with an FN (factor node) and
represent message and syndrome bits with VNs. As a result,
we construct the factor graph for the LPDC decoding in our
scheme, as shown in Fig. 5.

FIGURE 5. The factor graph for LDPC decoding in our scheme.
Th Sj (j = 1, ..., M), gj , and Ŷi (i = 1, ..., N) denote syndrome bits,
parity-check constraint, and encrypted image pixels.

2) FACTOR GRAPH FOR DECRYPTION
In our scheme, we encrypt the cover image I (x, y) via the
stream cipher, i.e., Y = I ⊕ K , where ⊕ and K stand for
the bit-wise XOR and a pseudo-random sequence generated
via a secret key, respectively. Therefore, the decryption can
be formulated as:

t
(
F̂i, Ki, Ŷi

)
=

[
F̂i ⊕ Ki ⊕ Ŷi = 0

]
(13)

where F̂i (i = 1, ..., N ) and [P] denote the decrypted image
pixel and the ‘‘Iverson’s convention’’ [29] that takes on value
1 if P is true and 0 otherwise. By representing the F̂i, Ki,
and Ŷi with VNs and the function t(F̂i, Ki, Ŷi) with an
FN, the factor graph for decryption can be built accordingly,
as illustrated in Fig. 6.

3) FACTOR GRAPH FOR MRF-BASED LOSSY
RECONSTRUCTION
Assume that Î (x, y) is the reconstructed image of sizeW × B
and F̂y,x denotes its MRF. According to (9)-(10), joint prob-
ability for the F̂y,x can be factorized into a number of
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FIGURE 6. The factor graph for decryption.

local probability functions, and thus the factor graph can be
employed to represent the MRF.

In constructing the factor graph for the MRF F̂y,x , a VN
is used to represent an image pixel, while an FN is to char-
acterize the potential constraint between neighboring pixels.
According to Section 2.2, the potential constraint depends
on the adopted potential function. For simplification and
effectiveness, in this paper we deploy the two-order potential
function. It uses the one-order neighborhood system (see also
Fig. 2) and contains five cliques, i.e., (Î (x, y)), (Î (x, y), Î (x−
1, y)), (Î (x, y), Î (x + 1, y)), (Î (x, y), Î (x, y − 1)), and
(Î (x, y), Î (x, y + 1)). As the clique has no any potential
with respect to itself, the other four cliques are considered.
Therefore, the factor graph for F̂y,x can be constructed as
shown in Fig. 7.

FIGURE 7. Factor graph for the MRF. The F̂y,x (y ∈ [1, H], x ∈ [1, W ]) an
My,x /Ny,x denotes the random variable for pixel Î(x, y ) and the potential
constraint in the horizontal/vertical direction, respectively.

By taking the compression in our scheme into account,
the Î (x, y) actually contains two parts. One is recovered from
the compressed and encrypted sequence sent from the cloud
side, and the other corresponds to pixels discarded in the
down-sampling process. In other words, the portion of F̂y,x
corresponding to the first part essentially come from the
factor graph for decryption and thus would connect to FNs
in the factor graph for decryption, while the others would
not. Therefore, to seamlessly integrate the factor graph for
the MRF with that for decryption, we modify the factor
graph for the MRF by inserting FNs ti (i = 1, ..., N ) for
F̂y,x s corresponding to the first part and remain the other
F̂y,x s unchanged. In addition, to better exploit the priori
information of probability, we also introduce another kind

of FN, namely Py,x , that is connect to each VN F̂y,x . These
two modifications yield the factor graph for the MRF in our
scheme, as illustrated in Fig. 8.

FIGURE 8. Illustration of the factor graph for the MRF in our scheme.
Compared with Fig. 6, FNs ti and Py,x are additionally inserted to
represent the connection between VN F̂y,x in the factor graph for the
MRF and FN ti in the factor graph for decryption and the priori
information of probability, respectively. Filled circles stand for the
down-sampled pixels while blank ones denote the missing pixels
discarded in the down-sample process, where the down-sampled
coordinates are selected in a certain way (e.g., uniform or random).

C. DERIVATION OF THE SPA ADAPTED TO JFG-LR
By merging the same VNs and FNs of the separate factor
graphs in Figs. 5, 6, and 8, we can thus integrate these
factor graphs together to yield the JFG-LR (see also Fig. 4).
By running the SPA on the JFG-LR, we then reconstruct the
original binary image in a lossy way. To this end, we adapt
the SPA to the constructed JFG-LR in this subsection.

Fig. 9 plots the flowchart for the SPA. It includes steps
of initialization, message update from FNs to VNs, message
update from VNs to FNs, optimal estimation of Ŷ , conver-
gence check, and optimum estimation of Î (x, y). Regard-
ing that the binary image is used as the cover, messages
passed between VNs and FNs are defined as the form of
ln(p(0)/p(1)), where p(0) and p(1) stand for the probabilities
for bits 0 and 1, respectively. For notational convenience,
the message from VN to FN is denoted as vVN→FN and
that from FN to VN is µFN→VN . By following this notation
symbols, details for these steps are presented as follows.

FIGURE 9. Flowchart of the SPA.
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1) Initialization. This step initializes messages from all
VNs to the connected FNs. First consider vSj→gj (j =
1, ..., M ). As syndrome bit Sj is sent from the

cloud side and thus deterministic, the vSj→gj is calculated:

vSj→gj = log

(
p
(
Sj = 0

)
p
(
Sj = 1

)) = {+∞ if Sj = 0
−∞ otherwise

(14)

As pointed out by Johnson et al. [1], the encrypted
sequence K = {Ki|i = 1, ..., N } can be taken as the side
information for Ŷ . Thus, K can be used to initialize Ŷ :

vŶi→gj
=vŶi→ti

= log

p
(
Ŷi = 0

)
p
(
Ŷi = 1

)
={+∞ if Ki = 0

−∞ otherwise

(15)

Via the priori probability Py,x , messages vF̂y,x→ti
,

vF̂y,x→My,x
, vF̂y,x→My,x+1

, vF̂y,x→Ny,x
, and vF̂y,x→Ny+1,x

are ini-

tialized to be ln(p(Py,x = 0)
/
p(Py,x = 1)). By the way, as the

Py,x is a constant, it is not necessary to pass messages from
F̂y,x to Py,x , and so are the situations for Ki and Sj.

In case of doping (i.e., the encrypted image bit is directly
sent to the receiver without any LDPC-based compression, as
will be described in the next section), Ŷi can be determined
as the corresponding syndrome bit Sj. As a result, vŶi→gj

and

vŶi→ti
are computed with (14). Since Ŷi has been determined,

the F̂y,x connected to ti can be decided as Ŷi ⊕ Ki. Thus,
messages from these F̂y,x to their connected FNs can also be
initialized via (14).
2) Update µFN→VN . This step updates messages from FNs

to VNs. According to the theory of LDPC decoding [28], [1],
message µgj→Ŷi

is computed as:

µgj→ Ŷi
=(−1)Sj log

1+
∏

Ŷo∈N (gj)\Ŷi
tanh

(
νŶo→gj

2

)
1−

∏
Ŷo∈N (gj)\Ŷi

tanh
(
νŶo→gj

2

) (16)

In the factor graph for decryption, as F̂y,x = Ŷi⊕Ki holds,
messages µti→Ŷi

and µti→F̂y,x
are updated as:

µti→Ŷi
= (−1)Ki vF̂y,x→ti

(17)

µti→F̂y,x
= (−1)Ki νŶi→ti

(18)

In the factor graph for MRF, messages from FNs to VNs
depend on the potential function Vc(·). According to our
previouswork [7], themessage fromMy+1,x to F̂y,x is updated
as (19), as shown at the bottom of this page. Messages

µMy,x→F̂y,x−1
, µNy,x→F̂y,x

, and µNy,x→F̂y−1,x
can be obtained in

a way similar to (19).
Note that as Sj is a constant, it is not necessary to update

messages from gj to Sj. And so is it for messages from ti to
Ki and those from F̂y,x to Py,x .
3) Update vVN→FN . After completing the message update

from FNs to VNs, we further update messages from VNs to
FNs. Message vŶi→gj

is calculated via the product operation
of the SPA as:

vŶi→gj
=

∑
go∈N

(
Ŷi
)
\gj

µgo→Ŷi
(20)

where N
(
Ŷi

)
\gj denotes the neighborhood of Ŷi exclud-

ing gj. Similarly, message vŶi→ti
is

νŶi→ti
=

∑
go∈N

(
Ŷi
)
\ti

µgo→Ŷi
(21)

The message of vF̂y,x→ti
from F̂y,x to ti is updated as:

νF̂y,x→ti
=

∑
o∈N

(
F̂y,x

)
\ti

µo→F̂y,x
(22)

In a similar way, the message of vF̂y,x→My,x
from F̂y,x toMy,x

is computed as:

vF̂y,x→My,x
=

∑
o∈N

(
F̂y,x

)
\My,x

µo→F̂y,x
(23)

Other messages vF̂y,x→My,x−1
, vF̂y,x→Ny,x

, and vF̂y,x→Ny−1,x
are

akin to (23) and thus omitted here for compactness.
Note that messages vSj→gj and vKi→ti are the same to those

in (14) and (15), respectively.
4) Optimal estimation of Ŷ . To check whether the SPA

converges, we need to estimate the encrypted sequence Ŷ .
First, messages from the neighborhood of Ŷi are accumulated,
i.e.,

vŶi =
∑

α∈N
(
Ŷi
)µα→ Ŷi

(24)

Regarding that the message is defined as the logarithm like-
lihood ratio, Ŷi is then determined as:

Ŷi =

{
0 if vŶi ≥ 0

1 otherwise
(25)

5) Convergence evaluation. After deciding the sequence
of Ŷ , multiplying the Ŷ with the checkmatrix ofH to generate

µMy,x→F̂y,x
= ln

 exp
(
vF̂y,x−1→My,x

−
Vc(F̂y,x=0|F̂y,x−1=0)

T

)
+ exp

(
−
Vc(F̂y,x=0|F̂y,x−1=1)

T

)
exp

(
µF̂y,x−1→My,x

−
Vc(F̂y,x=1|F̂y,x−1=0)

T

)
+ exp

(
−
Vc(F̂y,x=1|F̂y,x−1=1)

T

)
 (19)
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FIGURE 10. Illustration of the proposed scheme.

the syndrome Ŝ, i.e., Ŝ = H · Ŷ . If Ŝ is equal to the received
syndrome S, then the SPA is believed to converge and the iter-
ation stops. Otherwise, continue to perform steps 2-4 until the
SPA converges or the predefined maximum iteration number
reaches. In the latter situation, the LDPC decoding fails, and
the code rate of LDPC needs to decrease. That is, the number
of syndrome bits should increase.

6) Optimum estimation of Î (x, y). When the convergence
reaches, the Ŷi is first determined via (24) and (25), and its
decrypted version, F̂y,x , is then obtained as

F̂y,x = Ŷi ⊕ Ki (26)

As a result, the down-sampled portion of the reconstructed
image Î (x, y) is decided.
For the missing portion of Î (x, y), they can be recovered

in the following way. First, messages passed to VN F̂y,x that
represents a missing pixel are accumulated with the sameway
as (24). Subsequently, the missing pixel is determined via the
same soft-decision in (25).

It is worth pointing out that although the down-sampled
portion of Î (x, y) can also be recovered via the method for
the reconstruction of the missing portion, it would possibly
lead to a number of errors due to the interference from the
missing portion.

IV. PROPOSED SCHEME
In this section, we present the proposed lossy compression
scheme for encrypted binary images, as illustrated in Fig. 10.
It involves three parts, i.e., image encryption, compression
using the technique of down-sampling and LDPC encoding,
and the lossy reconstruction exploiting the JFG-LR. Details
for these three parts are given below.

A. IMAGE ENCRYPTION
We encrypt the given binary image I (x, y) of size W × B via
the stream cipher, which is secure according to Shannon [30].
First, a sequence of pseudo random bits with length W × B
is generated via a secret key KEY1, which is denoted as
K = {Ki|i = 1, ..., WB}. Second, Image I (x, y) is
scanned row-by-row to form a sequence of lengthW×B, i.e.,
Ii (i = 1, ..., WB). Finally, the Ii is encrypted by imposing
the XOR operation, i.e.,

Ci = Ii ⊕ Ki (i = 1, ..., WB) (27)

The encrypted image sequence C is sent to the cloud side
through a public communication channel, while key KEY1 is
passed to the receiver via a secure channel.

B. DOWN-SAMPLED AND LDPC-BASED COMPRESSION
To save the bandwidth and storage space, the cloud side
needs to compress the received encrypted sequence C . As the
encryption key masks the cover image, the cloud side without
access to the encryption key could no longer exploit statistics
of the cover image to compress the encrypted signal. Regard-
ing that the encryption key can be taken as the side informa-
tion at the receiver and the MRF can be used to facilitating
the recovery of missing pixels, we adopt the down-sampling
and LDPC to compress the C . Details are presented below.

1) DOWN-SAMPLING BASED COMPRESSION
Suppose that Rd (Rd ≥ 0) denotes the down-sampling ratio.
Then a sequence of length N = dWBRde is extracted from
C as the compressed sequence, says D, where d·e denotes
the ceiling function. To achieve higher compression rate as
well as reconstruction quality, we design the following four
candidate down-sampling ways.

1) Down-sample the C uniformly. First compute the step
as t =

⌊
WB

/
N
⌋
, where b·c stands for the flooring

function, and then select encrypted bits at location
it + 1 (i = 0, 1, ..., N − 1) as the down-sampled
sequence.

2) Down-sample the C in a random way. First generate a
pseudo random sequence with a secret key KEY2, and
then sort the sequence in ascending order. Next, obtain
N coordinates corresponding to the firstN values of the
sorted sequence. Finally take the encrypted bits located
on the selected N coordinates as the down-sampled
version.

3) Down-sample the C in a block-uniform way. After
re-shaping the C into an encrypted image of size
W × B, divide the resulted image into non-overlapped
blocks with size U × U . Then extract randomly a
sequence of length

⌈
U2Rd

⌉
from each block and obtain

a down-sampled sequence with total length N .
4) Down-sample the C in a comprehensive manner.

Specifically, if Rd ≥ 0.25 holds, then extract the
encrypted bits at locations (2i − 1)W + 2j (i ∈
[1,B/2], j ∈ [1,W/2]) of sequence C as one part
of the down-sampled portion, which leads to WB/4
encrypted bits. Next, remove the down-sampled part
from the C , which results in a sub-sequence, says C ′.
Finally, choose N −WB/4 encrypted bits from the C ′

in a random way similar to method 2, which forms the
other part of the down-sampled portion.
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In the situation of Rd ∈ [0.11, 0.25), encrypted bits at
locations (3i− 1)W + 3j are down-sampled from the C , and
N − WB/9 encrypted bits are extracted randomly with the
similar approach for Rd ≥ 0.25. This down-sampling tech-
nique can be extended to other cases like Rd ∈ [0.06, 0.11),
Rd ∈ [0.04, 0.06), etc.
In summary, the first down-sampling approach is totally

uniform, the second is completely random, and the last
two take into account both uniformness and randomness.
Among them, the one lead to the best compression effi-
ciency for encrypted binary images would be chosen via
experimental simulations as the practically optimum one,
which will be deferred to Section 5 for compactness of this
section.

2) LDPC-BASED COMPRESSION
As demonstrated by Johnson [1], the ETC (encryption-then-
compression) system can be formulated as the problem
of distributed source coding with side information at the
receiver side and the channel code like the LPDC can thus
be employed to compress the encrypted signal. By following
this framework, we conduct the LDPC encoding on the D to
further compress the down-sampled encrypted sequence D.
In more detail, denote the check matrix of LDPC as H , and
then generate the syndrome S in the following way, i.e.,

S = H · D (28)

where sizes of H and D are M × N and N × 1, respectively.
The M depends on the LDPC code rate Rc (Rc > 0), i.e.,
M = N (1− Rc).
In recovering the D from the syndrome sequence of S,

the subsequence of K , says K ′, that is used to generate the
D is taken as the side information at the receiver. That is,
the correlation between K ′ and D is essentially exploited in
the LDPC decoding to recover the D. When the number of
bits 0 and 1 in the cover image is nearly the same, however,
the correlation between K ′ and D would decrease signifi-
cantly, which in turn would make the LDPC decoding fail
at the same Rc. In this situation, the doping technique is
deployed [3], which directly sends the encrypted bits to the
receiver for facilitating the LDPC decoding. As the doped
bits are not imposed with the LDPC encoding and they can
be directly decrypted to recover the original unencrypted bits
and thus help to lead the LDPC decoding to find directions
towards convergence.

As directly sending an encrypted bit benck (k = 1, 2, ...)
to the receiver is essentially equivalent to multiply a vec-
tor v = [0, ..., 0, 1, 0, ...., 0] with b =
[benc1, ..., benc(k−1), benck , benc(k+1), ...., bencN ], where
v has only one ‘‘1’’ and the index of 1 in v is the same as that
of benck in b. In view of this, the doping can be practically
implemented via the modified H̄ that is constructed as

H̄ =
[
H
V

]
, (29)

where V contains a number of v. Suppose that Rp denotes the
doping rate, i.e., the ratio between the number of directly sent
encrypted bits and theM . Then the size of V is calculated as
(M×Rp)×N . By substituting theH in (28) with the H̄ in (29),
we can obtain the final compressed and encrypted sequence S̄.
The cloud side transmits the S̄ and the keys for down-

sampling to the receiver via public and secure channels,
respectively. Therefore, the compression rate is computed as:

CRMRF=
M
(
1+ Rp

)
WB

=
dWBRde (1−Rc)

(
1+Rp

)
WB

. (30)

C. LOSSY RECONSTRUCTION USING THE JFG-LR
After receiving the S̄ and related keys (i.e., the encryption
key KEY1 and the down-sampling key KEY2), the receiver
deploys the JFG-LR to reconstruct the original binary image
in a lossy way. In more detail, it executes the adapted SPA in
Section III-C on the JFG-LR to reconstruct both the down-
sampled and missing portions, as illustrated in Fig. 9.

In the reconstruction, the discontinuity-adaptive potential
function [31], [7] is adopted in our scheme. The function is
expressed as

Vc(f1|f2) = Vc(f2|f1) = log
[
δ2 + (f1 − f2)2

]
+

1

δ2 + (f1 − f2)2
− log δ2 −

1
δ2
, (31)

where f1 and f2 are pairwise elements in a clique of a given
random field, and δ denotes a model parameter to control the
sharpness of edges. This kind of potential function would
constrain the reconstructed local areas to be smooth when
1 = f1 − f2 is small, while it would preserve textures and
edges of the reconstructed local areas when 1 is large.

As the MRF can well represent the statistical correlation
between image pixels, it would really facilitate inferring the
missing pixels discarded in the down-sampling process as
well as the LDPC decoding for the down- sampled portion.
Consequently, it would well improve the compression effi-
ciency and the quality of reconstructed image, as will be
demonstrated immediately in the next section.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we assess the proposed lossy compression
scheme for encrypted binary images via experimental sim-
ulations. In the following subsections, we give experimental
settings for the proposed scheme, determine the preferable
down-sampling method, illustrate the reconstruction process,
and evaluate the performance of the proposed scheme by
comparing it with the JBIG2 using the original, unencrypted
binary image as input.

A. EXPERIMENTAL SETTINGS
In the simulation, we test eleven 100×100 binary images with
different texture characteristics, as shown in Fig. 11. These
images are obtained from the corresponding grey images
through binarization with threshold 128.
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FIGURE 11. Test binary images.

According to (9)-(11) and (31), the MRF (Markov random
field) in our scheme involves parameters δ, T , and P. Accord-
ing to our previous work [8], δ = 45 and T = 0.00049 are
preferable settings for the MRF; and P = 0.35 and P = 0.5
are used for the non-doping and doping situations, respec-
tively. This is because P = 0.35 could provide extra a priori
information when the doping technology is not employed.
In case of doping, the setting of P = 0.35 may deviate from
the practical probability distributions and thus would become
an interference. As a result, P = 0.5 is preferred.
Considering that the proposed scheme is a compression

method for encrypted binary images, we employ the metrics
of bit per pixel (bpp) and bit error rate (BER) to measure the
performance. The bpp is calculated according to (30), and the
BER is computed as:

BER =

∑
x,y
|I (x, y)− I r (x, y)|

W × B
, (32)

where I (x, y) and I r (x, y) denote the original and recon-
structed binary images, respectively. On the condition of the
same bpp, the smaller the BER is, the better the perfor-
mance would be. Note that although the peak signal-to-noise
ratio (PSNR) can be equivalently obtained from the BER
value, the BER better represents reconstructed errors and is
thus deployed in our simulation.

B. DETERMINATION OF THE PREFERABLE
DOWN-SAMPLING METHOD
As described in Section IV-B, four methods are devel-
oped to perform the down-sampling, which are denoted
as UNIFORM, RAND, BLK-Uni-Rand, and Pxl-Uni-Rand
for notational convenience. To evaluate their performance,
we adopt the parameter settings in Section V-A and set the
down-sampling rates to be Rd ∈ [0.3, 1] with step 0.1. For
each Rd , the LDPC code rates, Rc ∈ [0.425, 0.725] with step

0.025, are sought to find the desirable code rate leading to
the minimum compression ratio. Under this setting, each test
image is encrypted, compressed, and reconstructed via the
proposed scheme in Section IV.

Because of the involved doping technique, different Rd and
Rc may lead to nearly identical BERs. To alleviate this issue,
we divide compression ratios in terms of bpp into a number
of groups, each of which covers an interval of 0.025 bpp,
and then choose the minimum BER and the corresponding
bpp in a given group as the preferable bpp-BER performance.
Fig. 12 illustrates the bpp-BER performance for images Tree,
Lena, Baboon, and F16, where the case of BER=0 cor-
responds to the lossless compression of a given encrypted
binary image [8] while the others denote the lossy one. Other
images have similar results.

According to the experimental simulation, image Tree does
not need the doping technique for it has a high ratio of bit 0,
while the other images involve the doping. It is observed
from Fig. 12 that among the four down-sampling methods,
the Pxl-Uni-Rand generally leads to the minimum BER on
the condition of the same bpp. This can be expected as the
Pxl-Uni-Randwell exploits the uniformness and randomness.
That is, the uniformly down-sampled part of the Pxl-Uni-
Rand facilitates the MRF to infer the discarded pixels from
the down-sampled ones, while the randomly down-sampled
part probably help to adapt to edges and textures that are
usually hard to infer from the neighboring pixels. By fol-
lowing this rationale, the performance for the Blk-Uni-Rand,
UNIFORM, and RAND can be well explained, among which
the Blk-Uni-Rand trading-off the uniformness and random-
ness has desirable BER-bpp performance while the RAND
with total randomness leads to the worst performance.

Therefore, the Pxl-Uni-Rand is adopted in our scheme as
the practically optimum down-sampling method.

C. ILLUSTRATION OF RECONSTRUCTION PROCESS
To illustrate the reconstruction process, in this subsection we
take image Lena for example. The image is of size 100×100,
and has 50.6% non-zero bits. In the simulation, we set the
down-sampling rate Rd and the LDPC code rate Rc to be
90% and 0.625, respectively, and seek the optimal doping
rate via a binary search. Experimental simulation shows that
the resulted compression rate and BER are 0.381 and 0.006,
respectively, and the LDPC decoding converges in 91 itera-
tions. Fig. 13 presents the original image, the stream-ciphered
version, and the reconstructed images in 21, 41, 61, 71, 81,
and 91 iterations. It is found that although the encrypted
image has been significantly compressed (i.e., at rate 0.381
bpp), the reconstructed image by means of the proposed
scheme is rather close to the original one.

D. PERFORMANCE EVALUATION
In this subsection, we assess the proposed scheme by compar-
ing it with prior arts. Although there exist many compression
approaches for unencrypted binary images, to our best knowl-
edge there are few methods focusing on the compression of
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FIGURE 12. The bpp-PSNR performance for different down-sampling methods.

FIGURE 13. Illustration of reconstruction process for Lena.

encrypted binary images. To alleviate this situation, we com-
pare the proposed scheme with the JBIG2. The JBIG2 is an
image compression standard for unencrypted binary images,
which is developed by the Joint Bi-level Image Experts
Group. It is suitable for both lossless and lossy compression
ways, but it does not specify the algorithm for lossy compres-
sion. Actually, the JBIG2 concatenates an additional block
of lossy-compression-based preprocessing with the lossless
compression block to achieve the objective of lossy compres-
sion.

In the following subsections, we first examine the visual
quality of the reconstructed images for both the proposed
scheme and the JBIG2, and then evaluate their bpp-BER per-
formance. In the simulation, we adopt the parameter settings
in Section V-A and the down-sampling method of Pxl-Uni-
Rand for the proposed scheme. For the JBIG2, we employ
the JPEG as the compression preprocessing block. That is,

FIGURE 14. Evaluation of reconstructed images.

we map bits 0 and 1 of a given binary image to be 0 and
255, respectively, then compress the mapped image with
different quality factors (QFs), say q ∈ [1, 100] with step 1,
and finally input the compressed image to the JBIG2 with
lossless compressionmode to yield the compressed sequence.
Suppose that the length of the compressed sequence is Len.
Then the compression rate for the JBIG2 is computed as:

CRJBIG2 =
Len

W × B
. (33)

The BER is obtained via (29). As different QFs may result
in close BERs, the minimum BER at nearly identical bpp is
taken as the BER value for the bpp.

In addition, considering that the JBIG2 uses the unecrypted
binary image as input, for better assessment we further take
the encrypted binary image as input for the JBIG2. This

11338 VOLUME 8, 2020



C. Wang et al.: New MRF-Based Lossy Compression for Encrypted Binary Images

FIGURE 15. The bpp-BER performance for the proposed scheme, ORI_JBIG2, and ENC_JBIG2.

then gives rise to two versions of JBIG2, i.e., employing
the original unencrypted and encrypted binary images as
input, respectively. For convenience, they are denoted as
ORI_JBIG2 and ENC_JBIG2, respectively. Details for per-
formance evaluation on the proposed scheme, ORI_JBIG2,
and ENC_JBIG2 are given below.

1) EXAMINATION ON QULITY OF RECONSTRUCTED IMAGES
By deploying the aforementioned settings, we encrypt, com-
press, and reconstruct test binary images in Fig. 11 via
the proposed scheme in Section IV. Also, we conduct the
JPEG compression on images mapped from test binary
images followed by performing the conventional JBIG2 with

the lossless mode. Fig. 14 presents the original binary
images of Barb and F16, and their reconstructed versions
by the proposed scheme and the ORI_JBIG2. It is seen that
the reconstructed images by the proposed scheme and the
ORI_JBIG2 are rather close to the original versions. Con-
sidering that the ORI_JBIG2 takes the original unencrypted
binary image as the input for the compressor while the pro-
posed scheme uses the encrypted one as the input of the
compressor, this result well demonstrates the effectiveness
of the proposed scheme. Other images have similar results,
which are omitted here for compactness.

By the way, as the compression rate for the ENC_JBIG2 is
larger than 1, it is hard to make a fair examination on
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the quality of reconstructed images. Thus, results for the
ENC_JBIG2 is not presented here.

2) ASSESSMENT ON THE BPP-BER PERFORMANCE
Fig. 15 summarizes the bpp-BER performance for all 11 test
binary images. It is observed that BERs of the proposed
scheme gradually decreases when the bpp increases little by
little. This is because the increase of bpp implies the decrease
of compression rate, i.e., the decrease of discarded image bits,
which clearly would reduce the BER. Nevertheless, as the
Pxl-Uni-Rand takes into account both the uniformness and
randomness, the involved randomness may result in different
doping rates and thus lead to small fluctuation of BERs,
as shown in curves for Baboon, Barb, and F16.

It is found from Fig. 15 that on the condition of the
same bpp, the proposed scheme using the down-sampling
method of Pxl-Uni-Rand generally has smaller BERs than
the ORI_JBIG2 and ENC_JBIG2. It is conjectured that the
proposed scheme exploits the MRF that can well characterize
the spatial statistics of binary images and thus can well infer
the discarded bits from the down-sampled ones. Nevertheless,
for images F16, Milkdrop, and tree, the proposed scheme is
somewhat inferior to the ORI_JBIG2, which may attribute
to the fact that the ORI_JBIG2 has higher compression effi-
ciency for images with a large portion of smooth regions.
Since the ORI_JBIG2 compresses the unencrypted original
images while the proposed scheme condenses the encrypted
images, the results well demonstrate the feasibility and effec-
tiveness of the proposed scheme.

In addition, it is noted that the performance of the
ENC_JBIG2 is far worse than the proposed scheme and
the ORI_JBIG2. This is because the input image of the
ENC_JBIG2 has been encrypted and the conventional
JBIG2 can no longer exploit the statistics of input image
to conduct the efficient compression. By the way, as the
ENC_JBIG2 cannot compress the encrypted image and extra
bits are required to save the auxiliary information of the
JBIG2, its compression rate is larger than 1 bpp, as shown
in Fig. 15.

VI. CONCLUSION
This paper has presented an MRF-based lossy compression
scheme for encrypted binary images. The original binary
image is encrypted with the stream cipher, and the encrypted
image is then compressed via the successive down-sampling
and LDPC encoding. In lossy reconstruction, the reconstruc-
tion problem is formulated as an optimization problem, and
the joint factor graph, i.e., JFG-LR is constructed to solve
this optimization problem. By deriving the SPA (sum-product
algorithm) adapted to the JFG-LR followed by running the
adapted SPA on the JFG-LR iteratively, the original binary
image is thus recovered in a lossy way. Experimental results
show that the proposed scheme achieves preferable compres-
sion efficiency and is comparable or even better than the
JBIG2 with the original, unencrypted binary images as input.

This well demonstrates the feasibility and effectiveness of the
proposed scheme.
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