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ABSTRACT Power Control (PC) can coordinate mutual interference between cells in heterogeneous cellular
networks (HCNs). Most of the existing works focus on real-time PC problems based on instantaneous
channel state information (CSI) for all users. However, such scheme may result in low feasible probability
and high energy consumption. If the PC problem is frequently infeasible, the users that require low
latency communications will fail to get services in time. In this paper, we classify the users into two
categories according to their sensitivity to latency: delay-sensitive-users (DSUs) and non-delay-sensitive-
users (NDSUs). We use instantaneous signal-to-interference-plus-noise-ratio (SINR) constraints to ensure
the success of data transmission per time slot to meet DSUs’ low latency requirements, and the long-term
mean data rate constraints to ensure NDSUs’ average data rate requirements. On the one hand, the long-term
constraints allow the system to sacrifice NDSUs’ short-term performance to guarantee DSUs’ instantaneous
performance when the channel condition is poor. On the other hand, the system will appropriately improve
NDSUs’ performance to ensure their target mean data rate when the channel condition is good. Under
this scheme, we formulate the PC problems under perfect CSI, bounded CSI error and stochastic CSI
error scenarios as a uniform problem, which is a non-convex stochastic constrained problem. The recently
proposed constrained stochastic successive convex approximation (CSSCA) technique is utilized to handle
this problem. Simulation results show that the proposed scheme can significantly improve the feasible
probability of DSUs’ instantaneous constraints and reduce the network’s energy consumption.

INDEX TERMS Delay-sensitive-users, heterogeneous cellular networks, non-delay-sensitive-users, power
control.

I. INTRODUCTION
The fifth-generation (5G) cellular network is targeting to
achieve 1000× capacity increase and millisecond-level low-
latency solutions [1]. It is well-understood that the conven-
tional cellular network architecture using macro-cells only
cannot possibly support demand going forward. A promis-
ing solution is to deploy different types of base stations
(BSs), thus forming the heterogeneous cellular networks
(HCNs) [2]. HCNs can efficiently improve the system capac-
ity by reusing the same frequency spectrum [3]. How-
ever, spectrum reusing will inevitably introduce interference
among macro-cells and small-cells, which severely degrades
the communication performance and causes a significant
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amount of power waste. To address this difficulty, the power
control (PC) strategy that can keep the aggregate interference
at receivers within an acceptable level is utilized in HCNs to
achieve interference management [4].

PC has been extensively investigated in the literature. In
ultra-dense small cell networks, the PC problem is formu-
lated to maximize the energy efficiency of all the small
cells while keeping tolerable interference to the macro-cell
users [5]. In order to achieve higher energy efficiency, A.
Zappone et al. in [6] develop a general framework to achieve
globally optimal solutions of energy efficiency maximum
problem by merging fractional programming and sequential
optimization. P. He et al. investigate the PC in a multi-user
wireless system to maximize the energy efficiency, while
meeting the power constraints of each individual user and the
whole system [7].
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The perfect channel state information (CSI) is assumed
in the above works. In practical systems, channel uncer-
tainties are inevitable. Generally, the robust resource alloca-
tion designs are developed under two types of CSI errors,
i.e., bounded and stochastic CSI error [8]. The former
assumes that the CSI is bounded in an uncertainty region.
The latter assumes that the statistical information of CSI
errors is known at the transmitters. Under the assumption of
bounded CSI error, C. Shi et al. study the downlink PC in
HCNs based on a worst-case robust Stackelberg game [9].
In the sparse code multiple access based cloud-radio access
network, the authors in [10] joint optimize the resources
allocation and user association based on worst-case optimiza-
tion. The conservative worst-case optimization will inevitable
cause performance degradation. In order to avoid this defi-
ciency, S. Parsaeefard et al. in [11] apply the differential norm
and the chance constrained approaches in cognitive radio net-
works to maximize the secondary users’ throughput. Under
the assumption of stochastic CSI errors, the works in [12]
consider the use of PC and beamforming for femtocells to
provide the desired SINR to femtousers near the femtocell
edge while minimizing the interference among the serving
femtousers and adjacent macrousers. S. Bu et al. propose
a game-theoretical scheme using energy-efficient resource
allocation and interference pricing for an interference-limited
environment in HCNs [13]. The authors in [14] investigate
the optimal power allocation scheme to maximize the energy
efficiency and secrecy of wireless networks.

With the rapid development of the mobile Internet, the ser-
vices required by users are becoming more various. Some
services require low latency, such as video sessions and
online games. On the contrary, some services, such as online
video and file downloading, are not sensitive to latency but
require high average data rate [15], [16]. We refer to the
users who require low latency services as delay-sensitive-
users (DSUs) and the other users as Non-delay-sensitive-
users (NDSUs). However, the requirements of all users in
the above works [5]–[7], [9]–[14] are formulated as the same
instantaneous QoS constraints. In practical systems, there
is no guarantee of the feasibility of real-time PC problems
because of channel fluctuation. Under poor channel condi-
tion, the PC problem may be infeasible, which will result
in DSUs not being able to get service in time and cause a
significant experience drop at them. Even if the PC problem
is feasible, it will consume high energy to meet the instan-
taneous requirements of all users. To address these issues,
we use long-term mean data rate constraints to formulate the
requirements of NDSUs to relax the original instantaneous
PC problem and thus more resources are reserved for DSUs
to meet their strict low-latency requirements. Furthermore,
in order to cope with the inevitable channel uncertainty,
we also consider the PC under the bounded and the statistical
CSI error scenarios. The main contributions of this paper can
be summarized as follows:
• For DSUs, the instantaneous SINR constraints are uti-
lized to ensure the data transmission success in each

time slot to reduce the delay caused by link outage and
data retransmission. For NDSUs, the long-term mean
data rate constraints are utilized to ensure their high
average data rate. The long-term constraints allow the
system to appropriately reduce the short-term perfor-
mance of the NDSUs to preferentially guarantee DSUs’
performance.

• In the bounded CSI error scenario, the actual unknown
SINR is replaced by its lower-bound to implement PC
under the worst-case to achieve the robustness design.

• In the stochastic CSI error scenario, the outage probabil-
ity constraints are utilized in each time slot to ensure the
reliability of DSUs’ data transmission, which are non-
convex and has no closed form expression. To address
this issue, a Bernstein-type inequality [17] is utilized
to construct a conservative convex approximation of the
original outage probability constraints. As for NDSUs,
the expectation of the data rate in a single time slot has
no concise closed form expression neither. We construct
a tight lower-bound of it according to the distribution of
CSI error to handle this difficulty.

• The PC problems under perfect CSI, bounded CSI error
and stochastic CSI error scenarios are formulated as a
uniform problem. Because of NDSUs’ long-term con-
straints, the PC problems are stochastic constrained and
is non-convex because of the inter-BS interference. The
recently proposed CSSCA technique [18] is utilized to
tackle this problem.

The rest of this paper is organized as follows. Section II
describes the system model. The PC problems under perfect
CSI, bounded CSI error and stochastic CSI error scenarios
are formulated in Section III. In Section IV, the PC problems
under different scenarios are further formulated as a uniform
problem, which is then solved through the CSSCA technique.
The simulation studies of the proposed algorithm are pre-
sented in Section V. Section VI concludes this paper.

The notation used in this paper in summarized in Table 1.

TABLE 1. Notations used in this paper.

II. SYSTEM MODEL
As shown in Fig. 1, we consider the downlink of an
OFDMA-based two-tier HCN consisting of a macro-cell and
B small-cells, where each small-cell comprises a small-cell
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FIGURE 1. Exemplary heterogeneous cellular network. The control center
is not shown in this figure for the conciseness.

base station (SBS) and a small-cell user (SU), while the
macro-cell consists of a macro-cell base station (MBS) and a
macro-cell user (MU). The MBS and SBSs share a spectrum
in the network, so the cross-tier interference will greatly
restrict the network performance. The set of all base sta-
tions (BSs) including both the MBS and SBSs are denoted
by B , {0, 1, 2, . . . ,B}, where indexes 0 and {1, 2, . . . ,B}
correspond to the MBS and SBSs, respectively. We denote
the set of all users including the MU and SUs by K ,
{0, 1, 2, . . . ,B}, in which the index k represents the user
that is associated with the BS k ∈ B. As previously men-
tioned, the users can be classified into DSUs and NDSUs
according to their sensitivity to delay. And the sets of DSUs
and NDSUs are denoted by K1 and K2, respectively. We
assume that |K1| = K1, |K2| = K2, K1 ∪ K2 = K, and
K1 ∩K2 = ∅.

The concept of slow adaptive resource allocation [19] is
employed in this paper. The slow adaptive resource allo-
cation update the spectrum allocation every time window
instead of time slot, where each time window consists of
T time slots. Thus the computation complexity caused by
frequently spectrum allocation in fast resource allocation can
be significantly reduced. We assume that the association
relationship between users and BSs and the spectrum allo-
cation scheme remain unchanged in a time window [19]. In
this paper, we devote to the PC within a time window. In
each slot within a time window, the system determines the
transmission power of each BS subject to the performance
requirements of the users. We also assume that PC is per-
formed in a centralized manner by the control center and
the CSI of the entire network is concentrated in this control
center.

Let gk,b and pb represent the complex channel gain
between BS b and user k and the transmission power of
BS b, respectively. Defining gk ,

[
gk,0, gk,1, . . . , gk,B

]T ,
hk ,

[
hk,0, hk,1, . . . , hk,B

]T with hk,b =
∣∣gk,b∣∣2, and

p , [p0, p1, . . . , pB]T , the SINR enjoyed by user k can be
expressed as

γk =
hk,kpk

hTk A−kp+ σ
2
k

, (1)

where σ 2
k is the power of additive white Gaussian noise at

user k and A−k , diag{1, . . . , 1︸ ︷︷ ︸
0∼k−1

, 0, 1, . . . , 1︸ ︷︷ ︸
k+1∼B

}. The operator

diag {a} denotes a diagonal matrix whose diagonal elements
are from vector a.

III. PROBLEM FORMULATION
This section gives the proposed scheme and the associated PC
problems under perfect CSI, bounded CSI error and stochas-
tic CSI error scenarios.

The conventional real-time user-specific SINR con-
strained PC problem under the assumption of perfect
CSI is [20]

(Pbm) min
p

1Tp

s.t. C1: 0 ≤ pb ≤ Pmax
b , ∀b ∈ B

C2: γk ≥ 0k , ∀k ∈ K, (2)

where Pmax
b is the maximum transmission power of BS b at

the considered spectrum, 0k is the target SINR of user k .
In each time slot, the system solves (Pbm) to determine the
transmission power of each BS. (Pbm) satisfies the hard SINR
requirements of both DSUs andNDSUs in each time slot. The
constraint C2 can ensure DSUs’ low latency requirements by
forcing their SINR to exceed the preset threshold in each time
slot. But for the NDSUs, such constraints are too harsh and
will cause unnecessary energy consumption, since NDSUs
have no stringent requirement of low latency. Furthermore,
due to the channel fluctuation, (Pbm)’s feasibility is not guar-
anteed, especially in the large scale networks under severe
interference environment, which will cause significant expe-
rience drop at DSUs.

Continuously stable high SINR can reduce the time to
transmit data and thus can achieve low latency transmission.
Therefore, this paper utilizes the real-time instantaneous
SINR constraints to characterize the maximum tolerable
delay for DSUs. Considering that NDSUs require high aver-
age data rate and are not sensitive to latency, we replace
the original instantaneous SINR constraints of them with
mean data rate constraints. On the one hand, the short-term
performance of NDSUs can be lowered to preferentially guar-
antee DSUs’ instantaneous SINRwhen the channel condition
is poor. On the other hand, the short-term performance of
NDSUs can be appropriately increased to ensure their long-
term performance when the channel condition is good. Since
this scheme fully considers the channel fluctuation, the fea-
sible probability and energy efficiency can be significantly
improved.

DSU’s SINR constraints are non-convex due to the frac-
tional structure of SINR. Fortunately, they can be easily
equivalent to affine constraints through simple algebraic
manipulation. As for the NDSUs, the mathematical expec-
tation of the data rate that is defined on the time varying
channel is utilized to model their average data rate. Thus,
the PC problem with perfect CSI under the proposed scheme
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can be formulated as

(Pne) min
p

1Tp

s.t. C1, C3: hTk A−kp+σ
2
k −

1
0k
hk,kpk≤0, ∀k ∈K1

C4:WE
[
log (1+ γk)

]
≥ Rmin

k , ∀k ∈ K2, (3)

where Rmin
k is the target data rate of user k ∈ K2. W is

the bandwidth of the considered subcarrier. For letter conve-
nience, we define SEk , Rmin

k /W .
From (Pne), one can see that channel gain is an important

information for PC. The channel gain is obtained by channel
estimation. However, channel uncertainties are inevitable due
to link delay, quantization error, estimation error and mea-
surement error in practical systems. The channel uncertainty
may cause the actual communication performance below the
preset target. Therefore, we need to take the robustness of
the algorithm design into account, which is investigated in
the rest of this section.

A. POWER CONTROL UNDER BOUNDED CSI ERROR
In the communication systems where the users employ a
quantizer to quantize the CSI and feed it back to the transmit-
ters, the channel uncertainty is bounded [21]. Let g̃k,b ∈ C
and ek,b ∈ C with

∣∣ek,b∣∣ ≤ υk,b represent the channel
estimate and the associated bounded CSI error, respectively.
The actual CSI is gk,b = g̃k,b + ek,b and the SINR obtained
by user k can be expressed as

γk =

∣∣g̃k,k + ek,k ∣∣2 pk∑
b 6=k

∣∣g̃k,b + ek,b∣∣2 pb + σ 2
k

, (4)

which is now unpredictable because of the presence of the
unknown ek,b,∀k ∈ K, ∀b ∈ B.
Now, the task of PC is to determine the optimal trans-

mission power of each BS within the range of the bounded
channel uncertainty, which can be expressed as the following
problem.

min
p

1Tp

s.t. C1, C3, C4,

C5:
∣∣ek,b∣∣ ≤ υk,b, ∀k ∈ K, ∀b ∈ B. (5)

Due to the presence of constraint C5, the problem (5) is still
NP-hard even if the stochastic constraint C4 is omitted [8].
Therefore, we need to handle the constraint C5 properly
before solving problem (5). The worst-case optimization can
be utilized to handle this difficulty [22], whose basic idea is to
replace the original SINR with its lower-bound. Apparently,
the SINR γk can be lower bounded by

γk ≥ γ k
=

hk,kpk

h̄Tk A−kp+ σ
2
k

, (6)

where h̄k ,
[
h̄k,0, h̄k,1, . . . , h̄k,B

]T with h̄k,b ,(∣∣g̃k,b∣∣+ υk,b)2 and hk,k , (∣∣g̃k,k ∣∣− υk,k)2. Substituting (6)

in to (5), we can get the PC problem under bounded CSI error:

(Pbe) min
p

1Tp

s.t. C1, C6: h̄Tk A−kp+σ
2
k −

1
0k
hk,kpk≤0, ∀k ∈K1

C7: E
[
log

(
1+ γ

k

)]
≥ SEk , ∀k ∈ K2. (7)

B. POWER CONTROL UNDER STOCHASTIC CSI ERROR
In the communication systems, where the channel reciprocity
holds between uplink and downlink and the CSI is obtained
through uplink channel estimation, the CSI error is mainly
caused by the interference and noise at the receivers [23]
and can be molded by zero mean complex Gaussian random
variable [24].

In order to distinguish from the previous notation in
bounded CSI error scenario, we represent the channel esti-
mate as ĝk,b here. Let ek,b ∼ CN (0, c2k,b) represent the
CSI error, where c2k,b is the variance of estimate error.
The actual channel gain is gk,b = ĝk,b + ek,b. For later
convenience, define gk ,

[
gk,0, gk,1, . . . , gk,B

]T , ĝk ,[
ĝk,0, ĝk,1, . . . , ĝk,B

]T , and ek , [ek,0, ek,1, . . . , ek,B]T . The
covariance matrix of ek is Ck , diag{c2k,0, c

2
k,1, . . . , c

2
k,B}.

The SINR obtained by user k can be expressed as

γk =

∣∣ĝk,k + ek,k ∣∣2 pk∑
b 6=k

∣∣ĝk,b + ek,b∣∣2 pb + σ 2
k

. (8)

Due to the presence of stochastic CSI error, the SINR γk is
now a random variable. The QoS enjoyed by users cannot
be described by the deterministic performance in (Pbm) any
longer. In order to reduce the delay caused by link interruption
and data retransmission, the SINR outage probability of the
link between BSs and DSUs should be kept at a low enough
level, i.e.,

C8: Pek [γk ≥ 0k ] ≥ 1− εk , ∀k ∈ K1, (9)

where εk ∈ (0, 1] is the maximum tolerate outage probability
of user k . For NDSUs, the expectation of the achievable data
rate in each time slot for the given channel estimate ĝk is
Eek

[
log (1+ γk)| ĝk

]
. Therefore, the long-term mean data

rate constraints for NDSUs can be expressed as

C9: Eĝk
[
Eek

[
log (1+ γk)| ĝk

]]
≥ SEk , ∀k ∈ K2. (10)

Now, the PC problem under stochastic CSI error can be
formulated as

min
p

1Tp

s.t. C1, C8, C9. (11)

We can observe that both the constraints C8 and C9 are
intractable non-convex stochastic constraints and have no
closed-form expression. Especially the constraint C9, there
are an inner expectation in each time slot and an outer one
across time slots. The SINR outage probability in C8 and
the inner expectation in C9 are defined on the stochastic
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CSI error, which cannot be measured directly. Consequently,
Pek [γk ≥ 0k ] and Eek

[
log (1+ γk)| ĝk

]
cannot be learned

online based on measured samples through online-SAA [25]
or CSSCA [18] techniques. To overcome this difficulty,
our scheme is to find some appropriate approximation of
C8 and Eek

[
log (1+ γk)| ĝk

]
in C9. At last but not least,

these approximations must be conservative so that the users’
requirements can be certainly achieved. The appropriate
approximations are given in the follows.
Proposition 1 (Approximation of SINR Outage Probabil-

ity Constraints): The SINR outage probability constraints of
DSUs in each time slot, i.e., constraint C8, can be conser-
vatively approximated by the set defined by the following
inequalities:

C10.1:


CkBkp

C1/2
k BkĜkp

1
√
2δk

(
(Ck1+ĥk )TBkp−δkyk−σ 2

k

)
�SOC 0

C10.2: yk − c2k,bpb ≥ 0, ∀b ∈ B, b 6= k, (12)

where k ∈ K1, yk is an auxiliary variables, δk , − log εk ,
the matrix Bk , diag{−1, . . . ,−1︸ ︷︷ ︸

0∼k−1

, 1
0k
,−1, . . . ,−1︸ ︷︷ ︸

k+1∼B

}, and

the matrix Ĝk , diag
{
ĝk
}
. The expression

[
a,bT

]T
�SOC 0

is equivalent to a ≥ ‖b‖2 for any a ∈ R and b ∈ Cn.
Proof: The proof is given in Appendix A. �

We can observe that the constraint C10 is an intersection of
Lorentz cones and linear constraints. Therefore, C10 is con-
vex. As it pointed in Appendix A, these constraints constitute
a conservative approximation of C8, which means that the
constraint C8 must be achieved if C10 is satisfied.
Proposition 2 (Approximation of Long-Term Mean Data

Rate Constraints): The long-term mean data rate constraints
of NDSUs, i.e., constraint C9, can be conservatively approx-
imated by

C11: Eĥk

[
log

(
1+

ĥk,kpk

(ĥk+Ck1)TA−kp+σ 2
k

)]
≥SEk , (13)

where k ∈ K2.
Proof: The proof is given in Appendix B. �

As stated in Appendix B, the lower-bound in (28) is very
tight and can be viewed as a good approximation when the
channel estimate is accurate enough.

Replacing C8 with C10 and C9 with C11, the original
problem (11) can be conservatively approximated by

(Pse) min
p,y

1Tp

s.t. C1, C10, C11, (14)

where y , {yk}∀k∈K1
is an auxiliary variable.

Remark 1 (Convexity of the PC Problems):The constraints
of (Pne), (Pbe) and (Pse) have the similar structure: sev-
eral deterministic constraints and one stochastic constraint.
The deterministic constraints are convex. The mathematical
expectations in these stochastic constraints are all defined

on the functions with the structure of log
(
1+ X

Y

)
, so the

stochastic constraints are non-convex and have no closed
form expression. Therefore, the difficulty of solving (Pne),
(Pbe) and (Pse) mainly lie in C4, C7 and C11.

IV. THE PROPOSED POWER CONTROL ALGORITHM
In this section, the PC problems under perfect and imperfect
CSI scenarios are further formulated as a uniform problem.
A CSSCA based stochastic PC algorithm is then proposed to
solve it. This algorithm adjusts the PC scheme according to
the real-time CSI per time slot. In the algorithm, the system
provides service to all users with minimal transmission power
if the channel state allows and provide services to NDSUs
with its best effort under the premise of DSUs’ requirements
otherwise.

A. CONVEX APPROXIMATION OF MEAN DATA RATE
Based on the observations stated in Remark 1, the problems
(Pne), (Pbe) and (Pse) can be written in the following uniform
problem.

(Puf) min
{p,z}

1Tp

s.t. {p, z} ∈ Xi, fi,k (p)+ SEk ≤ 0, ∀k ∈ K2

fi,k (p) , Eξ i,k
[
wi,k

(
p; ξ i,k

)]
, ∀k ∈ K2, (15)

where i ∈ I with I , {ne, be, se}, z is the auxiliary variable.
z = y when i = se and z = ∅ otherwise. Xi is the determinis-
tic constraint corresponding to the demand of DSUs. Xne ,{
p ∈ RB+1

+ : C1,C3
}
, Xbe ,

{
p ∈ RB+1

+ : C1,C6
}
, Xse ,

{{p, z} ∈ RB+1+K1
+ : C1,C10}. ξne,k , hk , ξbe,k , h̃k , and

ξbe,k , ĥk . The definitions of the function wi,k
(
p; ξ i,k

)
for

each i ∈ I are given in Appendix C for conciseness.
The function wi,k

(
p; ξ i,k

)
is non-convex for a fixed ξ i,k .

And the expectation function fi,k (p) has no closed-form
expression. Therefore, (Puf) is a non-convex stochastic prob-
lem. We focus on designing an efficient algorithm to find
a stationary point of it. One crucial observation is that the
mathematical expectation in the stochastic constraint in (Puf)
is defined on measurable random parameters, i.e., chan-
nel estimate ξ i,k . Thus Eξ i,k

[
wi,k

(
p; ξ i,k

)]
can be learned

online according to the current and historical channel sam-
ples through stochastic optimization, such as online-SAA
and CSSCA techniques. Compare to the CSSCA technique,
the online-SAA usually requires much more channel sam-
ples to obtain an accurate approximation of stochastic con-
straints [18], so the latter is utilized for solving (Puf).
The CSSCA technique is based on solving a sequence

of convex optimization problems obtained by replacing the
non-convex stochastic constraint functions in the original
problems with some convex surrogate functions. For a fixed
ξ i,k , the function wi,k

(
p; ξ i,k

)
is non-convex. Fortunately,

as stated in Appendix C, this function is the sum of a convex
function and a concave one. Based on this observation, one
can construct a structured surrogate function for fi,k (p) by
preserving the convex part and linearizing the concave part
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of wi,k
(
p; ξ i,k

)
. The works in [26] point out that such struc-

tured surrogate function enables a faster convergence speed
and a more accurate solution.
Proposition 3 (Convex Surrogate Function of Mean Data

Rate): Given the approximation center p(n) and the current
channel estimate ξ (n)i,k at the n-th CSSCA iteration (the n-th
time slot in current time window), the structured surrogate
function of fi,k (p) in problem (Puf) is

f̂ (n)i,k (p),
(
1− ρ(n)

) (
w(n−1)
i,k + f(n−1)Ti,k

(
p− p(n)

))
+ρ(n)ŵi,k

(
p,p(n); ξ (n)i,k

)
(16)

with

ŵi,k
(
p,p(n); ξ (n)i,k

)
,

^wi,k
(
p; ξ (n)i,k

)
+
τk

ρ(n)

∥∥∥p−p(n)∥∥∥2
2

+
_w
(n)
i,k + π

(n)T
i,k

(
p− p(n)

)
, (17)

where

w(n)
i,k ,

(
1−ρ(n)

)
w(n−1)
i,k +ρ(n)wi,k

(
p(n); ξ (n)i,k

)
,

f(n)i,k ,
(
1−ρ(n)

)
f(n−1)i,k +ρ

(n)
(
π
(n)
i,k+∇p

^wi,k
(
p(n); ξ (n)i,k

))
,

π
(n)
i,k , ∇p

_wi,k
(
p(n); ξ (n)i,k

)
,

_w
(n)
i,k ,

_wi,k
(
p(n); ξ (n)i,k

)
,

τk ∈ (0, 1), f
(−1)
i,k = 0, and ρ(n) ∈ (0, 1] is a sequence to be

properly chosen. The expressions of the above terms of each
i ∈ I are given in Appendix D for conciseness.
The basic idea of the convex surrogate function is to learn the
expectation Eξ i,k [wi,k (p; ξ i,k )] online from the historical PC
results and channel estimate. Specifically speaking, the sur-
rogate function is constructed through weighted summing
the current and historical approximation functions together.
And the weight of the current approximation function is
ρ(n), and that of the historical results is 1 − ρ(n). The right
hand side of the first line in (16) is the accumulation of
historical data, where the scalar w(n)

i,k is to estimate on-the-
fly the unknown Eξ i,k [wi,k (p

(n)
; ξ i,k )] and the vector f

(n)
i,k rep-

resents the estimate of ∇pEξ i,k [wi,k (p
(n)
; ξ i,k )]. The function

ŵi,k (p,p(n); ξ
(n)
i,k ) is the convex approximation of wi,k (p; ξ i,k )

for the current channel estimate, i.e., ξ (n)i,k . The function
^wi,k (p; ξ

(n)
i,k ) is the convex part of wi,k (p; ξ

(n)
i,k ). The second

line of (17) is the linearization of the non-convex part of
wi,k (p; ξ

(n)
i,k ) around the point p

(n).

B. THE CSSCA BASED POWER CONTROL
ALGORITHM
Replacing the function fi,k (p) in (Puf) with f̂

(n)
i,k (p), we get the

convex approximation of (Puf) at the n-th CSSCA iteration.
However, due to the channel fluctuation, this approximation
is not necessarily feasible, i.e., the system may not be able to
guarantee the needs of all users currently. The requirements
of DSUs is inelastic, short-term service interruptions may

casue significantly experience drop at DSUs. On the contrary,
the requirements of NDSUs is more elastic, temporary perfor-
mance degradation has little impact on NDSUs’ experience.
Therefore, we relax NDSUs’ performance requirements to
improve the feasible probability of DSUs’ performance con-
straints. This purpose can be achieved by solving

(p̄(n), u∗) = argmin
p,z,u

u

s.t. {p, z} ∈ Xi

f̂ (n)i,k (p)+SEk≤u, ∀k ∈K2, (18)

where u∗ represents the difference between NDSUs’ target
data rate and their maximum achievable data rate under cur-
rent channel condition. p̄(n) in (18) is the power allocation
scheme such that maximizes NDSUs’ data rate in current
time slot to the greatest extent while meeting the needs of
DSUs. If u∗ ≥ 0, current channel condition is poor and the
data rate requirements of NDSUs cannot be met at present.
In this case, the system determines the transmission power
of each BS according to p̄(n). If u∗ < 0, current channel
condition is good, and the requirements of all users can be
met at present. In order to achieve the objective of the original
problem (Puf), i.e., minimizing the total transmission power,
the system further solves

p̄(n) = argmin
p,z

1Tp

s.t. {p, z} ∈ Xi

f̂ (n)i,k (p)+SEk≤0, ∀k ∈K2 (19)

to determine the transmission power of each BS in current
time slot.
The problems (18) and (19) are convex and thus can be

optimally solved by existing convex optimization solvers
such as CVX [27]. Finally, the approximation center for the
next CSSCA iteration (the next time slot) is updated accord-
ing to

p(n+1) = p(n) + β(n+1)
(
p̄(n) − p(n)

)
, (20)

where the step size β(n) ∈ (0, 1] is a sequence to be properly
chosen. The term p̄(n) − p(n) is the updating direction of
transmission power p, which can be seen as the downward
direction in the general descent method.
Now, the CSSCA based power control algorithm is

described in Algorithm 1. In this algorithm, the choice of the
length of a time window is very important. On the one hand,
a time window should be long enough so that NDSUs’ mean
data rate can converge to the target value. On the other hand,
a long timewindowwill reduce the system’s ability to support
user mobility. Therefore, T should be as short as possible
while ensuring the convergence of long-term average data
rate. Simulation results show that Algorithm 1 demonstrates
good scalability, so the length of a time window can be
determined by field test.
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Algorithm 1 CSSCA Based Power Control Algorithm
1: Input: τk , ∀k ∈ K2, {ρn}, and {βn}, the length of a time

windows T .
2: Initialized: n ← 0, estimate the channels ξ (0)i,k , f

(−1)
i,k ←

0, find an initial feasible point p(0).
3: repeat
4: Construct the surrogate function f̂ (n)i,k (p) according to

(16).
5: Solve problem (18) to get p̄(n) and u∗.
6: if u∗ ≤ 0 then
7: Solve problem (19) to get p̄(n).
8: end if
9: Update p(n+1) according to (20).
10: Estimate the channels ξ (n+1)i,k .
11: Set n← n+ 1.
12: until n ≥ T .

C. CONVERGENCE RESULTS
In this section, we describe the convergence of Algorithm 1.
The convergence of the CSSCA algorithm has been estab-
lished in the works in [18] and [28]. This subsection is
to ensure the completeness, state the properties of the step
sizes, and check whether the surrogate functions in this paper
satisfy the convergence condition or not.

First of all, we make the following assumptions on the
problem (Puf) and the step sizes.
Assumption 1 (Feasibility of the original problem): Letp∗F

be any stationary point of the following feasibility problem:

min
p,u

u

s.t. p ∈ Xi

fi,k (p)+ SEk ≤ u, ∀k ∈ K2. (21)

We assume that fi,k
(
p∗F
)
≤ 0,∀k ∈ K2.

This assumption ensures that problem (Puf) is feasible. It
should be mentioned that the system can check the problem’s
feasibility by solving the corresponding feasibility prob-
lem [29]. If the problem is infeasible for multiple consecutive
time slots, the problem can be seen as infeasible. In this case,
the system can update the resource allocation to start a new
round of PC. On the other hand, if the problem is feasible for
multiple consecutive time slots, the problem can be seen as
feasible.
Assumption 2 (Properties of the step sizes): 1) ρ(n) → 0,∑
n ρ

(n)
= ∞,

∑
n
(
ρ(n)

)2
<∞,

2) β(n)→ 0,
∑

n β
(n)
= ∞,

∑
n
(
β(n)

)2
<∞,

3) limn→∞ β
(n)/ρ(n) = 0.

We can observe that the function ŵi,k
(
p,q; ξ i,k

)
in (17) has

the following properties described in Lemma 1.
Lemma 1: For all i ∈ I, k ∈ K2, we have
1) ŵi,k

(
p,p; ξ i,k

)
= wi,k

(
p; ξ i,k

)
and ∇pŵi,k

(
p,p; ξ i,k

)
=∇pwi,k

(
p; ξ i,k

)
, ∀p ∈ Xi, ∀ξ i,k ∈ �i,k . (�i,k is the sample

space of ξ i,k .)

2) ŵi,k
(
p,q; ξ i,k

)
is uniformly strongly convex in both p

and q.
3) For any ξ i,k ∈ �i,k and q ∈ Xi, the function

ŵi,k
(
p,q; ξ i,k

)
is Lipschitz continuous in both p and q.

4) The function ŵi,k
(
p,q; ξ i,k

)
, its derivative, and its sec-

ond order derivative w.r.t. p are uniformly bounded.
Proof: The proof is quite directly and omitted here. �

And now, we have the following lemma.
Lemma 2 (Properties of the SurrogateFunctions):Suppose

Assumption 2 is satisfied. For all i ∈ I, k ∈ K2 and
n = {0, 1, 2, . . .}, we have
1) f̂ (n)i,k (p) is uniformly strongly convex in p.
2) f̂ (n)i,k (p) is a Lipschitz continuous function w.r.t. p. More-

over, f̂ (n1)i,k (p) − f̂ (n2)i,k (p) ≤ B
∥∥p(n1) − p(n2)

∥∥
2 + e (n1, n2),

where limn1,n2→∞ e (n1, n2) = 0.
3) For any p ∈ Xi, the function f̂

(n)
i,k (p), its derivative, and

its second order derivative are uniformly bounded.
Proof: The proof is given in Appendix E. �

Lemma 3 (Asymptotic Consistency of the Surrogate
Function):

For all i ∈ I and k ∈ K2, we have

lim
n→∞

∣∣∣f̂ (n)i,k

(
p(n)

)
− fi,k

(
p(n)

)∣∣∣ = 0,

lim
n→∞

∥∥∥∇p f̂ (n)i,k

(
p(n)

)
−∇pfi,k

(
p(n)

)∥∥∥
2
= 0.

Proof: Lemma 3 follows immediately from Lemma 6 in
Appendix E. �

Under Lemma 3, Algorithm 1 will converge to a stationary
point almost surely ( [18], Theorem 1). A formal statement
about this convergence is given in the following theorem.
Theorem 1 (Convergence of Algorithm 1): For any subse-

quence
{
p(nj)

}∞
j=1 converging to a limit point p

∗, if the Slater
condition is satisfied at p∗, then p∗ is a stationary point of
problem (Puf) almost surely.

D. SIGNALLING OVERHEAD AND COMPUTATIONAL
COMPLEXITY
The centralized PC is considered in this paper. In each time
slot, every BS transmits its CSI to the control center, which
requires one transmission of a complex number. After current
power allocation scheme is determined, the control center
informs each BS of the transmission power, which needs to
transmit one real number. Therefore, the signalling overhead
between a BS and the control center is O (1) per time slot.
Since the length of a time window is fixed, the complexity

of the proposed algorithm depends on the complexity of solv-
ing the convex approximation in each time slot. The primal-
dual interior point algorithm is utilized to solve these convex
approximations. Under the perfect CSI and bounded CSI
error scenarios, the dimension of the optimization variable
is (B+ 1) × 1 and the number of constraints is B + 1. The
dimension of the coefficient matrix of the Newton equation is
(B+ 1)×(B+ 1). So the complexity of calculating Newton’s
direction is O

(
(3 (B+ 1))3

)
. In addition, the interior point

VOLUME 8, 2020 8905



Z. Li et al.: Stochastic Downlink Power Control for Various User Requirements

algorithm requiresO
(

1
log ε

)
iterations when the optimization

accuracy is ε. Therefore, the computation complexity of the
proposed algorithm under perfect CSI and bounded CSI error
scenarios isO

(
(3(B+1))3

log ε

)
per time slot. As for the stochastic

CSI error scenario, the dimension of the optimization vari-
able is (B+ 1+ K1) × 1 and the number of constraints is
B + 1 + BK1. Therefore, the computation complexity of the
proposed algorithm under stochastic CSI error scenario is
O
(
(3(B+1)+2 BK1)

3

log ε

)
per time slot.

V. SIMULATION STUDIES
In this section, we demonstrate the performance of our pro-
posed PC scheme through numerical simulations.

A. SYSTEM SETUP
The radius of the macro-cell is 1 km, the maximum transmis-
sion power of the MBS is 40 dBm, and that of the SBS is
20 dBm. The noise power at the user equipment is−95 dBm.
The bandwidth W = 20 kHz and Rmin

k = 20Kb/s, ∀k ∈ K2
are considered. The radius of the small-cell is 100 m. The
MBS is located at the center of the area and the SBSs are
evenly distributed on this area. The distance between SBSs
and the associated SUs is uniformly distributed in (0, 100]
m, and that between the MU and MBS is uniformly dis-
tributed in (0, 500] m. The path loss PLk,b is defined by
10 log10

(
PLk,b

)
= −34.5−38 log10

(
dk,b

)
[5], where dk,b is

the distance between BS b and user k . The small scale channel
gain `k,b ∼ CN (0, 1). Thus the channel gain between BS b
and user k is gk,b =

√
PLk,b`k,b. Throughout this simulation,

the parameter τk = 1 × 10−8. The step size of surrogate
function is ρ(1) = 1 and ρ(n) = 2

(2+n)0.6
, n ≥ 2. The update

step size of CSSCA approximation center is β(1) = 1 and
β(n) = 2

(2+n)0.61
, n ≥ 2. The simulation is conducted on

MATLAB 2018a. The convex approximation problem at each
CSSCA iteration is solved through the CVX toolbox [27].
Every data point in Fig. 4, 5, 8, 9, 11, 13, and 14 is the average
of 10 simulation experiments with 200 channel realizations
per experiment. The positions of the users are updated in each
experiment.

B. PERFECT CSI SCENARIO
The benchmark scheme in this scenario is the problem (Pbm).
The target SINR for NDSUs in the benchmark is fixed at
0k = 0 dB, ∀k ∈ K2.

Fig. 2 records a PC process of 150 channel realizations
under perfect CSI scenario. The first subfigure records the
real-time SINR of a DSU. We can see that the instantaneous
SINR of the DSU exactly reaches the target value in each time
slot. The second subfigure records the real-time data rate of
a NDSU, in which the mean data rate is the average of the
real-time data rate across the whole 150 channel realizations.
Although the instantaneous data rate of the NDSU oscillates
with the fluctuation of channel gain, its average data rate still
reaches the target value. In a word, both DSUs’ instantaneous
SINR and NDSUs’ mean data rate requirements are achieved.

FIGURE 2. A PC process of Algorithm 1 under perfect CSI scenario.
0k = 3 dB, B = 5, and the proportion of DSU is 40%.

FIGURE 3. The convergence process of the mean data rate of NDSUs
under perfect CSI scenario. The proportion of DSUs is 40%.

The convergence process of NDSUs’ mean data rate under
perfect CSI scenario is shown in Fig. 3. The ‘‘mean data
rate’’ at the i-th channel realization is the average of the data
rate from the first to the i-th channel realization, i.e.,

∑
i ri
i

where ri is the data rate at the i-th channel realization. In each
subfigure, NDSUs’ mean data rate reaches the preset target
value at almost the same number of iterations under different
number of small-cells. So, the scale of the network (i.e.,
number of cells) has little effect on the convergence rate of
the proposed algorithm under the same target SINR. In other
word, Algorithm 1 demonstrates good scalability. There are
two reasons for this: firstly, the path loss of the channel gain
is exponentially attenuated, and the path loss factor is greater
than 2, the interference suffered by the users mainly comes
from the base station around them; secondly, the small-scale
fading of the channel gain is ergodicity, the surrogate function
can quickly converge to the actual expectation function.

Fig. 4 shows the relationship between the feasible prob-
ability of DSUs’ instantaneous SINR constraints and the
number of SBSs. The feasible probability is the probability
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FIGURE 4. Feasible probability of DSUs’ instantaneous SINR constraints
versus the number of SBSs under perfect CSI scenario. The lines with
rhombus represent the feasible probability of the benchmark. The solid
lines represent 0k = 3 dB, the dash lines represent 0k = 5 dB, and the
dash dot lines represent 0k = 7 dB.

FIGURE 5. The average total transmission power versus the number of
SBSs under perfect CSI.

of the event that the instantaneous constraints of DSUs are
feasible. In each time slot, we solve the feasibility problem
minp {0 : {p, z} ∈ Xi} [29] to check whether the PC problem
is feasible or not. x% DSUs’’ means that the MU and x% of
SUs are DSUs and the rest of the users are NDSUs. On the
one hand, the feasible probability decreases with the increase
of the proportion of DSUs and the target SINR. On the other
hand, the feasible probability of Algorithm 1 is always higher
than that of the benchmark scheme. Finally, it’s important to
point out that NDSUs have lower priority than DSU users.
In each time slot, PC can only be performed when DSUs’
constraints are feasible, soNDSUs’ target mean data rate does
not affect the feasible probability.

The average total transmission power of the proposed
scheme is shown in Fig. 5. The total transmission power is the
sum of the transmission power of each BS. With the increase
of the proportion of DSUs and the target SINR, the total
transmission power of the system is constantly increas-
ing. However, the total transmission power is always lower
than the benchmark scheme. Combining the observations
in Fig. 4 and 5, we can conclude that the proposed algorithm

FIGURE 6. A PC process of Algorithm 1 under bounded CSI error scenario.
0k = 3dB, B = 5, and the proportion of DSU is 40%.

FIGURE 7. The convergence process of the mean data rate of NDSUs
under bounded CSI error scenario. The proportion of DSU is 40%.

can achieve much higher feasible probability for DSUs’
instantaneous constraints and has lower energy consumption
than the conventional scheme.

C. BOUNDED CSI ERROR SCENARIO
In this subsection, the complex channel gain gk,b =√
PLk,b( ˜̀k,b + ek,b), where ˜̀k,b and ek,b are the estimate

of small scale channel gain and the associated bounded CSI
error, respectively.

∣∣ek,b∣∣2 ≤ 1/100 is considered. The bench-
mark scheme in this scenario is

min
p

1Tp

s.t. 0 ≤ pb ≤ Pmax
b , ∀b ∈ B

hk,kpk

h̄Tk A−kp+ σ
2
k

≥ γk , ∀k ∈ K.

The target SINR for NDSUs in the benchmark is fixed at
0k = 0 dB, ∀k ∈ K2.
Fig. 6 records a PC process of 150 channel realizations

under bounded CSI error scenario. It can be observed that
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FIGURE 8. Feasible probability of DSUs’ instantaneous SINR constraints
versus the number of SBSs under bounded CSI error scenario. The lines
with rhombus represent the feasible probability of benchmark scheme.
The solid lines represent 0k = 3 dB, the dash lines represent 0k = 5 dB,
and the dash dot lines represent 0k = 7 dB.

FIGURE 9. The average total transmission power versus the number of
SBSs under bounded CSI error scenario.

DSUs’ real-time SINR in each time slot exceeds the target
value and NDSUs’ average data rate is a little higher than
the associated target value. This is because of the worst-case
optimization in (Pbe), which leads the conservative PC results.
The convergence process of NDSUs’ mean data rate under

bounded CSI error scenario is shown in Fig. 7. Since the
original SINR is replaced by its lower-bound in (Pbe), the con-
vergence value of the average data rate is a little higher than
the target value. We can also observe that the number of
SBSs has few affections on the convergence speed. Therefore,
the proposed scheme still holds good scalability when the
bounded CSI error presents.

Fig. 8 shows the relationship between the feasible prob-
ability of DSUs’ instantaneous SINR constraints and the
number of SBSs. The average total transmission power
is shown in Fig. 9. It can be seen that the proposed
scheme can achieve much higher feasible probability for
DSUs with less energy consumption under the same perfor-
mance constraints compare to the conventional PC scheme.
In other words, the proposed scheme has higher energy
efficiency.

FIGURE 10. A PC process of Algorithm 1 under stochastic CSI error
scenario. 0k = 3 dB, εk = 0.1, ∀k ∈ K1, and the proportion of DSU
is 40%.

FIGURE 11. DSUs’ SINR outage probability versus number of SBSs.
εk = 0.01, and the proportion of DSU is 60%.

D. STOCHASTIC CSI ERROR SCENARIO
The simulation results when the stochastic CSI error presents
is given in this subsection. The complex channel gain gk,b =√
PLk,b( ˆ̀k,b + ek,b), where ˆ̀k,b and ek,b ∼ CN

(
0, 1

400

)
are

the estimate of small scale channel gain and the associated
stochastic CSI error, respectively. The maximum tolerable
SINR outage probability εk = 0.01 is considered. The bench-
mark scheme in this scenario is

min
p,y

1Tp

s.t. 0 ≤ pb ≤ Pmax
b , ∀b ∈ B

CkBkp
C1/2
k BkĜkp

1
√
2δk

(
(Ck1+ĥk )TBkp−δkyk−σ 2

k

)
�SOC 0,

yk − c2k,b pb ≥ 0, ∀k ∈ K, ∀b ∈ B, b 6= k.

The target SINR and outage probability for NDSUs in
the benchmark are fixed at 0k = 0 dB, ∀k ∈ K2 and
εk = 0.1, ∀k ∈ K2, respectively.
Fig. 10 records a PC process of 150 channel realiza-

tions under stochastic CSI error. DSUs’ instantaneous SINR
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FIGURE 12. The convergence process of the mean data rate of NDSUs
under stochastic CSI error scenario. εk = 0.01, and the proportion of DSU
is 40%.

FIGURE 13. Feasible probability of DSUs’ instantaneous SINR constraints
versus the number of SBSs under stochastic CSI error scenario. εk = 0.01.
The lines with rhombus represent the feasible probability of benchmark
scheme. The solid lines represent 0k = 3 dB, the dash lines represent
0k = 5 dB, and the dash dot lines represent 0k = 7 dB.

constraints are violated in some time slots. This is because the
probability constraints C8 used in this scenario allow outage
to occur within a certain probability. The outage probability
under different system setups is shown in Fig. 11. The outage
probability increases with the number of small-cells and the
target SINR. We can also observe that the practical outage
probability is much less than the maximum tolerant value,
which means that the robustness of DSUs’ instantaneous
performance is far more guaranteed. This is because that the
constraint C10 in (Pse) gives a very conservative approxima-
tion of the original SINR outage probability constraint. From
the view of negative side, the proposed scheme introduces
unnecessary energy consumption and reduce the feasible
probability of the PC problem. To overcome this drawback,
a more accurate approximation of C8 needs to be found,
which is reserved for future study.

The convergence process of NDSUs’ mean data rate under
stochastic CSI error is recorded by Fig. 12. We can also
find that the proposed scheme under stochastic CSI error

FIGURE 14. The average total transmission power versus the number of
SBSs under stochastic CSI error scenario. εk = 0.01.

still demonstrates good scalability. The feasible probability
and average total transmission power are shown in Fig. 13
and 14, respectively, which shows that the proposed scheme
under stochastic CSI error has higher energy efficiency with
higher feasible probability for DSUs’ instantaneous SINR
constraints.

VI. CONCLUSION
With the consideration of various user requirements, this
paper has proposed a PC scheme that minimizes the total
transmission power based on stochastic optimization. We
have used instantaneous SINR constraints to ensure the suc-
cess of data transmission per time slot to meet DSUs’ low
latency requirements and mean data rate constraints to ensure
the NDSUs’ need for high average data rate. Under this
scheme, we have formulated the PC problems under perfect
CSI, bounded CSI error and stochastic CSI error scenarios
as a uniform problem. Because of NDSUs’ mean data rate
constraints, the uniform PC problem is a non-convex stochas-
tic constrained problem. The recently proposed CSSCA tech-
nique has been utilized to handle this problem. We have
also presented the signalling overhead and computation com-
plexity of the proposed algorithm. Extensive simulation has
shown that the proposed scheme can significantly improve
the feasible probability of DSUs’ instantaneous SINR con-
straints while maintaining high average data rate for NDSUs
and reducing energy consumption in the meantime. Addi-
tionally, the proposed scheme demonstrates good scalability,
which makes it applicable to large scale HCNs.

APPENDIXES
APPENDIX A
Let ek = C1/2

k vk with vk ∼ CN (0, I). We have the following
Lemma about the quadratic functions of Gaussian random
variables.
Lemma 4 [17]: Let G = vHQv + 2<

{
vHu

}
, where

Q ∈ HB+1 is a complex Hermitian matrix, u ∈ CB+1, and
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v ∼ CN (0, I). Then for any δ ≥ 0, we have

P
[
G≥Tr (Q)−

√
2δ
√
‖Q‖2F+2 ‖u‖

2
−δs+ (Q)

]
≥1−e−δ,

(22)

where s+ (Q) = max {λmax (−Q) , 0} in which λmax (−Q)
denotes the maximum eigenvalue of matrix −Q, and ‖·‖F
denotes the matrix Frobenius norm.

For user k ∈ K1, the probabilistic constraint C8 can be
rewritten as

P
[
vHk Qvk + 2<

{
vHk u

}
≥ σ 2

k − ĥTk Bkp
]
≤ 1− εk , (23)

whereQ , C1/2
k Bkdiag {p}C

1/2
k , u , C1/2

k BkĜkp. Lemma 4
implies that the inequality (23) holds true if the following
inequality is satified

Tr (Q)−
√
2δk
√
‖Q‖2F+2 ‖u‖

2
−δks+ (Q)≥σ 2

k −ĥ
T
k Bkp.

(24)

Equation (24) thus serves as a conservative formula-
tion for (23), where s+ (Q) = max {λmax (−Q) , 0} =
max

∀b∈B,b 6=k

{
c2k,b pb

}
. Introducing auxiliary variable yk ≥ 0

and letting yk ≥ max
∀b∈B,b 6=k

{
c2k,b pb

}
, (24) can be further

represented as

Tr (Q)−
√
2δk
√
‖Q‖2F+2 ‖u‖

2
−δkyk≥σ 2

k −ĥ
T
k Bkp

yk − c2k,bpb ≥ 0, ∀b ∈ B, b 6= k. (25)

Defining q , diag {Q} = CkBkp, we have

1TCkBkp−
√
2δk
√
‖q‖22+2 ‖u‖

2
−δkyk≥σ 2

k −ĥ
T
k Bkp

yk − c2k,bpb ≥ 0, ∀b ∈ B, b 6= k, (26)

which can be further expressed as q
u

1
√
2δk

(
(Ck1+ĥk )TBkp−δkyk−σ 2

k

)
�SOC 0

yk − c2k,bpb ≥ 0, ∀b ∈ B, b 6= k. (27)

Substituting u = C1/2
k BkĜkp and q = CkBkp into (25),

we can get the constraints C10.

APPENDIX B
Proposition 2 can be equivalent to

Eek
[
log (1+ γk)| ĝk

]
≥ log

(
1+

ĥk,kpk

(ĥk + Ck1)TA−kp+σ 2
k

)
,

(28)

which gives a lower bounded of Eek
[
log (1+ γk)| ĝk

]
.

To prove Proposition 2, we only need to prove (28).
First of all, we have the following Lemma about logarith-

mic functions.

Lemma 5 [23]: For ∀γ, γ̃ ≥ 0, the logarithmic function
has the following lower-bound

log (1+ γ ) ≥ α log (γ )+ β, (29)

where α = γ̃
1+γ̃ and β = log (1+ γ̃ )− γ̃

1+γ̃ log (γ̃ ).
It is worth noting that the right-hand side (RHS) and left-hand
side (LHS) of (29) are equal at γ = γ̃ , and the same holds
for their derivatives with respect to γ evaluated at γ = γ̃ .

The inner mathematical expectation in C9 has the follow-
ing lower-bound:

Eek
[
log (1+ γk)| ĝk

]
(a)
≥ Eek,k

log
1+

∣∣ĝk,k+ek,k ∣∣2 pk∑
b 6=k Eek,b

[∣∣ĝk,b+ek,b∣∣2] pb+σ 2
k


= Eek,k

log
1+

∣∣ĝk,k+ek,k ∣∣2 pk∑
b 6=k

(
ĥk,b + c2k,b

)
pb+σ 2

k


(b)
≥ Eek,k

αk log
 ∣∣ĝk,k+ek,k ∣∣2 pk∑

b 6=k

(
ĥk,b + c2k,b

)
pb+σ 2

k

+βk
(c)
= αkEek,k

log
 1

2c
2
k,kpk∑

b 6=k

(
ĥk,b + c2k,b

)
pb+σ 2

k

X

+βk ,
(30)

where αk =
γ̃k

1+γ̃k
and βk = log (1+ γ̃k) −

γ̃k
1+γ̃k

log (γ̃k)

with γ̃k =
ĥk,kpk∑

b 6=k

(
ĥk,b+c2k,b

)
pb+σ 2k

. The inequality (a) fol-

lows the well known Jensen’s inequality E
[
log

(
1+ 1

X

)]
≥

log
(
1+ 1

E[X ]

)
. The inequality (b) follows Lemma 5. In

equality (c), the random variable X =
∣∣∣ √2ck,k

ĝk,k +
√
2

ck,k
ek,k

∣∣∣2.
Therefore, X follows non-central chi-square distribution

with 2 degrees of freedom and non-central parameter 2ĥk,k
c2k,k

,

i.e., X ∼ χ2
(

2ĥk,k
c2k,k

, 2
)
. As pointed out in [30], the RV

Z ∼ χ2 (θ, 2) satisfies EZ
[
log (Z )

]
= log (θ) + E1 (θ),

where E1 (z) ,
∫
∞

z
e−t
t dt is the exponential integral. Thus,

we have

EX

log
 1

2c
2
k,kpk∑

b 6=k

(
ĥk,b + c2k,b

)
pb+σ 2

k

X


= log

 ĥk,kpk∑
b 6=k

(
ĥk,b+c2k,b

)
pb+σ 2

k

+E1 (2ĥk,k
c2k,k

)

(d)
& log

 ĥk,kpk∑
b 6=k

(
ĥk,b+c2k,b

)
pb+σ 2

k

. (31)

The equality (d) follows that limz→∞ E1 (z) = 0 and

E1

(
2ĥk,k
c2k,k

)
≈ 0 when the channel estimate is sufficiently
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accurate, i.e., ĥk,k
c2k,k

is large enough. Finally, we have

Eek
[
log (1+ γk)| ĝk

]
≥ αk log

 ĥk,kpk∑
b 6=k

(
ĥk,b+c2k,b

)
pb+σ 2

k

+ βk
= log

(
1+

ĥk,kpk

(ĥk + Ck1)TA−kp+ σ 2
k

)
, (32)

which gives (28).

APPENDIX C
The function wi,k

(
p; ξ i,k

)
can be expressed as a sum of a

convex function and a concave function:
wi,k

(
p; ξ i,k

)
=

^wi,k
(
p; ξ i,k

)
+

_wi,k
(
p; ξ i,k

)
,

where ^wi,k
(
p; ξ i,k

)
is the convex part and _wi,k

(
p; ξ i,k

)
is the

concave part.
Perfect CSI scenario, i.e., i = ne

^wne,k (p;hk) , − log
(
hTk p+ σ

2
k

)
,

_wne,k (p;hk) , log
(
hTk A−kp+ σ

2
k

)
.

Bounded CSI error scenario, i.e., i = be:
^wbe,k

(
p; h̃k

)
, − log

(
h̄Tk A−kp+ hk,kpk + σ

2
k

)
,

_wbe,k (p;hk) , log
(
h̄Tk A−kp+ σ

2
k

)
.

Stochastic CSI error scenario, i.e., i = se:
^wse,k (p; ĥk ) , − log ((ĥk + CkA−k1)Tp+ σ 2

k ),
_wse,k (p;hk ) , log ((ĥk + Ck1)TA−kp+ σ 2

k ).

APPENDIX D
This appendix gives the expressions of the terms in the surro-
gate function (16) for each i ∈ I according to the definitions
in Proposition 3.

Perfect CSI scenario, i.e., i = ne:

π
(n)
ne,k =

A−kh
(n)
k

h(n)Tk A−kp(n)+σ 2
k

,

f(n)ne,k =

(
1−ρ(n)

)
f(n−1)ne,k

+ ρ(n)

(
π
(n)
ne,k−

h(n)k
h(n)Tk p(n)+σ 2

k

)
,

^wne,k

(
p;h(n)k

)
= − log

(
h(n)Tk p+ σ 2

k

)
,

_w
(n)
ne,k = log

(
h(n)Tk A−kp+σ 2

k

)
.

Bounded CSI error scenario, i.e., i = be:

π
(n)
be,k =

A−kh
(n)
k

h
(n)T
k A−kp(n) + σ 2

k

,

f(n)be,k =

(
1− ρ(n)

)
f(n−1)be,k

+ρ(n)

π (n)
be,k−

A−kh
(n)
k +Akh

(n)
k

h
(n)T
k A−kp(n)+h

(n)
k,kp

(n)
k +σ

2
k

,

^wbe,k

(
p; h̃(n)k

)
=− log

(
h
(n)T
k A−kp+h

(n)
k,kpk+σ

2
k

)
,

_w
(n)
be,k = log

(
h
(n)T
k A−kp(n) + σ 2

k

)
,

where h
(n)
k ,

[
h̃(n)k,0 + c

2
k,0, h̃

(n)
k,1 + c

2
k,1, . . . , h̃

(n)
k,B + c

2
k,B

]T
,

h(n)k ,
[
h̃(n)k,0 − c

2
k,0, h̃

(n)
k,1 − c

2
k,1, . . . , h̃

(n)
k,B − c

2
k,B

]T
, and

Ak , diag{0, . . . , 0︸ ︷︷ ︸
0∼k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k+1∼B

}.

Stochastic CSI error scenario, i.e., i = se:

π
(n)
se,k =

A−k (ĥ
(n)
k + Ck1)

(ĥ(n)k + Ck1)TA−kp(n) + σ 2
k

,

f(n)se,k =

(
1− ρ(n)

)
f(n−1)se,k

+ρ(n)

(
π
(n)
se,k−

ĥ(n)k +CkA−k1

(ĥ(n)k +CkA−k1)Tp(n)+σ 2
k

)
,

^wse,k

(
p; ĥ(n)k

)
=−log

(
(ĥ(n)k +CkA−k1)Tp+σ 2

k

)
,

_w
(n)
se,k = log

(
(ĥ(n)k + Ck1)TA−kp(n) + σ 2

k

)
.

APPENDIX E
The proof of the properties of the surrogate function. It is
quite easy to verify the first and the third property, which is
omitted for the conciseness. Under Lemma 1, we have the
following lemma.
Lemma 6: For all i ∈ I, k ∈ K2, we have

lim
n→∞

∣∣∣f̂ (n)i,k

(
p(n)

)
− fi,k

(
p(n)

)∣∣∣ = 0,

lim
n→∞

∥∥∥∇p f̂ (n)i,k

(
p(n)

)
−∇pfi,k

(
p(n)

)∥∥∥
2
= 0,

lim
n→∞

∣∣∣f̂ (n)i,k (p)− w̄i,k
(
p,p(n)

)∣∣∣ = 0,

where w̄i,k
(
p,p(n)

)
, E

[
ŵi,k

(
p,p; ξ i,k

)]
.

Proof: Lemma 6 is a consequence of ( [31], Lemma 1).
�

It follows from Lemma 6 that

f̂ (n)i,k (p) = w̄i,k
(
p,p(n)

)
+ ei,k (n) , (33)

where limn→∞ ei,k (n)→ 0. From Lemma 1, w̄i,k
(
p,p(n)

)
+

ei,k (t) is Lipschitz continuous in p(n) and thus∣∣∣w̄i,k (p,p(n1))−w̄i,k (p,p(n2))∣∣∣≤B ∥∥∥p(n1)−p(n2)∥∥∥
2
, (34)

for some constant B > 0. Combining (33) and (34), we have

f̂ (n1)i,k (p)− f̂ (n2)i,k (p) ≤ B
∥∥∥p(n1) − p(n2)

∥∥∥
2
+ e (n1, n2)

with probability 1, where limn1,n2→∞ e (n1, n2) = 0, from
which the second property in Lemma 2 follows.
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