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ABSTRACT This paper investigates the oxygen starvation and parasitic loss prevention problem of the
adaptive oxygen excess ratio (OER) control system of nonlinear proton exchange membrane fuel cells
(PEMFCs). Asymmetric OER constraints are considered to avoid oxygen starvation and parasitic loss in
the air supply system of PEMFCs. An approximation-based adaptive control strategy is established to
ensure robust regulation of the OER while not violating the OER constraints, regardless of unknown system
parameters, nonlinearities, and the abrupt changes of the load current. A dynamic surface design technique
using an asymmetric barrier Lyapunov function is employed for a recursive control design. Compared with
existing control approaches for uncertain nonlinear air supply systems of PEMFCs, this paper first considers
the oxygen starvation and parasitic loss prevention problem for the regulation of optimal OER in the control
field of nonlinear PEMFCs. Using the Lyapunov stability theorem, the boundedness of all closed-loop signals
and the convergence of the output tracking error to the vicinity of zero are proved.

INDEX TERMS Adaptive control, oxygen excess ratio (OER) constraints, neural networks, proton exchange
membrane fuel cells (PEMFCs).

I. INTRODUCTION
Fuel cells are energy conversion devices that transform
chemical energy into electrical energy via reactions between
hydrogen extracted from gas and oxygen in the air. Fuel
cells can provide continuous electricity as long as hydro-
gen and oxygen are supplied, and their by-products are
heat and water. Thus, they are regarded as promising
energy devices [1], [2]. Among the various type of fuel
cells, proton exchange membrane fuel cells (PEMFCs) have
received a considerable amount of attention for both sta-
tionary and mobile applications owing to their character-
istics such as high energy efficiency, high power density,
low operating temperature, and low noise [3], [4]. The
structure of PEMFCs is divided into four subsystems: the
air supply, the hydrogen flow, the humidity, and the stack
temperature systems. Generally, the degree of the stack
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temperature and humidity cannot change rapidly. Thus,
the control problem of these two systems can be decou-
pled from the rest of the system [5], [6]. On the other hand,
compared with simple hydrogen flow systems controlled
by an electrical valve, the air supply system controlled by
an electrical motor and a compressor exhibits much slower
dynamics. Furthermore, the air supply system consumes
more electric energy in PEMFCs, diminishing its net out-
put power [7]. Therefore, many researchers have investi-
gated the control problems of the air supply system of
PEMFCs [8]–[10]. The control objective of the subsystem
is to regulate the oxygen excess ratio (OER), which rep-
resents the ratio of consumed amount of oxygen supplied
to oxygen reacted to the optimal value for obtaining the
maximum efficiency of PEMFC. A linear quadratic regula-
tor [8], a proportional-integral-derivative controller [9], and
a passivity-based robust proportional-integral controller [10]
were presented for controlling OER of linearized air supply
systems. A main issue in controlling OER is to consider
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the oxygen starvation phenomenon. Increasing the load cur-
rent accelerates the amount of used oxygen in the chemical
reactions, leading to oxygen starvation. This damages the
membrane of the stack and reduces the power response of
the fuel cell [11]–[13]. Therefore, there have been attempts
to avoid oxygen starvation while regulating OER. In [14],
the oxygen starvation protection problem was formulated as
a constraint-enforcement problem of OER and a robust non-
linear reference governor approach was presented. In [15],
a constrained model predictive control approach was pre-
sented to deal with OER constraints. Despite these success-
ful attempts, the load governor and the model predictive
controller were based on linearized air supply systems of
a certain operating point. However, because the operating
point can vary along operating conditions, some researchers
have been motivated to develop OER control methods for
nonlinear PEMFC systems. In [16], a feedback linearization
technique was used to control air supply systems without
uncertainties. In [13], a load governor methodology was
presented to deal with the oxygen starvation problem of
nonlinear PEMFC systems where system uncertainties were
not considered. To consider system uncertainties, an adaptive
state-observer-based controller was presented in [17] and
sliding mode controllers were developed in [18]–[20]. Nev-
ertheless, none of the control approaches [16]–[20] for non-
linear PEMFC systems considered unknown nonlinearities of
nonlinear air supply systems. To deal with unknown nonlin-
earities, an adaptive backstepping control approach was pro-
posed for uncertain nonlinear PEMFC systems where neural
networks were employed to estimate completely unknown
nonlinearities [21]. Recently, an estimation-based robust
control approach was presented for PEMFC systems with
unknown nonlinearities [22]. However, the previous control
results [16]–[22] for nonlinear air supply systems involve the
following restrictions.
R1) In [16]–[22], the constraint problem of OER to avoid

oxygen starvation and parasitic loss was not considered for
the OER control design of nonlinear air supply systems of
PEMFCs. To the best of our knowledge, the oxygen starvation
and parasitic loss prevention problem for OER control of
uncertain nonlinear air supply systems is still unresolved.
R2) In [21], a class of nonlinear air supply systems with

two nonlinearities was considered, and an adaptive neural-
network-based controller was designed. However, only one of
the nonlinearities was assumed to be unknown and was com-
pensated by a neural network. Furthermore, it was assumed
that some system parameters were exactly known, which may
be impractical.
R3) In [22], a lumped uncertainty including unknown non-

linear functions and disturbances of air supply systems was
estimated, and an estimation-based controller was developed.
However, the frequency range of the lumped uncertainty and
the system parameter denoting the control coefficient of the
input voltage were required for the estimation process.

Some adaptive constraint control approaches have been
studied for uncertain constrained nonlinear systems [23]–[26].

In [23], an error transformation approach using multiple
prescribed performance bounds was presented for switched
nonlinear systems with unknown nonlinearities. In [24],
an adaptive constraint control problem of uncertain active
suspension systems was considered. Adaptive constraint
control problems of uncertain time-delay nonlinear systems
with state constraints were investigated in [25] and [26].
In [27] and [28], adaptive fuzzy output-feedback control
approaches were studied for uncertain nonlinear systems
with state constraints. The visual servoing control problem
for a manipulator with visibility constraints was considered
in [29]. However, these control designs have not been yet
applied to the OER constraint problem of PEMFCs.

Based on these observations, the aim of this study is to
propose an adaptive OER control strategy to deal with oxygen
starvation and parasitic loss prevention problems of uncertain
nonlinear air supply systems of PEMFCs. The nonlinearity
denoting the air mass flow from a compressor into a supply
manifold is regarded as a completely unknown function and
all system parameters are assumed to be unknown. For the
controller design, we transform the oxygen starvation and the
parasitic loss prevention problem of OER into the OER con-
trol problem with asymmetric time-varying constraints. Con-
structing an asymmetric barrier Lyapunov function [30] and
using the dynamic surface design technique [31], an adaptive
control scheme is recursively designed where neural network
approximators and adaptive tuning laws are derived to com-
pensate for unknown system uncertainties and parameters,
respectively. From rigorous stability analysis, it is shown
that all the signals of the controlled closed-loop system are
semi-globally ultimately uniformly bounded and the control
error converges to an adjustable neighborhood of the origin
while the asymmetric OER constraints are not violated. Com-
pared with the existing OER control schemes [16]–[22] for
uncertain nonlinear air supply systems of PEMFCs, the main
contributions of this paper are as follows.

1) Different from the existing control results [16]–[22], this
paper considers the constraint problem of OER for avoiding
oxygen starvation and parasitic loss of uncertain nonlinear
air supply systems. The control problem based on the OER
constraints is formulated, and an adaptive control strategy is
established in the presence of unknown system nonlinearities
and parameters.

2) Compared with the previous adaptive neural-network-
based control approach [21] where only a nonlinear function
was assumed to be unknown, this paper assumes that all sys-
tem nonlinearities and parameters are unknown. In addition,
the frequency information of uncertainties used in [22] is not
required for the proposed control scheme.

The remainder of the paper is structured as follows.
In Section II-A, the air supply system of the PEMFC is
introduced and some assumptions and lemmas are pre-
sented. The background of the OER constraint is given,
and the control problem based on the OER constraint is
formulated in Section II-B. In Section II-C, some prelimi-
naries for radial basis function neural networks are stated.
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TABLE 1. Physical parameters of the fuel-cell system [6].

In Sections III-A and III-B, the proposed control design and
its stability analysis are presented, respectively. The effective-
ness of the proposed controller is validated by the simulation
in Section IV. Section V provides the conclusion.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. AIR SUPPLY SYSTEM OF NONLINEAR PEMFC
The air supply model of PEMFC systems having a 75-kW
fuel cell stack fed by a 14-kW air turbo compressor was
reported in [32]. Based on the fact that the molar mass of the
oxygen and nitrogen are nearly the same, this model can be
described using a third-order model as follows [5]:

ẋ1 = −l1x1 + l2x2 + c− l3δ,

ẋ2 = l4

[
1+ l5

(
x2
l6

)l7
− l5

]
× [φ(x2, x3)− l8(−x1 + x2)],

ẋ3 = −l9x3 −
l10
x3

[(
x2
l6

)l7
− 1

]
φ(x2, x3)+ l11u, (1)

where x1 represents the total air pressure inside the cathode
comprising the sum of the pressures of oxygen, nitrogen, and
vapor, x2 is the air pressure in the supply manifold, which
connected by the air compressor system and the cathode of
the PEMFC stack system, x3 is the rotational speed of the
compressor motor, δ is the time-varying load current consid-
ered to be a measurable disturbance to the system, and u is the

motor input voltage of the compressor. φ(x2, x3) represents
the air mass flow from the compressor to the supplymanifold,
which depends on compressor motor dynamics [2], [32].
Contrary to the existing literature [33] regarding air mass
flow φ(x2, x3) as a known nonlinear function, we assume that
φ(x2, x3) is a completely unknown nonlinear function. The
system parameters li, i = 1, . . . , 11 and c are given by

c =
a3a4psat
%

, l1 = a1 + a2 +
a3a4
%
, l2 = a1 + a2,

l3 =
RTstn
4VcaF

, l4 =
RTatm
Jcpηcp

, l5 =
1
ηcp
, l6 = patm,

l7 =
γ − 1
γ

, l8 = kca,in, l9 =
ηcmktkv
JcpRcm

, l10 =
CpTatm
Jcpηcp

,

l11 =
ηcmkt
JcpRcm

,

where

a1 =
RTstkca,in
MO2Vca

(
xO2,atm

1+ ωatm

)
,

a2 =
RTstkca,in
MN2Vca

(
1− xO2,atm

1+ ωatm

)
, a3 =

RTst
Vca

,

a4 =
CDAT√
RTst

γ
1
2

(
2

γ + 1

) γ+1
2(γ−1)

.

Here, the detailed definitions of the used parameters are given
in Table 1.
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Assumption 1: All system parameters li, i = 1, . . . , 11
and c, and the nonlinear function φ are unknown.
Assumption 2: The time-varying load current δ and its

derivatives δ̇ and δ̈ are bounded and δ and δ̇ are measurable.
Lemma 1: [34] For any constant κ > 0 and η ∈ R, the

inequality |η| ≤ η tanh(η/κ)+ 0.2785κ holds.
Lemma 2: [30] For any ka ∈ R and kb ∈ R, it holds that

for z ∈ R in the interval −ka < z < kb,

p(z) log
(

k2a
k2a − z2

)
+ (1− p(z)) log

(
k2b

k2b − z
2

)
≤ p(z)

z2

k2a − z2
+ (1− p(z))

z2

k2b − z
2

(2)

where p(•) is a switching constant defined as

p(•) =

1, • ≤ 0

0, • > 0.
(3)

B. CONTROL PROBLEM BASED ON OER CONSTRAINTS
The OER λO2 is the ratio of oxygen supplied to the stoichio-
metric oxygen rate defined as follows:

λO2 =
WO2,in

WO2,react
=
λ1(x2 − x1)

λ2δ
(4)

where λ1 = kca,inxO2,atm/(1 + ωatm) and λ2 = nMO2/(4F).
It is well known that the maximum efficiency of the OER
corresponds to λ∗O2

= 2 where λ∗O2
is an optimal value [35].

Thus, the OER control objective is regarded as the regulation
problem of λO2 to λ∗O2

= 2. Moreover, during transients,
the OER λO2 can change abruptly when the load current
changes abruptly. When more load current is drawn from the
stack, oxygen in the cathode will react instantaneously. Thus,
λO2 drops to a very low value. Then, oxygen starvation is
generated when the oxygen flow rate is less than the stoichio-
metric value (i.e., λO2 ≤ 1). This damages the fuel cell stack,
shortens the cell life limit, and reduces the power response of
the cell stock [11]. In the opposite situation, the reduced load
current generates the surplus of oxygen in the cathode that
leads to parasitic loss (i.e., λO2 increases quickly to a very
high value) [36]. To prevent these phenomena, the constraint
problem in the OER control design should be considered.

In this paper, the constrained OER is considered as

a ≤ λO2 ≤ b (5)

where 1 < a < 2 and 2 < b < ∞ are constants denoting
physical constraints of the OER.

Now, let us define the system output y as y = λ1(x2 − x1).
Then, the regulation problem of λO2 is transformed into the
tracking problem of y to the reference signal yr = 2λ2δ and y
is required to satisfy the following asymmetric time-varying
output constraint:

aλ2δ(t) < y(t) < bλ2δ(t). (6)

By defining the output y = λ1(x2 − x1), the constraint (6)
is induced from (4) and (5). This implies that the constraint

problem of OER λO2 can be changed to the output constraint
problem.
Problem 1: Consider the uncertain air supply system (1)

of the PEMFC having OER constraints. Our problem is to
design an adaptive control law u ensuring that the system
output y tracks the reference signal yr while the time-varying
constraint (5) is not violated.
Remark 1: Different from the existing OER control results

for nonlinear air supply systems [16]–[22], this paper firstly
considers the OER control problem in the presence of the
asymmetric OER constraints, as stated in Problem 1. Thus,
the existing results cannot provide a solution to Problem 1.

C. RADIAL BASIS FUNCTION NEURAL NETWORKS
Radial basis function neural networks (RBFNNs) are utilized
to approximate unknown nonlinear functions during the con-
trol design steps. Based on the universal approximation prop-
erty of the RBFNN [37], [38], given a continuous real-valued
function Z ($ ) : f$ 7→ R with a compact set f$ ⊂ Rq, if q
is sufficiently large, then there exists an ideal weight vector
θ∗ such that

Z ($ ) = θ∗>ξ ($ )+ ψ($ ), $ ∈ f$ (7)

where $ = [$1, . . . ,$q]> ∈ f$ denotes the input vector,
ψ represents the network reconstruction error, θ∗ ∈ Rr with
node number r > 1 is the optimal weighting vector defined as
θ∗ = argmin

θ̂
[sup$∈f$

|Z ($ )− θ̂>ξ ($ )|]; θ̂ is an estimate
of θ∗, and ξ ($ ) = [ξ1($ ), ξ2($ ), . . . , ξr ($ )]> ∈ Rr is a
radial basis function. Here, ξi($ ) are chosen as the following
Gaussian functions

ξi($ ) = e−‖$−ci‖
2/ι2 , i = 1, . . . , r (8)

where ci = [ci,1, . . . , ci,q]> ∈ Rq is the center of the recep-
tive field and ι ∈ R is the width of the Gaussian functions.
Assumption 3: [37] θ∗ and ψ are bounded as ‖θ∗‖ ≤ θ̄

and |ψ | ≤ ψ∗, respectively, where θ̄ > 0 and ψ∗ > 0 are
unknown constants.

III. MAIN RESULT
A. CONTROLLER DESIGN
The PEMFC air supply systems (1) can be rewritten as

ẋ1 = −l1x1 + l2x2 + c− l3δ,

ẋ2 = 81(x1, x2, x3),

ẋ3 = 82(x2, x3)+ l11u,

y = λ1(x2 − x1), (9)

where 81 = l4[1 + l5(x2/l6)l7 − l5][φ − l8(−x1 + x2)]
and 82 = −l9x3 − (l10/x3)[(x2/l6)l7 − 1]φ. Note that 81
and 82 are unknown nonlinear functions owing to unknown
nonlinearity φ and system parameters li, i = 1, . . . , 11.

This section focuses on an adaptive controller design for
the system (9) with the asymmetric time-varying output con-
straint (6). The adaptive controller is recursively designed via
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the dynamic surface design technique [31]. For the controller
design procedure, we define error surfaces as follows:

z1 = y− yr ,

z2 = x3 − x3r ,

ε = x3r − α, (10)

where z1 and z2 are control error surfaces, ε is a boundary
layer error, α is the virtual control law, and x3r is the filtered
virtual control law computed from the following first-order
low-pass filter

νẋ3r + x3r = α, x3r (0) = α(0) (11)

with the time constant ν > 0.
Step 1: Consider the first error surface z1. The time deriva-

tive of z1 along the first and second equations of (9) is given
by

ż1 = λ1(81 + l1x1 − l2x2 − c+ l3δ)− 2λ2δ̇

= 8̄1 + λ1l3δ

where 8̄1(x1, x2, x3, δ̇) = λ1(81 + l1x1 − l2x2 − c)− 2λ2δ̇.
From the mean value theorem [39], we represent the func-

tion 8̄1 as

8̄1(x1, x2, δ̇, x3) = 8̄1(x1, x2, δ̇, α∗)+ gχ (x3 − α∗) (12)

where gχ (x̄χ ) = ∂8̄1(x1, x2, δ̇, x3)/∂x3|x3=xχ with xχ =
χx3 + (1 − χ )α∗; x̄χ = [x1, x2, δ̇, xχ ]>, 0 < χ < 1 and
α∗(x1, x2, δ̇) is a smooth function.
Property 1: The function gχ is unknown, its sign is posi-

tive, and there exists an unknown positive constant gχ0 such
that 0 < gχ0 ≤ gχ .
Assumption 4: ġχ is bounded as |ġχ (·)| ≤ gχd , ∀x̄χ ∈

Dx ⊂ R4 where gχd > 0 is an unknown constant and Dx
is a compact region.
Remark 2: The partial derivative of 8̄1 with respect to x3

along (1) and (9) is given by

∂8̄1

∂x3
= λ1l4(1+ l5h)

∂φ

∂x3
(13)

where h(x2) = (x2/l6)l7−1. Because x2 > l6 , patm is always
satisfied for system (1) [32], we have h(x2) > 0. On the
other hand, the unknown air mass flow nonlinear function
φ(x2, x3) is generally adopted by fitting experimental results
in the following form [40]

φ = A1(1− e
−β(1− 9

9max
))x3 (14)

where 9(x2, x3) = A2h(x2)(1/x23 ), A1, A2, β, and 9max are
positive constants, and the inequality 0 < 9(x2, x3) < 9max
holds. Consequently, ∂8̄1/∂x3 becomes

∂8̄1

∂x3
= λ1l4(1+ l5h)

[
A1(1− e

−β(1− 9
9max

))

+ 2A1β
9

9max
e−β(1−

9
9max

)
]
. (15)

Because e−β(1−
9

9max
)
< 1 owing to 9(x2, x3) < 9max,

we can conclude that ∂8̄1/∂x3 > 0. Therefore, there exists
an unknown constant gχ0 such that 0 < gχ0 ≤ gχ .
Based on the implicit function theorem [41], there exists

α∗(x1, x2, δ̇) such that 8̄1(x1, x2, δ̇, α∗) = 0. From this fact
and (10), it follows that

ż1 = gχ (z2 + ε + α − α∗)+ λ1l3δ. (16)

Meanwhile, the time-varying output constraint (6) can be
transformed into the asymmetric time-varying constraint of
z1 as follows:

−ka(t) < z1(t) < kb(t) (17)

where ka(t) = (2 − a)λ2δ(t) and kb(t) = (b − 2)λ2δ(t) are
positive. Thus, the constraint problem of λO2 can be solved
by designing an adaptive control scheme satisfying (17).

Considering (17), an asymmetric barrier Lyapunov func-
tion (ABLF) is defined as

Vz1 =
p(z1)
2

log
k2a

k2a − z
2
1

+
1− p(z1)

2
log

k2b
k2b − z

2
1

=
p(z1)
2

log
1

1− ϕ2a
+

1− p(z1)
2

log
1

1− ϕ2b
(18)

where ϕa = z1/ka, ϕb = z1/kb, log denotes the natural loga-
rithm, and p(z1) is a switching constant defined in Lemma 2.
Note that Vz1 is zero when z1 is zero and goes to infinity if
z1(t) goes to the upper time-varying constraint kb(t) or to the
lower time-varying constraint−ka(t). Thus, (18) is employed
to design the adaptive controller satisfying the constraint (17).
For simplicity of presentation, we write p(z1) as p.
The time derivative of Vz1 is given by

V̇z1 =
pϕa

1− ϕ2a

(
ż1
ka
−
k̇az1
k2a

)
+

(1− p)ϕb
1− ϕ2b

(
ż1
kb
−
k̇bz1
k2b

)
= (pρa + (1− p)ρb)ż1 −

(
pρa

k̇a
ka
+ (1− p)ρb

k̇b
kb

)
z1

where ρa = ϕa/(ka(1 − ϕ2a )) and ρb = ϕb/(kb(1 − ϕ2b )).
From (3), it holds that p2 = p, (1 − p)2 = 1 − p, and
p(1− p) = 0. Using these properties, we have

pρa
k̇a
ka
+ (1− p)ρb

k̇b
kb

= (pρa + (1− p)ρb)
(
p
k̇a
ka
+ (1− p)

k̇b
kb

)
.

Thus, V̇z1 along (16) becomes

V̇z1 = (pρa + (1− p)ρb)
(
gχ (z2 + ε + α − α∗)+ λ1l3δ

− p
k̇az1
ka
− (1− p)

k̇bz1
kb

)
. (19)
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Let ρ = pρa + (1 − p)ρb. Then, using 0 < gχ0 ≤ gχ in
Property 1 and ka, kb > 0, it holds that

|ρλ1l3δ| ≤
gχ
2w1

ρ2λ21δ
2l∗3 +

w1

2gχ0
, (20)

− ρ

(
p
k̇a
ka
+ (1− p)

k̇b
kb

)
z1

≤
gχ
2w2

ρ2
(
p
k̇2a
k2a
+ (1− p)

k̇2b
k2b

)
z21 +

w2

2gχ0
, (21)

where the properties p(1 − p) = 0, p2 = p, and (1 − p)2 =
1− p are used, l∗3 = l23 , and w1 and w2 are positive constants.
Applying (20) and (21) into (19) and using k̇2a/k

2
a = k̇2b/k

2
b =

δ̇2/δ2, we have

V̇z1 ≤ ρgχ

(
z2 + ε + α + Z1 +

ρ

2w1
λ21δ

2l∗3

)
+

w1

2gχ0
+

w2

2gχ0
(22)

where Z1(x1, x2, δ, δ̇) = −α∗ + (ρ/(2w2))(δ̇2/δ2)z21. Adding
and subtracting ρgχ (gχd /(2g

2
χ0
))z1 into (22) yield

V̇z1 ≤ ρgχ

(
z2 + ε + α + Z̄1 +

ρ

2w1
λ21δ

2l∗3

)
− gχ

gχd
2g2χ0

ρz1 +
w1

2gχ0
+

w2

2gχ0
(23)

where Z̄1($1) = Z1 + (gχd /(2g
2
χ0
))z1; $1 = [x1, x2, δ, δ̇]>.

Using (7), the unknown continuous function Z̄1 is approxi-
mated by an RBFNN as follows: Z̄1($1) = θ∗>1 ξ1+ψ1 where
θ∗1 ∈ Rr1 is an optimal weight vector satisfying ‖θ∗1 ‖ ≤ θ̄1
with a constant θ̄1, ξ1 ∈ Rr1 is a radial basis function vector,
ψ1 ∈ R is a reconstruction error satisfying |ψ1| ≤ ψ

∗

1 with a
constant ψ∗1 , and r1 is a node number for the RBFNN. Then,
(23) becomes

V̇z1 ≤ ρgχ

(
z2 + ε + α + θ∗>1 ξ1 + ψ1 +

ρ

2w1
λ21δ

2l∗3

)
−gχ

gχd
2g2χ0

ρz1 +
w1

2gχ0
+

w2

2gχ0
. (24)

From Lemma 1, it holds that

ρgχψ1 ≤ gχ |ρ|ψ∗1

≤ gχρ tanh
(
ρ

κ1

)
ψ∗1 + gχ0.2785κ1ψ

∗

1 (25)

where κ1 > 0 is a constant.
Now, a Lyapunov function candidate V1 is chosen as

V1 =
1
gχ
Vz1 +

1
2

(
θ̃>1 γ

−1
1 θ̃1 + γ

−1
2 ψ̃2

1 + γ
−1
3 l̃23

)
where γ1 is a positive definite matrix, γ2 and γ3 are positive
parameters, θ̃1 = θ∗1 − θ̂1, ψ̃1 = ψ

∗

1 − ψ̂1, and l̃3 = l∗3 − l̂3;
θ̂1, ψ̂1, and l̂3 are estimates of θ∗1 , ψ

∗

1 , and l
∗

3 , respectively.

Then, the time derivative of V1 along (24) and (25) is given
by

V̇1 ≤ ρ
(
z2 + ε + α + θ∗>1 ξ1 + tanh

(
ρ

κ1

)
ψ∗1

+
ρ

2w1
λ21δ

2l∗3

)
−
ġχ
g2χ
Vz1 −

gχd
2g2χ0

ρz1

− θ̃>1 γ
−1
1
˙̂
θ1 − γ

−1
2 ψ̃1

˙̂
ψ1 − γ

−1
3 l̃3
˙̂l3 + C1 (26)

where C1 = (w1 + w2)/(2g2χ0 )+ 0.2785κ1ψ∗1 .
The virtual control law α and adaptation laws for θ̂1, ψ̂1,

and l̂3 are chosen as

α = −ζ1z1 −
1

2w0
ρ − θ̂>1 ξ1 − tanh

(
ρ

κ1

)
ψ̂1

−
ρ

2w1
λ21δ

2 l̂3, (27)

˙̂
θ1 = γ1(ρξ1 − σ1θ̂1), (28)

˙̂
ψ1 = γ2

(
ρ tanh

(
ρ

κ1

)
− σ2ψ̂1

)
, (29)

˙̂l3 = γ3

(
ρ2

2w1
λ21δ

2
− σ3 l̂3

)
, (30)

where ζ1 > 0 is a control gain, w0 > 0 is a design
parameter, and σ1, σ2, σ3 > 0 are design parameters for
σ -modification [42]. Note that the computational complexity
of α is mainly influenced by the structural complexity of
the employed neural network θ̂>1 ξ1. Therefore, we can adjust
the complexity of α by adjusting the number of nodes r1
of the neural network.

Substituting (27)–(30) into (26) and using Property 1 and
Assumption 4 yields

V̇1 ≤ −ζ1ρz1 −
1

2w0
ρ2 + ρ(z2 + ε)+

gχd
g2χ0

Vz1 −
gχd
2g2χ0

ρz1

+ σ1θ̃
>

1 θ̂1 + σ2ψ̃1ψ̂1 + σ3 l̃3 l̂3 + C1.

From Lemma 2, it holds that

Vz1 ≤
1
2

(
p

ϕ2a

1− ϕ2a
+ (1− p)

ϕ2b

1− ϕ2b

)
=

1
2
ρz1.

Based on this fact and the inequality |ρε| ≤ (1/(2w0))ρ2 +
(w0/2)ε2, we have

V̇1 ≤ −ζ1ρz1 + ρz2 +
w0

2
ε2 + σ1θ̃

>

1 θ̂1

+σ2ψ̃1ψ̂1 + σ3 l̃3 l̂3 + C1. (31)

Step 2: Consider ẋ3 = 82(x2, x3) + l11u. Then, the time
derivative of a Lyapunov function Vz2 = (1/2)z2 is given by

V̇z2 = l11z2(u+ Z2 − l∗11ẋ3r ) (32)

where l∗11 = 1/l11 and Z2($2) = l∗1182; $2 = [x2, x3]>. An
RBFNN is employed to approximate Z2 as Z2 = θ∗>2 ξ2+ψ2
where θ∗2 ∈ Rr2 is an optimal weight vector satisfying ‖θ∗2 ‖ ≤
θ̄2 with a constant θ̄2, ξ2 ∈ Rr2 is a radial basis function
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vector, ψ2 ∈ R is a reconstruction error satisfying |ψ2| ≤ ψ
∗

2
with a constant ψ∗2 , and r2 is a node number for the RBFNN.

A Lyapunov function candidate V2 is chosen as

V2 = l∗11Vz2 +
1
2

(
θ̃>2 γ

−1
4 θ̃2 + γ

−1
5 ψ̃2 + γ

−1
6 l̃211

)
(33)

where γ4 is a positive definite matrix, γ5 and γ6 are positive
parameters, θ̃2 = θ∗2 − θ̂2, ψ̃2 = ψ

∗

2 − ψ̂2, and l̃11 = l∗11− l̂11;
θ̂2, ψ̂2, and l̂11 are estimates of θ∗2 , ψ

∗

2 , and l
∗

11, respectively.
By substituting Z2 = θ∗>2 ξ2 + ψ2 into (32) and using the
inequality

l11z2ψ2 ≤ l11z2 tanh
(
z2
κ2

)
ψ∗2 + l110.2785κ2ψ

∗

2 (34)

with a constant κ2 > 0, the time derivative of V2 is obtained
as

V̇2 = z2

(
u+ θ∗>2 ξ2 + tanh

(
z2
κ2

)
ψ∗2 − l

∗

11ẋ3r

)
+ C2

−θ̃>2 γ
−1
4
˙̂
θ2 − γ

−1
5 ψ̃2

˙̂
ψ2 − γ

−1
6 l̃11

˙̂l11 (35)

where C2 = 0.2785κ2ψ∗2 .
Now, we propose an actual control law u with adaptation

laws for θ̂2, ψ̂2, l̂11, and ψ̂2 as follows:

u = −ζ2z2 − θ̂>2 ξ2 − tanh
(
z2
κ2

)
ψ̂2 + l̂11ẋ3r − ρ, (36)

˙̂
θ2 = γ4(z2ξ2 − σ4θ̂2), (37)

˙̂
ψ2 = γ5

(
z2 tanh

(
z2
κ2

)
− σ5ψ̂2

)
, (38)

˙̂l11 = γ6(−z2ẋ3r − σ6 l̂11), (39)

where ζ2 > 0 is a design parameter, and σ4 > 0, σ5 > 0 and
σ6 > 0 are design parameters for σ -modification [42].
Invoking (36)–(39) into (35), we get

V̇2 ≤ −ζ2z22 − z2ρ + σ4θ̃
>

2 θ̂2 + σ5ψ̃2ψ̂2

+σ6 l̃11 l̂11 + C2. (40)

Remark 3: In the previous OER control results for uncer-
tain nonlinear PEMFC air supply systems [17]–[22], adaptive
or robust controllers were developed to deal with system
uncertainties. However, these control schemes cannot pre-
vent the problems of oxygen starvation and parasitic loss
caused by the abrupt changes of the load current because
constraints on the operating range of OER were not consid-
ered in [17]–[22]. On the contrary, we propose an adaptive
control scheme that considers the asymmetric constraints on
OER of uncertain nonlinear air supply systems (5). Based
on the proposed control scheme consisting of (27)–(30) and
(36)–(39), the regulation of OER can be achieved without
violating the OER constraints and the oxygen starvation and
parasitic loss problems are overcome. In addition, in com-
parison with the existing OER control schemes [17]–[22],
the proposed control scheme can be applied to more general
PEMFC air supply systems because all system parameters are
unknown, as stated in Assumption 1.

Remark 4: For Assumptions 1–4, it is pointed out that
(i) Assumption 1 is reasonable because the system param-

eters li, i = 1, . . . , 11 and c cannot be exactly known in
practical engineering systems and the air mass flow φ is
generally adopted by fitting experimental results [40]. Thus,
li, c, and φ are assumed to be unknown.
(ii) As reported in [21] and [32], the load current δ is

measurable for the regulation problem of OER, and δ and its
derivatives are bounded signals because of the physical mean-
ing of δ. Thus, Assumption 2 is a reasonable assumption.

(iii) Owing to the function approximation property of
RBFNN [37], [38], the optimal weights and reconstruction
error of RBFNN are bounded. In this paper, their bounds are
assumed to be unknown. Thus, Assumption 3 is a general
assumption in the neural network control field.

(iv) Assumption 4 means that the time derivative of gχ
is bounded in the compact set Dx ⊂ R4. Here, gχ is
well-defined function, as discussed in Remark 2, and is dif-
ferentiable because of x2 > l6 and x3 > 0. Therefore,
Assumption 4 is reasonable.

B. STABILITY ANALYSIS
The stability of the closed-loop system is analyzed in this
section. The dynamics of the boundary layer error is given
by

ε̇ = −
ε

ν
+ B(z1, z2, ε, θ̂1, ψ̂1, l̂3, δ̄) (41)

where δ̄ = [δ, δ̇, δ̈]> and

B = ζ1ż1 +
ρ̇

2w0
+
˙̂
θ>1 ξ1 + θ̂

>

1 ξ̇1 + sech2
(
ρ

κ1

)
ρ̇

κ1
ψ̂1

+ tanh
(
ρ

κ1

)
ψ̇1 +

ρ̇

2w1
λ21δ

2 l̂3 +
ρ

w1
λ21δδ̇l̂3

+
ρ

2w1
λ21δ

2 ˙̂l3.

Consider the total Lyapunov function candidate V

V = V1 + V2 +
1
2
ε2. (42)

Theorem 1: Consider the PEMFC air supply system (1)
with the asymmetric OER constraint (5) controlled by the
proposed adaptive controller consisting of (27)–(30) and
(36)–(39) under Assumptions 1–4. For any initial conditions
satisfying V (0) ≤ µ with a constant µ > 0 and aλ2δ(0) <
y(0) < bλ2δ(0), all the signals in the closed-loop system
are uniformly bounded and the tracking error z1 converges
to an adjustable neighborhood of the origin while the OER
constraints are guaranteed.
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Proof: From (31), (40), and (41), the time derivative of
V is represented by

V̇ ≤ −ζ1ρz1 − ζ2z22 −
1
ν
ε2 +

w0

2
ε2 + εB−

σ1

2
‖θ̃1‖

2

−
σ2

2
ψ̃2
1 −

σ3

2
l̃23 −

σ4

2
‖θ̃2‖

2
−
σ5

2
ψ̃2
2 −

σ6

2
l̃211 +

σ1

2
θ̄21

+
σ2

2
(ψ∗1 )

2
+
σ3

2
(l∗3 )

2
+
σ4

2
θ̄22 +

σ5

2
(ψ∗2 )

2
+
σ6

2
(l∗11)

2

+ C1 + C2. (43)

Consider the set 4 := {(1/gχ )(p log(k2a/(k
2
a − z21)) +

(1− p) log(k2b/(k
2
b − z

2
1)))+ θ̃

>

1 γ
−1
1 θ̃1 + γ

−1
2 ψ̃2

1 + γ
−1
3 l̃23 +

θ̃>2 γ
−1
4 θ̃2 + γ−15 ψ̃2

1 + γ−16 l̃211 + ε2 ≤ 2µ} and D =

{(δ, δ̇, δ̈)|δ2+ δ̇2+ δ̈2 ≤ µr }with a constantµr > 0. Because
4 × D is compact in R6+r1+r2+3, there exists a constant
M > 0 such that |B| ≤ M on 4× D.
Using the following inequality (B2/(2 w3))ε2+w3/2 with

a positive constant w3 and the property −ζ1ρz1 ≤ −2ζ1Vz1
from Lemma 2 and choosing 1/ν = w0/2 + M2/(2w3) + ν̄
with a constant ν̄ > 0, (43) becomes

V̇ ≤ −2ζ1Vz1 − ζ2z
2
2 − ν̄ε

2
−
σ1

2
‖θ̃1‖

2
−
σ2

2
ψ̃2
1

−
σ3

2
l̃23 −

σ4

2
‖θ̃2‖

2
−
σ5

2
ψ̃2
2 −

σ6

2
l̃211

−

(
1−

B2

M2

)
M2ε2

2w3
+ C . (44)

On V = µ, (44) becomes V̇ ≤ −LV + C
where L = min{2ζ1gχ0 , 2ζ2, 2ν̄, σ1/(λmax(γ

−1
1 )), σ2γ2,

σ3γ3, σ4/(λmax(γ
−1
4 )), σ5γ5, σ6γ6}. When L > C/µ, V̇ < 0

on V = µ. Thus, it holds that V ≤ µ is an invariant set
which implies that Vz1 is bounded. From the boundedness of
Vz1 , it is induced that |ϕa| < 1 for z1 ≤ 0 and |ϕb| < 1 for
z1 > 0. Owing to ϕa = z1/ka and ϕb = z1/kb, the inequality
−ka(t) < z1(t) < kb(t) holds for all t ≥ 0, which leads to a <
λO2 (t) < b, ∀t ≥ 0. Thus, all signals of the closed-loop sys-
tem are semi-globally uniformly ultimately bounded while
ensuring the OER constraints. From the boundedness of all
signals and Assumption 2, there exists a constant ḡχ such that
|gχ | ≤ ḡχ . In addition, integrating V̇ ≤ −LV+C with respect
to times yields 1

ḡχ
Vz1 ≤ V (t) ≤ e

−LtV (0)+ (C/L)(1−e−Lt ).
After some manipulations, it follows that

|ϕj| ≤

√
1− e−2ḡχ [V (0)e−Lt+(C/L)(1−e−Lt )]

where j = a, b. Thus, |ϕj| ≤
√
1− e−(2ḡχ (C/L)) as t → ∞.

From ϕa = z1/ka and ϕb = z1/kb, the tracking error z1
can be arbitrarily small by adjusting design parameters (see
Remark 5).
Remark 5: The design parameters of the proposed adap-

tive controller can be chosen via the proof of Theorem 1.
The guidelines for selecting design parameters are provided
as follows:
1) Increasing ζ1 and ζ2 and decreasing ν help to increase L,
which subsequently reduces the bound

√
1− e−2ḡχ (C/L) of

ψj where j = a, b. Thus, the tracking error z1 can be reduced.

FIGURE 1. Load current for case 1.

2) Decreasing wi, κ1, and κ2 helps to reduce C which leads to
reduce the bound

√
1− e−2ḡχ (C/L) ofψj. This helps to reduce

the tracking error z1.
3) Fixing σi as small constants and increasing γi help to
increase the tuning speed of the adaptive parameters θ1, θ2,
ψ1, ψ2, l3, and l11.

IV. SIMULATION RESULTS
To illustrate the effectiveness of the proposed control scheme,
we consider the PEMFC air supply system (1) whose system
parameters are given in Table 1. In addition, compared with
an adaptive controller designed without using ABLF, the con-
straint satisfaction of the proposed ABLF-based controller is
shown where the adaptive controller designed without using
ABLF is designed by redefining Vz1 in (18) as Vz1 = z21. We
simulate two cases according to the type of the load current.

Case 1: In this case, we consider the time-varying load
current δ(t) = 150 + 50 sin(0.5t), as displayed in Fig. 1.
The parameters for the asymmetric constraints on the output
y = λ1(x2 − x1) with λ1 = 7.11 × 10−7 are set to a = 1.8
and b = 2.3. The reference signal is yr (t) = 2λ2δ(t) with
λ2 = 3.16 × 10−5. The initial values of the state variables
are chosen as x1(0) = 1.6 × 105, x2(0) = 1.75 × 105, and
x3(0) = 6.7 × 103. Then, we choose the design parameters
of the proposed control scheme as ζ1 = 1, ζ2 = 1, ν = 0.01,
w0 = w1 = 5, κ1 = κ2 = 1, γ1 = diag[1], γ2 = 0.1,
γ3 = 105, γ4 = diag[0.01], γ5 = 0.05, γ6 = 10−7,
σ1 = 10−3, σ2 = 2, σ3 = 3.5 × 10−10, σ4 = 1, σ5 = 0.1,
and σ6 = 1.

The output tracking results of the proposed ABLF-based
controller and those of the controller designed without using
ABLF are compared in Fig. 2. Fig. 3 shows the OER reg-
ulation results of the proposed controller and the controller
designed without using ABLF. While the output response of
the proposed ABLF-based control system remains within the
asymmetric constraints (see Fig. 2(a)), the output response
of the control system designed without using ABLF vio-
lates the asymmetric constraints in the transient response
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FIGURE 2. Comparison of the tracking results for case 1 (a) y , yr , and
constraints of the proposed control system (b) y , yr , and constraints of
the control system designed without using ABLF.

(see Fig. 2(b)). These results are also observed in Fig. 3 where
the OER response of the control system designed without
using ABLF gets out of the lower bound b in the transient
response (see Fig. 3(b)). This means that the control system
designed without using ABLF may experience oxygen star-
vation. Thus, both the OER regulation and the prevention of
oxygen starvation and parasitic loss can be achieved with
the proposed control approach. Fig. 4 displays the control
input voltage u of the proposed control scheme. It is shown
that the control input (i.e, motor compressor voltage) con-
sistently changes because of the time-varying load current δ.
Fig. 5 shows the RBFNN outputs and the adaptive parameters
of the proposed control scheme where the RBFNN outputs
θ̂>1 ξ1 and θ̂

>

2 ξ2 compensate for the nonlinearities Z̄1 and Z2,
respectively.

Case 2:We set to a = 1.6 and b = 2.5 for the constraints on
y and the load current δ is defined as constant values between
200A to 310A, as illustrated in Fig. 6. The initial values of

FIGURE 3. Comparison of the OER regulation for Case 1 (a) λO2
, λ∗O2

, and
constraints of the proposed control system (b) λO2

, λ∗O2
, and constraints

of the control system designed without using ABLF.

FIGURE 4. Control input voltage of the proposed control system for
case 1.

the state variables are chosen as x1(0) = 1.6 × 105, x2(0) =
1.81 × 105, and x3(0) = 6.7 × 103. The design parameters
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FIGURE 5. RBFNN outputs and adaptive parameters of the proposed
control system for Case 1 (a) θ̂>1 ξ1 and θ̂>2 ξ2 (b) ψ̂1 and ψ̂2 (c) l̂3 and l̂11.

are chosen as ζ1 = 2, ζ2 = 2, ν = 0.01, w0 = w1 = 1, κ1 =
κ2 = 1, γ1 = diag[15], γ2 = 0.5, γ3 = 104, γ4 = diag[1],

FIGURE 6. Load current for case 2.

FIGURE 7. Comparison of the tracking results for Case 2 (a) y , yr , and
constraints of the proposed control system (b) y , yr , and constraints of
the control system designed without using ABLF.

γ5 = 0.1, γ6 = 10−7, σi = 10−3, σ2 = 1, σ3 = 4 × 10−8,
and σ5 = 0.2 where i = 1, 4, 6.
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FIGURE 8. Comparison of the OER regulation for case 2 (a) λO2
, λ∗O2

, and
constraints of the proposed control system (b) λO2

, λ∗O2
, and constraints

of the control system designed without using ABLF.

FIGURE 9. Control input voltage of the proposed control system for
case 2.

In Figs. 7 and 8, the output tracking and OER regu-
lation results of the proposed ABLF-based controller and

FIGURE 10. RBFNN outputs and adaptive parameters of the proposed
control system for Case 2 (a) θ̂>1 ξ1 and θ̂>2 ξ2 (b) ψ̂1 and ψ̂2 (c) l̂3 and l̂11.

the controller designed without using ABLF are compared.
Figs. 7(b) and 8(b) show that the controller designed without

VOLUME 8, 2020 5547



B. M. Kim et al.: Adaptive Control of PEMFC Air Supply Systems With Asymmetric Oxygen Excess Ratio Constraints

using ABLF cannot ensure OER constraint satisfaction while
regulating λO2 to λ

∗
O2
. However, the OER response λO2 of the

proposed control system is confined within the asymmetric
constraints although the load current δ changes abruptly and
the air supply system (1) includes unknown system parame-
ters and nonlinearities. Fig. 9 shows the control input u of the
proposed control system where u varies as δ varies. Fig. 10
depicts the RBFNN outputs and the adaptive parameters.

V. CONCLUSION
This paper has presented an adaptive OER control strat-
egy to prevent oxygen starvation and parasitic loss
of uncertain nonlinear air supply systems of PEMFCs.
An approximation-based adaptive controller using ABLF
has been designed to ensure OER regulation within OER
constraints where neural network approximators and adap-
tation parameters were employed to compensate for system
uncertainties. The concerned design problem has been the
first trial in the OER control field of nonlinear air sup-
ply systems of PEMFCs. The stability and OER constraint
satisfaction of the resulting closed-loop system have been
analyzed via the Lyapunov stability theorem. The simulation
results have demonstrated the effectiveness of the proposed
control scheme against changes in the load current and system
uncertainties.
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