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ABSTRACT Partial differential equations (PDEs) on surfaces are ubiquitous in all the nature science. Many
traditional mathematical methods has been developed to solve surfaces PDEs. However, almost all of these
methods have obvious drawbacks and complicate in general problems. As the fast growth ofmachine learning
area, we show an algorithm by using the physics-informed neural networks (PINNs) to solve surface PDEs.
To deal with the surfaces, our algorithm only need a set of points and their corresponding normal, while the
traditional methods need a partition or a grid on the surface. This is a big advantage for real computation.
A variety of numerical experiments have been shown to verify our algorithm.

INDEX TERMS PINN, PDEs on surfaces, Laplace-Beltrami operator.

I. INTRODUCTION
Partial differential equations (PDEs) on manifold in Rd arise
in mathematical models for many nature phenomena. Image
processing applications include the mapping an image on
a given surface [1], the recovery of lost information on a
surface [2] and the segmentation and deciphering of images
on surfaces [3], [4]. It also widely used in biological and
medical science. For example, simulation of animal coats [5],
wound healing [6], brain wrapping [7], lipid interactions in
biomembranes [8], and fluids in lungs [9]. In computer vision,
this tool has been used in real time fluid visualization on
surfaces [10] and vector field visualization [11].

Thus, many mathematical methods have been developed
to deal with this problem. Way back in 1988, Dziuk [12] first
came up with the analysis of finite element method based on
surface triangulations. In [13], the authors avoid the surface
triangulation and remeshing by extending the surface PDEs
to a subset of Rd with a positive measure. However, this
operation makes the extended PDEs degenerate. A review
of finite element methods for surface PDEs can be found
in [14]. Recently, Petras et al. [15], [16], and Petras and
Ruuth et al. [19], [20] developed a systematic way to solve
surface PDEs by using RBF-FD combinedwith a grid particle
method. These methods reduce the computational workload
tremendously, but still need a grid in the neighbourhood
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around the surface. And, extension of the solution in this
neighbourhood has also been introduced as in [18].

Based on those drawbacks of traditional numerical meth-
ods, we cast our eyes on machine learning methods. With
the growth of computing power, machine learning becomes
the most popular topic in all the scientific area [19].
As Raissi, et al. [20] came up with physics-informed neural
networks (PINNs) at 2019, there are explosive applications
in mathematical and engineering area. In stochastic anal-
ysis and uncertainty quantification, Generative Adversarial
Networks (GANs) has been combined with PINNs to solve
PDEswith random inputs as shown in [21]. Stochastic inverse
problem also has been studied in [22]. Numerical methods for
fractional order PDEs has been studied in most recent work
[23], [24]. We hence believe PINNs has the ability to conquer
the difficulty of surface PDEs.

In this paper, we adopt the PINNs to solve the PDEs posed
on surfaces. The mathematical principle for this method is
the equivalence principle used in [15]. Then, we solve the
modified PDEs with a normal constrain, which is much easier
than the original surface PDEs. We apply our method to a
high dimensional case. It worth mention that, our method
do not need any partition or grid. The only information we
need about the surface is a set of points on it, as well as their
corresponding normal.

This paper is organized as follows. In section II, we briefly
introduce the mathematical preliminary of surface PDEs.
PINNs for traditional PDEs and our algorithm for surface
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PDEs have been shown in section III. Then, a variety of
numerical experiments has been shown to verify our algo-
rithm in section IV. We conclude this paper in section V.

II. PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES
In this section, we briefly introduce the elementary defini-
tions of PDEs on surfaces. For advance and detail of calculus
on surfaces and manifolds, and PDEs theory on them, we
recommend [14].

A. DIFFERENTIAL OPERATORS ON SURFACES
Let 0 be a smooth surface embedded in R3 with normal n,
and u : 0 7→ R be a function on 0. Denoted by u the smooth
extension of u : 0 7→ R to u : U 7→ R, where U is a
neighborhood of 0, such that u|0 = u. The ∇, ∇· and 1
denote ordinary gradient, divergence and Laplace operator in
R3. Now, we can define the gradient, divergence and Laplace
operator on 0 for u, which are essential for PDEs on surfaces.
Definition 1: Let u : 0 7→ R has continuous derivative

(of class C1), then the gradient on 0 is defined as:

∇0u = ∇u− 〈∇u,n〉n

where 〈·, ·〉 means the inner product in R3.
Definition 2: Let u : 0 7→ R has continuous derivative

(of class C1), and

∇0u = (D1u,D2u,D3u)

Then, the divergence on 0 is defined as:

∇0 · u = D1u+ D2u+ D3u

Definition 3: Let u : 0 7→ R has second order continuous
derivative (of class C2), then the Laplace operator on 0 is
defined as:

10u = ∇0 · ∇0u

The Laplace operator on surface is also known as Laplace-
Beltrami operator.

B. THE EQUIVALENCE PRINCIPLES
Instead of solving surface PDEs directly, we solve the ordi-
nary PDEs on the surfaces with a constrain. The idea of our
methods comes from the following lemma [15]:
Lemma 4: Let u be any function on Rn that is constant

along normal directions of 0. Then, at the surface, intrinsic
gradients are equivalent to standard gradients, say,

∇0u = ∇u

Let v be any vector field onRn that is tangent to0 and tangent
to all surfaces displaced by a fixed distance from 0. Then,
at the surface,

∇0 · v = ∇ · v

Therefore, by using this lemma, we may replace the surface
gradient ∇0u by ∇u with constrain 〈∇u,n〉 = 0. Then,
the Laplace-Beltrami operator 10u can be replaced by 1u

with constrain 〈∇u,n〉 = 0. This is because under the
constrain 〈∇u,n〉 = 0, ∇u is a vector fields tangent to 0.
Hence,

10u = ∇0 · ∇0u = ∇0 · ∇u = ∇ · ∇u = 1u

In the next subsection, we will elucidate our idea by using a
surface PDE as an example.

C. PDES ON SURFACES
Now, we can consider the PDEs on surfaces. For classical
PDEs defined on R2, R3 or their subdomains, we usually
consider the following well-known PDEs:

−1u = f (Poisson’s equation)

ut −1u = f (Heat equation)

utt −1u = f (Wave equation)

We now may generalized these equations on a general
surface 0:

−10u = f (Poisson’s equation)

ut −10u = f (Heat equation)

utt −10u = f (Wave equation)

In this paper, we only consider the time independent prob-
lems. Namely, the surfaces are static and equations without
time derivatives.

We now consider the following PDE on a closed 0:

10u+ u = f (1)

which is known as elliptic problem. Since 0 is closed, there
is no boundary condition imposed. The solution u is purely
derived by f . In time dependent problems, the solution can
also be driven by the surface 0. That is, even though f = 0,
we may get non-trivial solution [14]. Since compute 10u
directly will be complicate, we then, by using the idea comes
up with in the last subsection, solve the following equivalent
problem instead: {

1u+ u = f
〈∇u,n〉 = 0

(2)

By the lemma 4, (1) and (2) are equivalent. That is, they
share the exactly same solution. Notice that in the equivalent
problem (2), we erase all the surface differential operator by
using equivalence principle. Hence, only the computation of
ordinary differential operators1 and∇ are needed, which are
much easier. In the sections below, we will solve this problem
by using PINNs via a least square approach.

III. PINNS FOR PDES ON SURFACES
As shown in [20], [25], the PINNs can solve a wide class of
PDEs. In this section, we will recap the PINNs technology
for PDEs. And then, we will come up with our idea to solve
time independent PDEs’ problems on surfaces.
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A. PINNS FOR PDES
Let N [·] be a general differential operator defined on � ⊂
Rd , and 0b is a union of (inner or outer) boundaries
of �. Then, let us consider the following general PDEs
problem on �: {

N [u(x)] = f (x) in �
u(x) = ub(x) on 0b

(3)

where u(x) is the latent (hidden) solution of PDE, x =
(x1, x2, . . . , xd ) is the variable of u, and f and ub are the given
right hand side term and boundary condition, respectively.
Our target now is solving (3) by using PINNs.

As suggested in [20], [25], we use a fully connected neu-
ral network (NN) with Nl hidden layers. Each hidden layer
consist of Ne(l) neurons, where l is the index of hidden layer,
while input layer consists of d neurons x1, x2, . . . , xd , which
are the variables of solution u. And, the output layer consists
of one neuron u.

Hence, we established a NN with input x =

(x1, x2, . . . , xd ) and output u. Now, we are going to setup the
loss function so that we can train this NN. For the sake of
simplicity, let us denote the prediction of the NN by uh. Since
we want uh satisfies equation (3), the loss function has been
defined by the following mean square error (MSE):

MSE = MSEu +MSEb

=
1
Nu

Nu∑
i=1

|N [uh(x iu)]− f
i
u |
2

+
1
Nb

Nb∑
i=1

|uib − uh(x
i
b)|

2

Here {x iu, f
i
u} are training data for PDE restriction in (3),

and {x ib, u
i
b} are training data for boundary condition in (3).

Nu and Nb are the sizes of those training data, respectively.
The N [uh(x iu)] can be computed by automatic differentia-
tion technique [26]. In Tensorflow, this can be done by the
function tf.gradient. In the ideal case, say MSE = 0,
the uh satisfies the equation (3) exactly. Given these two
sets of training data, we may train our NN for u and then
get the prediction for each point in �. This solves our PDE
problem (3). We call this NN as PINN.

B. NETWORK STRUCTURE AND STABILITY OF PINNS
One question for solving PDEs by PINNs is: what is the best
network structure to solve a PDE? In [20], [25], the authors
tried different sample sizes and network structures, even add
a small noise on the data. It turns out, when the sample size,
number of hidden layers and number of neurons in each layer
are increasing in a reasonable range, the predictive accuracy
is almost increasing. Even though the data has been polluted
by a small noise, the PINNs can recover the solution of PDEs
with a satisfied accuracy.

Once a new algorithm for numerical PDEs is developed,
the natural questions from mathematician are: what is the

advantage of the new algorithm? Is this method stable? As we
all know, there are a plenty of numerical methods for solving
PDEs and PDEs on surfaces, such as, finite difference meth-
ods, finite element methods, spectral methods, etc. However,
all of these methods required a mesh or grid on the PDEs’
domain and surface, which is complicate or even impossible
for high dimensional problems. The PINNs, on the other
hand, can be generalized to high dimension by just change the
number of neurons for input layer. The meshless numerical
methods, such as radial basis function methods, has been
proved unstable for direct method [15].

Although there is no theoretical proof for the stability of
PINNs, we may explain it by the following way. As shown in
[20], the sin function is always be the best activation function
among the commonly used activation function. In this case,
our output of PINNs can be understood as a generalized
Fourier series approximation for solution. If we only have
one hidden layer (shallow NN), the PINNs is exactly the
sine series. And the training procedure is actually finding
the least square solution of the generalized Fourier approx-
imation. So, the stability and accuracy theory of least square
Fourier approximation may partly explain the the stability
and accuracy of PINNs, and this has been proved by lots of
experiments in [20], [25]. The stability and accuracy theory
of PINNs will be a significant future work. At this time,
we believe the PINNs give the reliable prediction of PDEs’
solution, and we verify it by the cross-validation as explained
below. Furthermore, by using PINNs, we can recover the
unknown coefficients with additional data. This inverse prob-
lem is always computational expensive. But PINNs is a stable
and easy solver for this inverse problem [20]. Therefore,
the PINNs is competitive among these numerical methods.

C. PINNS FOR PDES ON 3D SURFACES
In this subsection, we come up with our algorithm for PDEs
on 3D surfaces based on PINNs. In this work, we only con-
sider the time independent PDEs on static surfaces. Mostly,
these are elliptic PDEs. To illustrate our algorithm, let us
consider the following general PDEs on 3D surfaces:{

N0[u(x)] = f (x) on 0
u(x) = ub(x) on 0b

(4)

where N0 is a differential operator on 0, and all the other
notations keep the same meaning. In this case, the domain of
surface PDEs is 2 dimensional. However, instead of imposing
the restriction of N0 , we use{

N [u(x)] = f (x)
〈∇u,n〉 = 0

(5)

on 0, where N means the 3D extension of N0 . We will
explain this by using concrete example in the next section.
We claim (4) and (5) are equivalent. This is because, by apply-
ing the equivalence principle in lemma 4, surface differential
operators, such as ∇0 , 10 and ∇0·, can be replaced by
∇, 1 and ∇·, respectively. This will reduce the workload
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tremendously as it is not easy to compute the surface differ-
ential operators, where first and second fundamental forms of
surfaces get involved in. But in our method, only the ordinary
differential operators in R3 need to be computed.

We hence use a PINN illustrated in the previous subsec-
tions to predict the solution of (4). The input layer consist of
3 neurons which are the variables in R3, say, x = (x1, x2, x3).
Then the output is the solution of (4). Similarly, we denote the
prediction of latent variable by uh. Then the N [(uh(x))] and
∇uh can be computed by automatic differentiation. There-
fore, (5) is computable, and the loss function is given by

MSE = MSEu +MSEb +MSEg

=
1
Nu

Nu∑
i=1

|N [uh(x iu)]− f
i
u |
2

+
1
Nb

Nb∑
i=1

|uib − uh(x
i
b)|

2

+
1
Nu

Nu∑
i=1

|

〈
∇uh(x iu),n(x

i
u)

〉
|
2 (6)

All the notations have same meaning for the traditional
PINNs introduced in the previous subsections. Notice that we
use the same training set for first and third term as they come
from one equation N0[u(x)] = f (x) in (4). By training this
PINN, we can get the prediction of u.
Remark 5: We point that as a closed surface has no bound-

ary, the boundary condition u(x) = ub for x ∈ 0b in (4) will
be vanished. In this case, the loss function only contains two
terms. Namely, MSE = MSEu +MSEg.
We conclude this section by pointing out the advantage of

our method. Note that our methods only require a batch of
sample points and their corresponding normal on the surface,
and no partition and connectivity information about the sur-
face, such as first and second fundamental forms, is needed.
Therefore, our method is based on a points cloud infor-
mation. This is a big advantage compared with traditional
methods where the Lagrangian and Euclidean information
may needed [17]. As the finite element methods for surface
PDEs, the first step is generate partitions on the surface or the
neighborhood of the surface (bulk finite element methods),
which is complicate and will cause error between the mesh
and original surface. And then, one should figure out the
weak formulation of surface PDEs, which contains involved
mathematical inference. While our method only relies on
points cloud on the surface so there is no error arising from the
surface. Additionally, our method based on the equivalence
principle as shown in lemma 4, thus is much easier. In the
next section, we will show several numerical experiments to
verify our method.

IV. NUMERICAL EXAMPLES
In this section, we mainly consider the following elliptic
equation:

10u+ au = f on 0 (7)

where a is a constant and 0 is usually a closed surface. When
0 is open, boundary condition on ∂0 should be added. In this
case, N0[u(x)] = 10u(x)+ au(x).
All the experiments below have been done by Tensor-

flow 1.8 on a Dell workstation with Intel(R) Xeon(R) CPU
E5-1630 v4 at 3.70GHz and NVIDIA GeForce GTX
1080 GPU.

A. EXEMPLARY EXPERIMENT FOR LAPLACE-BELTRAMI
EQUATION ON 3D SPHERE
We illustrate our algorithm in this concrete example. In this
example, we solve (7) with a = 0 on a 3D unit sphere S2.
We set f = 18x1x2x3 so that the exact solution of (7) is
u(x) = x1x2x3. To generate the training data, we first generate
sample points on S2 by Fibonacci lattices rule [27]–[29]. This
is a structured sample points on S2. As shown in [27]–[29],
this method has an amazing performance in numerical com-
putation, especially for quasi Monte Carlo method. We hence
use this method instead of uniform random sampling meth-
ods. However, we also point out that, in a general surface,
where Fibonacci lattices is not applied, we should use other
sampling methods such as uniform random sampling meth-
ods. No matter what method we use, once the sample points
has been generated, we may also compute the corresponding
normal for each sample point. If the equation of the surface is
available, we may use its closed form equation or formula to
find out the normal. In the case that the equation of the surface
is not available, we may use numerical methods, such as local
quadratic interpolation [30].

After generating Nu sample points {x iu}
Nu
i=1 on 0 = S2,

we may compute f iu = f (x iu) for each sample x iu. Then,
according to the last section, the loss function of this example
reads

MSE = MSEu +MSEg

=
1
Nu

Nu∑
i=1

|1uh(x iu)− f
i
u |
2

+
1
Nu

Nu∑
i=1

|

〈
∇uh(x iu),n(x

i
u)

〉
|
2

TheMSEb term vanished because there is no boundary on S2
(closed surface). In (7), the differential operator N0 = 10 .
Hence, the corresponding 3D extension is N = 1. As our
most recent work [31], we mentioned that the activation func-
tion σ (s) = sin(πs) is more powerful than σ (s) = sin(s) that
suggested in [20]. That is, σ (s) = sin(πs) can deal with much
extremely case, such as high frequency PDEs’ problems. This
is probably because, after batch normalization, the data locate
in [−1, 1], and σ (s) = sin(πs) is a surjective in this interval.
Therefore, we choose σ (s) = sin(πs) in our experiments.
All the parameters in the PINNs have been initialized by
Xavier [32].
By setting Nu = 2, 000, we train our PINNs for sur-

face PDEs by 10, 000 steps via Adam algorithm. After that,
we use the L-BFGS packed in Scipy package continues the
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FIGURE 1. Solution of Laplace-Beltrami equation on S2. Exact solution:
u = x1x2x3.

FIGURE 2. Solution of Laplace-Beltrami equation on S2 with sample
points (marked as stars) Exact solution: u = x1x2x3.

optimization until the absolute value of difference between
loss functions in the consecutive two steps less than 10−16.
The solution is shown in Figure 1. To show the Fibonacci
lattices, we also display the solutionwith sample points which
is marked as stars in Figure 2.

To evaluate this result, we define the relative error of
prediction uh given by PINNs. Let u be the exact solution, and
{x ic}

Nc
i=1 be a set of sample points, which is differ from training

set {x iu}
Nu
i=1, for cross-validation. Then, the relative error Err

is given by

Err =

√∑Nc
i=1 |uh(x

i
c)− u(x ic)|2√∑Nc

i=1 |u(x
i
c)|2

Essentially, this is discrete relative L2 norm which widely
used in numerical PDEs. Hence, we generate Nc = 2, 500
points randomly on S2 and then get the prediction of uh(x ic)
on those points via the trained PINN. In our experiment,
Err = 1.109493e − 02. This result justifies our algorithm.
We will study the relationship between the accuracy and
structure in the experiments below.

Since u(x) = x1x2x3 is an eigenfunction of Laplace-
Beltrami operator on S2 (with eigenvalue 18), we also do the
same test with different exact solution u(x) = x1 sin(x2) +
x3 to verify the correctness of our algorithm. All the set-
tings keep the same. The result is shown in Figure 3 with
Err = 2.354291e− 02.

Compared with traditional numerical algorithms, such as
radial basis finite difference method [15] and finite element
methods [14], our method is much simpler to implement and

FIGURE 3. Solution of Laplace-Beltrami equation on S2. Exact solution:
u = x1 sin(x2) + x3.

FIGURE 4. Solution of Laplace-Beltrami equation on the surface of a
bunny (front).

more flexible to design new algorithms. This is because we
do not need any partition or grid on the surface, which are
important ingredients of traditional methods. All we need is
a set of points on the surface and their corresponding normal.

B. LAPLACE-BELTRAMI EQUATION ON MORE
COMPLEX GEOMETRY
In this experiment, we display the result of a benchmark
problem. We consider (7) with a = 0 on a surface of bunny.
The original surface data of the bunny consist of 34835 points,
which is available at www.numerical-tours.com. We ran-
domly choose 20, 000 points as our training data. The rest
will be used for cross-validation. The normal of these points
will computed by local quadratic interpolation. In this exper-
iment, the right hand side function f (x) = x1 sin(x2) + x3.
Notice there is no closed form exact solution for this problem,
we hence evaluate our result by the loss function value of
cross-validation. Actually, the loss function is an ideal indica-
tor for the residue of the PDE. This is because, when the loss
function MSE = 0, the PDE is satisfied exactly on the test
points. The result is shown in Figure 4 (front) and 5 (back).
The loss function value is 5.389461e− 5.

C. LAPLACE-BELTRAMI EQUATION ON OPEN SURFACE
In this experiment, we justify our algorithm with an open
surface. Notice the only difference between the closed and
open surface is if there is a boundary of the surface. We con-
sider (7) with a = 0 on upper unit hemisphere 0. Thus,
the boundary of the surface is the equator. In this case, (6) will
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FIGURE 5. Solution of Laplace-Beltrami equation on the surface of a
bunny (back).

FIGURE 6. Solution of Laplace-Beltrami equation on upper unit
hemisphere.

be considered as the loss function. We still use the Fibonacci
lattices rule on 0 with Nu = 2, 000. For the boundary,
we randomly takeNb = 100 sample points on the ∂0, namely,
equator. The exact solution has been set as u(x) = x1x2x3
and then the right hand side term is f (x) = 18x1x2x3. Then,
the corresponding data {x iu, f (x

i
u)} and {x

i
b, u

i
b} as well as the

normal {n(x iu)} has been computed. The numerical result is
shown in Figure 6 with Err = 8.560961e− 3.

The equator in Figure 6 is not smooth because the figure is
generated based on triangle partition. So, extrapolation is
occasionally occurred.

D. ELLIPTIC EQUATION ON TORUS
In this experiment, we solve (7) with a = 1 on a torus

0 = {x ∈ R3
|(
√
x21 + x

2
2−3)

2
+x23 = 1}. The most important

topological feature of 0 is that the Euler characteristic is 0,
while for S2 is 1. This may sometimes cause trouble during
computation and graphing [14]. However, there is totally no
difference to the previous examples in implementation of
our algorithm except a little bit tricky for sampling. Notice
0 can be also defined by the following parametric equation
equivalently:

x1(θ, φ) = (3+ cos(θ )) cos(φ)
x2(θ, φ) = (3+ cos(θ )) sin(φ)
x3(θ, φ) = sin(θ )

(8)

where θ, φ ∈ [0, 2π ). Therefore, we use Latin hypercube
sampling method to take Nu = 2, 000 sample of (θ, φ)
on [0, 2π )2. Then, we generate the sample points {x iu} by

FIGURE 7. Solution of elliptic equation on torus.

means of (8). The exact solution is given by u(x) = x1x2x3.
The numerical result is shown in Figure 7 with Err =
1.450341e− 2.

E. LAPLACE-BELTRAMI EQUATION ON HIGH
DIMENSIONAL SURFACE
In this subsection, we solve a high dimensional prob-
lem which is very intractable, or almost impossible by
using traditional numerical methods. Let us consider (7) on
0 = S4 ⊂ R5 with a = 0.
For finite element method, we must first generate partition

on S4, which, as the authors’ best knowledge, is impossible.
Even though we have the partition on S4, we must establish
finite element space on S4, and then solve the discrete weak
formulation. This procedure will include solving a super
large linear system, which is an expensive cost. For meshless
methods, such as radial basis function method, can form a
relative easy linear system by the direct method. Unfortu-
nately, this method is unstable as suggested in [15]. Thus,
lots of researchers study the radial basis function finite dif-
ference methods. But once finite difference scheme is getting
involved in, we must generate grid on S4 and its neighbour-
hood, which is also a huge work. So, this is a very challenging
problem.

Our PINNs methods, once again, only need points cloud
on S4 and their corresponding normal. And then, all the other
part of the algorithm just keep the same. Since there is no way
to visualized the result in R5, we only consider the relative
error in this experiment. Instead of just show the result with
a specific setting, we also study the relationship among the
accuracy and PINNs’ structure as well as the sample size.

We set the exact solution u(x) = x1 sin(x2x3) + x4ex5 .
And generate uniform distributed sample points on S4. To do
this, we first generate samples yiu followed by 5 dimensional
standard normal distribution. Then the uniform distributed
sample on S4 is given by x iu =

yiu
‖yiu‖

, where the ‖ · ‖ denotes

the Euclidean norm in R5. This method can be generalized to
any dimensional case.

First, we study how the sample size Nu of the PINN
affect the accuracy. We use 6 layer PINN with 100 neurons
each layer. By varying the sample size Nu from 8, 000 to
18, 000 and keep the sample size for cross-validation Nc =
10, 000, we summarize the Err in Figure 8. The label in the
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FIGURE 8. Err with different Nu.

TABLE 1. Err with different PINNs’ structure.

figure shows the best case Err = 3.884185e − 01 at Nu =
18, 000. Although this is not a perfect result compared with
our previous 3D problems, it is acceptable considering this is
a high dimensional problem.

Next, we study how the PINNs’ structure affect the accu-
racy. To this end, we keep sample size Nu = 12, 000 and
Nc = 10, 000 and varying the number of layers and number
of neurons for each layer. The result is shown in table 1.

These two results show that, when we use more sample
points and larger PINN (more layers and neurons), the accu-
racy is almost increasing except some exceptions. This also
fit the conclusions in [20], [25]. However, the best case will
take most computational time. Hence, we suggest that in
a practical problem, one could choose a sample size and
network structure for the specific problem to balance the
workload and accuracy. This also answer a reads’ potential
question: why we choose 6 layers with 100 neurons and such
sample sizes in all our previous experiments? This is because,
as our experience, when the relative error of cross-validation
is around or less than 0.1, the result is acceptable. Hence,
we just choose this structure and such sample sizes (2, 000 for
all problems except the bunny surface and high dimensional
problems). It turns out the results are not bad.

We also point out that, the PINN’s structure is also related
to its capacity. For example, if we solve a PDE on 1, 000
dimensional surface, then we must enhance the number of
layers and number of neurons. This is because, the solution
of a surface PDE can be manifold. So, the PINN must has
enough ability, or degrees of freedom, to fit the solution.

V. CONCLUSION
In this paper, we develop a brand new algorithm for time inde-
pendent surface PDEs by PINNs. The basis of our method
is equivalence principle as shown in lemma 4. A plenty of
numerical experiments have been shown to verify our algo-
rithm. The relationship among sample size, PINN’s structure

and accuracy has been discussed. Compared with traditional
numerical methods, such as finite element methods, finite
difference methods and radial basis function methods etc.,
our algorithm do not need any partition, grid and extension of
surface(, where they called h-narrow band around the surface
in [18]). The only needed information for t he surface is a set
of points and their corresponding normal. That is, our method
is based on points cloud information, so it is more flexible
and easier to implement. Nevertheless, the drawback of this
method is that there is no theoretical proof for the error, which
is similar to traditional numerical methods.

Some future work can be expected based on this method.
First, we may use this method to solve time dependent
problem, especially for moving surface problems. Second,
different neuron network can be used to solve the surface
PDEs, such as convolutional neural networks (CNNs) and
Generative Adversarial Networks (GANs). Finally, points
cloud methods can be used when we only have sparse sample
points on the surface instead of knowing all the information
of the surface.
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