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ABSTRACT Knowledge graphs contain a wealth of real-world knowledge that can provide strong support
for artificial intelligence applications. Much progress has been made in knowledge graph completion, state-
of-the-art models are based on graph convolutional neural networks. These models automatically extract
features, in combination with the features of the graph model, to generate feature embeddings with a strong
expressive ability. However, these methods assign the same weights on the relation path in the knowledge
graph and ignore the rich information presented in neighbor nodes, which result in incomplete mining of
triple features. To this end, we proposeGraphAttenuatedAttention networks(GAATs), a novel representation
method, which integrates an attenuated attention mechanism to assign different weight in different relation
path and acquire the information from the neighborhoods. As a result, entities and relations can be learned
in any neighbors. Our empirical research provides insight into the effectiveness of the attenuated attention-
based models, and we show significant improvement compared to the state-of-the-art methods on two
benchmark datasets WN18RR and FB15k-237.

INDEX TERMS Knowledge graph embedding, attenuated attention mechanism, neighbor nodes, transla-
tional model, graph attention networks.

I. INTRODUCTION
The knowledge graph (KG) is a graph-based data structure
composed of ‘‘node-edge-node’’ that represents a semantic
network. The node represents a ‘‘concept’’ or ‘‘entity’’,
and the edge represents a relation between two entities. For
example, in Figure 1, a triple (Joe Russo, born_in, Cleve-
land) is represented as two entities: Joe Russo and Cleveland
with a relation born_in linking them. Knowledge graphs are
used to describe concepts, entities, and the rich relations
between them in the real world. At present, knowledge graphs
have been widely used in finance [1], medical [2], semantic
search [3], and other fields.

However, the use of knowledge graphs is often limited due
to the deficiency in relations arising from incomplete process-
ing data. It is difficult to complete the missing knowledge by
means of extraction or fusion because of the sparseness of
the data. The completion of true relations, namely knowledge
graph completion, remains an active research area. For exam-
ple, in Figure 1, given triples (Anthony Russo, brother_of, Joe

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiling Chen .

FIGURE 1. A subgraph of a knowledge graph with actual relations
between entities(solid lines) and inferred relations that needed to be
predicted (dashed lines).

Russo), (Joe Russo, born_in, Cleveland), (Cleveland, city_of,
Ohio) and (Ohio, state_of, USA), the inference (Anthony
Russo, nationality, USA) should stands. State-of-the-art meth-
ods aim to match entities and relations to low-dimensional
continuous vector spaces to characterize their latent semantic
features.
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The most advanced knowledge embedding approach is
knowledge graph representation learning, which mainly cat-
egories into tensor decomposition, translational model, and
neural networks model. While statistical models need to cap-
ture the joint distribution triple features between multiple
atomic, which will cause the exponential growth of feature
space, the representation learning maps features to the dis-
tributed space so that the complex relations are decoupled
and dimensionality disaster problem is alleviated. In addition,
the data sparsity is prominent in knowledge graph, while the
representation learning fills the sparse matrix by numerical
calculation, which solves the data sparsity problem to some
extent. Finally, representation learning allows symbol data to
directly participate in the computation without using statistics
such as counts, distributions, and so on.

However, there are still some problems in representation
learning. First of all, state-of-the-art methods of representa-
tion learning only consider the triples and their hidden fea-
tures, while the rich information contained in the neighboring
triples is not taken into account.

Secondly, the relation embedding is too simple.The exist-
ing methods are mainly based on entity embedding, ignoring
the influence of the diversity of the relations on the repre-
sentation of the triple. At last, the existing method adopts a
strategy of equally assigning weights to multiple relations on
the same path, so that the importance of the relations is treated
equally, resulting in error in link prediction.

We use event knowledge graph to make prediction of
events, so the accuracy of relations is critically significant.
Once the relation reasoning on the critical path goes wrong,
it may lead to the prediction of completely oppsite informa-
tion, misleading the decision analysis. Therefore, improving
the accuracy of relation prediction is an urgent problem we
need to solve. Inspired by the previous research, we propose
the attenuated attention-based graph embedding for knowl-
edge graph completion. Graph attention networks(GATs)
with n-hop neighbors [14] have achieved improvements in
relation prediction. Our model introduces the attenuated
attention mechanism while considering the n-hop neighbors,
i.e., the closer the entity is to a given entity, the higher the
weight of attention gained. We add it to the GATs and learn
the new embedding of entities and relations. Then we use our
model to train the relation and entity embeddings separately.
More details will be described in Section III.

Our contributions are as follows. First, in order to learn the
more expressive embedding, we introduce the graph attention
network. Secondly, in view of its existing limitations, we pro-
pose the attenuated attention mechanism, and then propose a
novel entity and relation embedding method based on graph
attenuated attention networks. Third, we use the information
of the n-hop neighbor nodes to extend the representation of
the entities and relations. Fourth, we introduce the encoder-
decoder model. The graph attenuated attention network is
used as the encoder, and the Capsule Networks Embed-
ding(CapsE) [18] is used as the decoder. This model supports
the exploration of the triple features on a deeper level. Finally,

we evaluate the proposed approach with the experiment that
uses two benchmark datasets. The experimental results show
that our model accuracy performs better than the state-of-
the-art methods on the FB15k-237, and most indicators in
WN18RR are better than the state-of-the-art methods.

The rest of the paper is structured as follows. We first
review the related work in Section II and then present our
detailed approach in Section III. The experimental dataset
descriptions, results, and analysis are reported in Section IV
and followed by our conclusion and future work in Section V.

II. RELATED WORK
Recently, several different representation learning methods
have been proposed for relation prediction. These methods
can be broadly classified into (i) tensor decomposition, (ii)
knowledge embedding models.

The basic idea of tensor decomposition is to replace
the original relation matrix with multiple low-dimensional
matrices or tensor products, thus replacing sparse and large
amounts of raw data with a small number of parameters. The
RESCAL [6] takes the inherent structure of dyadic relational
data into account by employing the tensor factorization. The
Neural Tensor Networks (NTN) [4] model expresses the rela-
tions as a matrix to characterize the correlation of potential
features. The bilinear matching between the entities (head,
tail) and the relations are used to judge the possibility of the
relation being established. However, both of these models
require a large number of matrix multiplication operations,
which greatly increases the time cost.

The knowledge embedding models are further classified as
translational models and neural network models. The trans-
lational models are based on the energy function, which
demostrate the fact that golden triples have low energy
while corrupted triples have high energy [8]. The judgment
of the established tirple is golden or not is determined by
the calculation of the energy function. Translating Embed-
ding(TransE) [5] is a simple model with fewer parame-
ters, but there are certain problems in dealing with one-
to-many and many-to-one relations. In order to solve the
problem, Translating embedding on Hyperplanes(TransH)
[7] and Translating Embedding in Relation spaces (TransR)
[8] models are proposed. TransH and TransR calculate a
triple score with the same entity using alternative represen-
tations in different relation spaces, effectively avoiding the
convergence problem. Translating Embedding via Dynamic
Mapping Matrix(TransD) [9] solves the diversity of entities
and relations by applying the transitional matrix determined
by the corresponding entities and relations. Since the initial
introduction of TransE in 2013, a variety of methods have
been proposed under this framework. The community has
also proposed additional methods (e.g., Translating Embed-
ding via relational Mapping properties(TransM) [12], Trans-
lating Embedding via Adaptive Approach(TransA) [10]).
A summary is shown in Table 1. The scoring functions of
the methods are introduced, and the number of parameters
represents the model complexity.
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TABLE 1. Scoring function and complexity of proposed translational embedding models. ne and nr represent the number of entities and relations,
respectively. d is the dimension of entity and relation embedding. h, r, t represent the head entity, relation, and tail entity embedding, respectively, Mr
represents the relation transitional matrices, I denotes the identity matrix.

Different from the translational models, in the field of
neural networks, the representation of the knowledge graph is
how to express entities and relations through neural network
models so that entities and relations can be calculated by
symbols. The neural networks models, which focus more
on mining latent semantic information of triples, mainly
include Neural Tensor Networks (NTN) [4], Convolutional
Knowledge Base Embedding(ConvKB) [16], Convolutional
Network Embedding(ConvE) [15], Relational Graph Con-
volutional Networks (R-GCN) [21], Graph Convolutional
Networks(GCNs) [11], and Capsule Networks Embedding
(CapsE) [18]. ConvKB uses the internal structure of the
textual relation as input to the convolutional neural net-
work. NTN learns a tensor network for each relation in the
knowledge graph. ConvE uses convolutional neural networks
(CNNs) to optimize the input vector to score the triples.
The R-GCN uses a graph convolutional network to obtain
an embedding of the triples, then applies DistMult [19] to
compute a score for the embeddings. In the European space
represented by the image, the number of neighbors of the
node is fixed. However, in the non-European space repre-
sented by the knowledge graph, neighbors are not fixed. The
convolution operation in the European space is a feature of the
pixel extracted by a fixed-size learnable convolution kernel.
Nevertheless, the traditional convolution kernel cannot be
directly used to extract the features of the nodes on the graph
due to the unfixed number of neighbors. Therefore, GCNs
was introduced to find a learnable convolution kernel suitable
for graphs. CapsE represents each triple as a 3-column matrix
and feeds into capsule neural networks to generalize the
expressive embedding. A key limitation of tensor decompo-
sition and neural network based approaches is the high com-
putational cost. To address this limitation, the holographic
embedding model(HOLE) [17] has been proposed to con-
struct a more efficient embedding representation by applying
the cyclic correlation of entity embedding. Besides, taking
path learning into consideration, other than [14], reinforce-
ment learning(RL) with multi-hop knowledge embedding is
proposed for the use of query answering based on knowledge
graph [28]. Relation path embedding(RPE) [31] adds multi-
hop relation paths to the translation model and simultane-
ously embeds each entity into two types of latent spaces.

Path-based Attribute-aware Representation Learning model
(PARL) [32] is proposed to perform path denoising and path
representation learning for the relation prediction task. Dis-
criminative path-based embedding model (DPTransE) [33]
builds interactions from the jointly learned latent features
and graph features and uses the graph features as the crucial
prior to offer precise and discriminative embedding. Meta-
based multi-hop knowledge graph reasoning (Meta-KGR)
[34] adopts meta-learning to learn effective meta parameters
from high-frequency relations that could quickly adapt to
few-shot relations.

In addition to the models above, the incorporation between
attention mechanisms and neural networks, which aim to
improve the robustness of models, is widely studied. Atten-
tion Graph Convolution Network (AGCN) [35] consists of
an attention mechanism layer and Graph Convolution Net-
works(GCNs) to perform superpixel-wise segmentation in
big SAR imagery data. Graph Attention Model (GAM) [36]
focuses on small but informative parts of the graph, avoid-
ing noise in the rest of the graph. Attention mechanism is
applied to reason evidence from the representation ofmultiple
paths to predict whether the entities should be connected
by the candidate relation [41]. Besides, attention mechanism
is also applied to the classic compositional method to find
reasoning paths between entities [40]. Open-domain con-
versation generation model with graph attention model [37]
retrieves relevant knowledge graphs from a knowledge base
and then encodes the graphs with a static graph attention
mechanism. Learning node embeddings via graph attention
utilizes attention parameters exclusively on the data itself
instead of inference. Knowledge aware Path Recurrent Net-
work (KPRN) [38] generates path representations by com-
posing the semantics of both entities and relations and allows
effective reasoning on paths to infer the underlying rationale
of a user-item interaction for recommendation. Knowledge
Graph Attention Network (KGAT) [39] recursively propa-
gates the embeddings from a node neighbors to refine the
node embedding, and employs an attention mechanism to
discriminate the importance of the neighbors for recommen-
dation as well.

In summary, although the neural network-based methods
suffer the problems of high complexity and computational
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cost, the triples based on them have a stronger expressive
ability. But state-of-the-art models only regard the relation
embedding as an auxiliary feature of the entity embedding,
and does not deeply consider how to embed the relations.
Besides, when there are indirect connections (not 1-hop rela-
tion) between the two entities, the former research assigns
the same weight to the relations of each hop, resulting in
the loss of information about the partial neighbor triples.
At this time, a model that integrates the neural network model
and translational model, leveraging the advantages of both
models, is not yet available in the literature. Here, we propose
a combined model to further improve the task of knowledge
graph completion in terms of prediction accuracy and com-
putational cost.

III. APPROACH
Here, we first formalize the notation adopted in this work.
A knowledge graph is represented by G = (E,R), where
E = {e1, . . . , ei, . . . , en} and R = {r1, . . . , ri, . . . , rm}
denote the set of entities and relations, respectively. The
triples are represented as (ei, rk , ej) where ei denotes a head
entity, ej denotes a tail entity, and rk denotes a relation linking
ei and ej. Their embeddings are denoted by (hi, rk, t j). The
embedding representation model attempts to learn efficient
representations of the entities, relations and scoring functions
f , such that for a given triple a = (ei, rk , ej), f (a) gives the
probability of a being a golden triple.

A. GRAPH ATTENTION NETWORKS
As we introduced in Section II, GCNs make a great progress
in graph features extraction. But there remains a problem
that GCNs only focus on the node itself without considering
its neighbors, which contain rich valuable information. The
graph attention network (GATs) [13] is a further improvement
of GCNs. The GATs emphasize the assignment of varying
importance values to different node neighbors, rather than
allocating an equal weight for all neighbor nodes, as is done
in GCNs.

The input feature of the node-set in the graph attention
network layer is e = {e1, e2, . . . , eN }, the output features
of the nodes are e′ = {e′1, e

′

2, . . . , e
′
N }, where ei indicates

the input embedding of the i-th node. e′i indicates the output
embedding of the i-th node. N indicates the number of nodes.
The attention value of a node can be formalized as

eij = fa(Wei,Wej) (1)

whereW represents a parametric linear transformationmatrix
that maps input features to high-dimensional output feature
space. The attention value eij indicates the edge between node
ei and node ej and fa represents an attention function.
The attention value reflects the importance of the edge

(ei, ej), which can be used to measure the importance of the
head node ei. The attention value can be obtained as it shown
in Figure 2. We learn a weight of attention for each edge
and then gather information from neighbors based on those

FIGURE 2. An example to explain how GATs works. The entity e1 gathers
information from its neighbors and use attention function to assign
different weights to different relations.

FIGURE 3. Multi-Head Attention consists of several attention layers
running in parallel.

weights as

e′i = σ (
∑
j∈�i

ηijWej) (2)

where, ηij represents relative attention, which computed by
a softmax function over all the values in the neighbors. W
represents a linear mapping matrix. After this operation, the
neighbors representation of the node ei is output. The ηij can
be calculated as follows

ηij = softmaxj(eij) =
exp(eij)∑

n∈�i

∑
r∈<in

exp(ein)
(3)

where, �i denotes the neighbors set of entity ei, <in denotes
the relations set which connects between ei and en.

To prevent over-fitting of the model, we use multiple
independent different attentions for the attention calculations
[22]. The multi-head attention structure is shown in Figure 3.
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The head node (HN), edge (E), and tail node(TN) first enter
a linear transformation and then are input to the expansion
point product attention for M times, namely the multi-head
attention. For each of the M times, the parameters between
the headers are not shared, and the parameters for the linear
transformation of HN, E, and TN are different. Then, the
M -th order expansion results are concatenated, and the values
obtained by the linear transformation are used as the result of
the multi-head attention. The multi-head attention process of
concatenating M attention heads is shown as follows

e′i =
M
||

m=1
σ (

∑
j∈�i

ηmijW
mej) (4)

where, || represents a concatenate operation, σ represents
a nonlinear activation function, ηmij represents the weight
obtained by them-th attentionmechanism, andWm represents
a linear mapping matrix of the m-th attention mechanism.
Then, we use the averaging method to obtain the final node
representation as follows

e′i = σ (
1
M

M∑
m=1

∑
j∈�i

ηmijW
mej) (5)

B. ATTENUATED ATTENTION MECHANISM
The attention mechanism involved in deep learning essen-
tially plays a similar role as the human selective visual atten-
tion mechanism [28]. The core is to select critical features
for the current mission objectives from sufficient informa-
tion. However, from the perspective of human experience,
the scope of influence of attention weight is not equivalent.

For example, people always pay more attention to objects
that are close to themselves, attention to objects that are
further away decrease. As shown in Figure 3, Angelina Jolie’s
4-hop neighbor Canada should have a much smaller impact
than the 1-hop neighbor Brad Pitt. Therefore, in a knowledge
graph, the closer an entity is to a given entity, the higher its
attention value obtains. Besides, Figure 4 also demonstrates
that the lighter the color of the relation in the graph, the lower
the weight and the smaller the impact on a given entity.
Based on this, we propose the attenuated attentionmechanism
to assign different weights to the n-hop neighbors attention
values of a given entity.

Following the principle that the closer to a given entity,
the higher weight of attention is gained, we define the atten-
uated attention coefficient θid , which denotes the attenuation
of the d-th hop neighbor for a given node ei. Suppose the
distance between a given node and their d-hop neighbor is
xd , so the attenuated attention coefficient can be formalized
as follows

θid = θ0exp(−
x0
xd

) (6)

where, θ0 denotes the initial attenuated attention coefficient,
and x0 represents the path step length, default is 1.

We incorporate the attenuated attention mechanism into
GATs to form our proposed Graph Attenuated Attention

FIGURE 4. The figure shows the aggregation process of our graph
attenuated attention layer. wi denotes relative attention values of an
edge. The blue dashed lines represent an auxiliary edge from n-hop
neighbors. The attention weight of node ‘‘Angelina Jolie’’ is
ω1 + 1/2ω2 + 1/3ω3 + 1/4ω4 , in case n = 4.

Networks (GAATs) model. The model gathers features from
the neighbors of nodes by assigning different weights to dif-
ferent relations to reinforce the entities and relations embed-
ding.

C. RELATION EMBEDDING WITH GAATs
State-of-the-art methods are focused on entity embedding,
while relation embedding only using TransE-trained initial-
ization vectors. However, as the most important part of the
knowledge graph, relation plays a decisive role in the qual-
ity of knowledge reasoning. In addition, specifical relation
embedding can make representation embedding containing
more valuable features. Therefore, we propose to refine the
type of relations and use our GAATs model to learn the
embedding of relations.

We define the initial relations embeddings matrix R ∈
RNr×T , whereNr represents the number of relations, T repre-
sents the initial feature dimension embedded in each relation,
and the i-th row represents the embedding of the i-th rela-
tion. The corresponding output matrix after the GAATs layer
processing is R′ ∈ RNt×T ′ , where Nt represents the number
of triples, and T ′ represents the output feature dimension. In
other words, we learn relations embeddings independently for
each triple.

We use the GAATs model to learn the relation embedding.
In the graph structure of the relations, we first calculate the
attention value of each relation separately, and obtain the
output relation embedding matrix as R′ = R · WR, where
WR
∈ RT×T ′ denotes the weight matrix. Specifically, extract-

ing some of the subgraphs in Figure 1, we divide the relations
into three categories as it shown in Figure 5.

(1) If there is a direct relation between the two entities,
as shown in Figure 5(a). Then, the relation is expressed as

R′ij = ηijR(cor) (7)
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FIGURE 5. Three cases for the GAATs model. (a) direct relation between
entities; (b) indirect relation without direct connection; 4(c) indirect
relation with direct connection.

where, R′ij indicates the relation vector between the entities ei
and ej, ηij denotes attention value between the entities ei and
ej, and R(cor) represents the corresponding row of the initial
relation matrix.

(2) If there is an indirect connection between the two
entities, but they are accessible through the neighbor nodes,
as shown in Figure 5(b). Then, the relation is expressed as

R′ij =
∑
s∈�i

θisηisR(cor) (8)

where, �i denotes the neighbors set of entity ei, θis denotes
the attenuated attention coefficient between the entities ei and
es.We use the attenuated attentionmechanism to calculate the
neighbor weighted attention values and then use the product
between the relation embeddings of the neighbors and the
attention values as the representation of the relation.

(3) If there is an indirect connection between the two enti-
ties, and a direct connection exists, as shown in Figure 5(c).
We use the attenuated attention mechanism to calculate the
neighbor attention values and then use the relation of the
existing edge for its representation. Then, the relation is
expressed as follows

R′ij = (
∑
s∈�i

θisηis) · R(cor) (9)

However, while learning the new relation embedding,
the relations lose their initialized information. To address this
issue, we assign two matrices in order to add the original
relation embedding matrix into the final representation as

R′′ = WNRW T
+ R′ (10)

where, WN
∈ RNt×Nr and W T

∈ RT×T ′ denote linear
transformation matrices, and R′′ represents the final relation
embedding matrix.

D. ENTITY EMBEDDING WITH GAATs
Entities play an important role in knowledge graphs, and
the correspondence between entities and relations is espe-
cially important in knowledge graph reasoning. For exam-
ple, the entity Anthoy Russo plays different role in different
triples, i.e. (brother_of, Joe Russo), (college, Robert Downey
Jr.). Entity Embedding with GAATs has the following advan-
tages: (i) Our model can solve the existence of insufficient
flexibility of the translational models. (ii) Our model can
embed the same entity under different relations. (iii) Our
model calculates the attention weight of an entity using the
attenuated attentionmechanism, which allows entity carry the
distance information of the relation path in the knowledge
graph, to concrete entity embedding and easier to handle
complex relations such as 1-N, N-1 and N-M.

We define the initial entity embedding matrix E ∈ RNe×D,
where Ne represents the number of entities, D represents
the initial feature dimension of the entity embedding, and
the j-th row represents the embedding of the j-th entity. The
corresponding output matrix after the GAATs layer process-
ing is E ′ ∈ RNe×D′ , where D′ represents the output feature
dimension.

The attention value reflects the importance of the edge
feature [20], which can be used to measure the importance
of the head entity. We first learn the embedding of the triple
in KGs. We concatenate the initialized entity embedding
with the relation vector of Section III.C to obtain the initial
representation tijk of the triple, as follows

tijk = W ′[hi||tj||rk ] (11)

where, W ′ ∈ R1×(2D+T ′) denotes linear transitional matrix,
tijk indicates the vector of triple (ei, rk , ej), and hi, t j, rk rep-
resent the embedding of ei, rk , ej, respectively.

Then, we use the ReLU activation function to learn a triple
embedding to ensure that the triple attention is non-negative.

cijk = ReLU (Vtijk ) (12)

where, cijk means vector after transformation and V ∈

R1×(2D+T ′) denotes the linear transformation parameter
matrix.

The softmax function is applied to obtain the attention
values of the entity’s n-hop neighbors, thus calculating the
attention weight ηijk of each triple. Meanwhile, as we learn
the weight of each triple attention, we add our attenuated
attention coefficient to ensure that the closer we get to the
given triple, the higher the weight gains. ηijk can be calculated
as follows

ηijk = softmaxjk (θijkcijk ) =
exp(θijkcijk )∑

n∈�i

∑
r∈<in

exp(θinrcinr )
(13)

where, �i denotes the neighbors set of entity ei, <in denotes
the relations set which connects between ei and en, and θijk
is the attenuated attention coefficient of the triple (ei, rk , ej).
The new embedding of the entity ei is updated to the weighted
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sum of the product between the triple attention weight and the
triple embedding, as follows

h′i = σ (
∑
j∈�i

∑
k∈<ij

ηijk tijk ) (14)

In order to improve the stability of the learning process
and learn more neighbor information, we add a multi-head
attention mechanism similar to GATs. Finally, the neighbors
of each entity are represented as follows

h′i = σ (
1
M

M∑
m=1

∑
j∈�i

∑
k∈<ij

ηmijk t
m
ijk ) (15)

Similar to relation embedding, while learning the new
entity embedding, the entities lose their initialized informa-
tion. To address this shortcoming, we assign a linear tran-
sitional matrix WE

∈ RT×T ′ in order to add the original
relation embedding matrix into the final representation as
follows

E ′′ = WEE + E ′ (16)

This is the graph attenuated attention layer shown in Fig-
ure 6. In our structure, the entity gathers the neighbors’
information layer by layer. For example, in Figure 4,
the entity Brad Pitt gathers information from the direct neigh-
bor in the first layer. Then, it gathers information from the
indirect entity USA and the direct entity Angelina Joile in
the second layer. In general, an n-hop-neighbor entity can be
accumulated by an n-layer model.

E. TRAINING OBJECTIVE
Our model draws on the scoring function of the translational
model, in which the basic idea is the condition hi + rk ≈
tj holds for a golden triple (ei, rk , ej). Specifically, we try
to learn the entities embeddings and relations embeddings
by minimizing the L1-norm dissimilarity measure given by
d(h+ r, t) = ||hi + rk − tj||1.
We train our model with the margin-based ranking loss as

the objective for training as follows

L =
∑

(h,r,t)∈T

∑
(h′,r,t ′∈T ′)

[γ+d(h+r, t)− d(h′+r, t ′)]+ (17)

where, [x]+ , max{x, 0}γ > 0 is a hyper-parameter, T
denotes the set of golden triples, and T ′ denotes the set of
corrupted triples, given formally as

T ′ = {(ei′ , rk , ej)|ei′ ∈ ε\ei} ∪ {(ei, rk , ej′ )|ej′ ∈ ε\ej} (18)

F. DECODER
In order to extract the latent features inside the triples and
analyze the global embedding properties of a triple across
each dimension, we apply CapsE [18] as a decoder.

Similar to ConvKB, CapsE first learns a three-column
matrix for the triples. Each column represents the vector of
the head entity, relation, and tail entity. Then, the convolution

operation is performed on the matrix using multiple convolu-
tion kernels to extract the deep relations within the triples.
The difference with ConvKB is that the capsule networks
are added behind the feature vector. After the feature vector
transformation, it becomes the first layer of capsule network,
and each vector is a capsule. After completing the routing
process and the activation function, the information is passed
to the capsule network of the second layer. There is only
one capsule in the second layer, and the modulus of the
vector corresponding to the capsule is the probability that
the (ei, rk , ej) triple exists in the knowledge graph. The score
function can be written formally as

f (ei, rk , ej) = ||capsnet(ReLU ([ei, rk , ej] ∗�))|| (19)

where, capsnet represents the capsule network operation, �
represents the convolutional layer filter set of the shared
parameters, and ∗ represents the convolution operation. The
model is trained using the Adam optimizer and the soft
margin loss as follows

L=
∑

(ei,rk ,ej)∈(T∪T ′)

log(1+exp(−t(ei,rk ,ej) · f (ei, rk , ej))) (20)

where,

t(ei,rk ,ej) =

{
1 for (ei, rk , ej) ∈ T
−1 for (ei, rk , ej) ∈ T ′

IV. EXPERIMENTS RESULTS AND ANALYSIS
A. DATASETS
To evaluate our model, we used two benchmark datasets:
WN18RR [15] and FB15k-237 [15]. The knowledge graph
completion task mainly consists of link prediction and triple
classification. In addition, in order to testify the performance
of our model, our apply a task named relation prediction to
make sure our model can handle the inference of relations.
The research shows that when the link prediction task is
performed on the datasets WN18 and FB15k, it is affected
by the inverse relation, which is a simple inverse-rule-based
model can be used to obtain optimal results. Therefore,
the corresponding sub-datasetsWN18RR and FB15k-237 are
used to solve the problem of the reversible relation between
the datasets [27]. We use the dataset partitioning method to
divide the training set and the test set. Table 2 provides all the
information we use for the datasets.

B. EVALUATION PROTOCOL
The goal of the link prediction task is to predict a golden triple
when the head or tail entity is missing, i.e., given (rk , ej) to
predict ei or given (ei, rk ) to predict ej. In this task, we remove
the head or the tail entity and replace it with all other entities
in the corpus. We first calculate the scores of these corrupted
triples and rank them in descending order. The ranking of
the correct entity is finally recorded. The link prediction
emphasizes the final ranking of the correct entity rather than
just finding the best entity. Similar to TransE, we also use
two methods as our evaluation strategy: MeanRank (MR) and
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FIGURE 6. This figure shows the whole structure of our model. Yellow circles denote initial entity embeddings, blue circles mean
initial relation embeddings, dark yellow and blue circles represent transformed entities and relation embeddings, respectively.

TABLE 2. Dataset description.

the proportion of the top N correct entities (Hit@N), N =
1, 3, 10. In addition, we also use the Mean Reciprocal Rank
(MRR) commonly used in information retrieval as another
strategy for evaluation. The lower MR values and the higher
MRR or Hit@N values demonstrate better accuracy perfor-
mance of the model [23]. We call this evaluation method
‘‘Raw’’. Note that there may also be corrupted triples in the
KG, and these corrupted triples will be considered as the cor-
rect triples. Therefore, before ranking, we should delete the
corrupted triples contained in the training set, the validation
set, and the test set. This evaluation method is called ‘‘Filter’’.
In this article, we summarize the evaluation results of using
the two methods, ‘‘Raw’’ and ‘‘Filter’’.

C. TRAINING PROTOCOL
We create two sets of corrupted triples using the method of
replacing the head or tail entity of a golden triple. One of them
is a collection that replaces only the header entities, and the
other is a collection that replaces only the tail entities [26].
To ensure the robustness of the link prediction, we use the
classical Bernoulli sampling method, and the two sets extract
an equal number of corrupted triples as training samples.

We use the TransE method to initialize the entity embed-
ding matrix and the relation embedding matrix. First, we use
the GAATs model to train the embedding of entities and
relations in the datasets., and then we train a decoder CapsE

to complete our link prediction task. The attenuated attention
mechanism is introduced while joining the n-hop neighbor.
We use the Adam optimizer to determine the values for all of
the parameters. Among them, the initial learning rate is set
to λ = {0.001, 0.01, 0.1}, the embedding dimension of the
entity and relation is set to k = {50, 100, 150, 200}, and the
margin is set to γ = {1, 2, 10}. The optimal parameters are
configured as: λ = 0.01, k = 100, γ = 2 on the WN18RR
dataset; λ = 0.01, k = 100, γ = 1 on the FB15k-237 dataset.

D. RESULT AND ANALYSIS
We have selected eight current, state-of-the-art methods: Dis-
Mult, ConvE, CapsE, TransE, TransH, ConvKB, R-GCN,
and n-hop-GATs. Table 3 and Table 4 compares the results
of our model experiments with the state-of-the-art results
published previously using the same evaluation protocol. The
experimental results show that our model performs better
than the state-of-the-art method in Hit@N on WN18RR; the
performance is better than the state-of-the-art method on
FB15k-237. In particular, our Hit@N has increased by 3%
overall on the FB15k-237. The results also show that all of
the indicators of ‘‘Filter’’ are better than those for the ‘‘Raw’’
method.

From Table 3 and Table 4, we know that:
(1) Compared to thematrix decompositionmodel DisMult,

the proposed GAATs model uses the neural network to mine
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TABLE 3. Experimental results on the MN18RR test set. Hit@N values in percentage. The best score is in bold and second-best score is underlined.

TABLE 4. Experimental results on the FB15k-237 test set. Hit@N values in percentage. The best score is in bold and second-best score is underlined.

the deep features of the triples to extract more feature infor-
mation in the link prediction task. Therefore, all indicators for
the proposed method are higher than the matrix decomposi-
tion method;

(2) Compared to the translational model (TransE, TransH),
since the core of the translational model is h + r ≈ t for
golden triples, which ignores the features of the triple itself,
the proposed GAATs model emphasizes h + r ≈ t with
adding attention mechanisms. The graph model has been
introduced under the premise of the neural network, and the n-
hop neighbors of the triples have been found, which enriches
the meaning of the triple. Consequently, the experimental
results for the proposed model are better than the translation
models.
(3) Compared to the neural network models (ConvE, Con-

vKB, R-GCN, CapsE), the proposed GAATs model applies
the encoder-decoder model, which uses two different neural
network structures to describe the features of the triples.
In particular, CapsE acts as a decoder to discover the hidden
features of the triples so that the proposed model performs
better than the neural network models.
(4) Finally, compared to the n-hop-GATs, the proposed

GAATs model introduces an attenuated attention mecha-
nism, which emphasizes the closer the relation to a given
entity is, the higher the attention weight obtains. In addition,
we replace the ConvKB with CapsE, so that the proposed
model performance is also better.

The results also show that the performance on the
WN18RR dataset is lower than on the FB15k-237 dataset.
The main reason is that there are fewer types of relations
on WN18RR and there are fewer intermediate paths in the
relation, which can not take advantage of our model.

For each relation r on FB15k-237, we calculate the average
number nh of head entities per tail entity and the average
number nt of tail entities per head entity [24]. If nh <

1.5& &nt < 1.5, r is classified as one-to-one (1-1). If
nh < 1.5& &nt ≥ 1.5, r is classified as one-to-many (1-M).
If nh ≥ 1.5& &nt < 1.5, r is classified as many-to-one (M-
1). If nh ≥ 1.5& &nt ≥ 1.5, r is classified as many-to-many
(M-M).

Figure 7 shows Hits@10 and MRR results for predicting
the head and tail entities of each relation category on FB15k-
237. The experimental results show that our model in ‘‘side1’’
(i.e., predicting head entities in 1-1 and 1-M; predicting tail
entities in 1-1 and M-1) and ‘‘sideM’’ (i.e., predicting head
entities in M-1 and M-M; predicted tail entities in 1-M and
M-M) have good performance. The main reasons are: (1) We
provide an embedding representation for each triple, making
the representation of the triple more precise, and the discrim-
ination between the triples is higher. so compared to other
models, our model has better performance; (2) The proposed
attenuated attentionmechanismmakes the relation learned by
each triple differently, so when making predictions, whether
(rk , ej) or (ei, rk ), they can still learn different representations,
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FIGURE 7. Hit@10 (in percentage) and MRR on the FB15k-237 test set w.r.t each relation category.

TABLE 5. Hit@10 on the WN18RR validation set with different n and
iteration values. The best score is in bold.

so the results are more accurate when ranking. (3) The n-
hop neighbors of a given triple in the encoder of our model
replaces the embedding representation of the triple itself so
that the triple carries more features and the decoder applies
the CapsE instead ofmax-pooling ConvKB to ensures that the
triple features are not lost. Based on this, the generalization
ability of the model is further improved.

Figure 8 shows the results for Hits@10 and MRR on
WN18RR. also_see, similar_to, derivationally_related_form,
verb_group can all be regarded as M-M relations, and our
model performs better than others.

Meanwhile, we study the value of n-hop neighbors and
the effect of the number of iterations on the final result.
Table 5 shows the value of the validation set Hit@10 of
WN18RR when the number of iterations and the value of n
change. When n = 3 and epochs = 1000, the model works
best. We can see that as the training progresses, our model
collects more information from the neighbors, which focuses
more on the direct neighbor and gets secondary information
from the far neighbor. Once the model converges, it learns
to collect multi-hop and cluster relation information from the
node n-hop neighbors. However, when n > 3, the effect of
the model will decrease. This also implies that the farther
away from the relation, the lower the attention value obtained.
When n = 4 or more, the neighbor nodes are no longer
important.

E. RELATION PREDICTION
Relation prediction requires two steps: the discovery of a pair
of entities with potential relation, and the reasoning of poten-
tial relations.Our experiment assumes that an entity pair with
a potential relation has been recognized. i.e., given (ei, ej) to
predict rk .
We drop the relations of the triples in the test data, rea-

soning the relations based on the embeddings of the trained
entities and relations, and comparing it with the standard

answer to calculate the accuracy. Besides, we apply Precision,
Recall, and F-Measure in machine learning algorithms

For each pair of entities, we traverse all the relations into
a triple. For each triple, we calculate the distance d betweent
the embedding vector from the head entity and the relation to
the tail entity. The smaller the distance d(h + r,t), the greater
the possibility that the triple is established.We record the
relations of top 10 triples for each pair of entities in ascending
order of the distance d(h + r,t). We record the Hit@10 and
Hit@1 of the correct relations as the accuracy rate, and record
the recall rate and calculate the F-Measure. The experimental
results are shown in Table 6 and Table 7.

From Table 6 and Table 7, we know that:
(1) On the WN18RR and FB15k-237 datasets, our model

has achieved good result in relation prediction. Because there
are only 11 kinds relations inWN18RR, and FB15k-237 con-
tains 237 kinds of relations, the model has better effect on
simple dataset WN18RR than the complex one FB15k-237.

(2) Since our model has independently embedded of rela-
tions and incorporates the distance information of the rela-
tions in the entity embedding, our model is better than the
state-of-the-art models in most cases. Among them, the trans-
lational models(TransE/TransH) perform the worst. Because
they only models the relations by optimizing h + r ≈ t , and
obviously ignores the semantic information of the relations.
Our model adds an attenuated attention mechanism based
on n-hop-GATs, so that each relation can obtain different
weights according to the distance of the path, and solve the
probem that n-hop-GATs does not separately embed the rela-
tions. Our model uses CapsE as a decoder and uses GAATs
as an encoder to further mine the semantic information of the
relations to prove the performance of relation prediction.

(3) The experimental results also show the importance
of separate embedding of relations in relation prediction.
In order to ensure the accuracy of the relation prediction,
the independent effect of the relationship embedding is far
better than the auxiliary information embedded only as the
entity.

F. TRIPLE CLASSIFICATION
The task of triple classification is to determine whether a
given triple (ei, rk , ej) is a golden triple or not, which is a
binary classification task. We use the WN18RR and FB15k-
237 datasets for these experiments as well. We create two
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FIGURE 8. Hit@10 (in percentage) and MRR on the WN18RR test set w.r.t each relation category. The right y-axis is the percentage of
triples corresponding relations.

TABLE 6. Experimental results on the MN18RR test set. The best score is in bold and second-best score is underlined.

TABLE 7. Experimental results on the FB15k-237 test set. The best score is in bold and second-best score is underlined.

corrupted triple sets as presented in Section IV.B for the triple
classification experiment.

For the triple classification task, we set a threshold δr for
each relation, which is obtained by maximizing the classifi-
cation accuracy of the validation set. Given a triple (ei, rk , ej),

if its score is greater than δr , it is classified as a golden triple,
otherwise it is classified as corrupted [25].

We choose TransE, TransH, TransR, TransD, ConvKB, and
n-hop-GATs as our baseline methods. In this experiment,
we select ADADELTA SGD as our optimization goal. We
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TABLE 8. Experimental results of Triple Classification (in percentage).

choose the margin γ = {1, 2, 5, 10}, entity and relation
embedding dimensions k = {50, 100, 150, 200}, and mini-
batch size B = {100, 200, 500, 1000}. After our experiments,
the optimal parameters of the validation set are k = 100,
γ = 2, B = 1000 on WN18RR; k = 100, γ = 1, B = 100
on FB15k-237.

For the two datasets, we testify the task by using 1000
iterations. The experimental results are presented in Table 8.
Table 8 shows that inWN18RR and FB15k-237, the accuracy
of the triple classification of the proposed GAATs model
is higher than the other models. The main reasons are: (1)
The translational models (TransE, TransH, TransR, TransD)
first randomly initialize the representation of entities and
relations, and then represent the embedding of entities and
relations based on h+ r ≈ t . The initial embedding is further
optimized using a neural network, so our model represen-
tation is better than the translational models; (2) ConvKB
method uses a CNNs to extract the features of the triple,
as a decoder in the n-hop-GATs model. Although the hidden
features of the triples can be found, it is easy to lose features
using the pooling method. (3) Compared with the n-hop-
GATs model, the proposed GAATs model first introduces the
attenuated attention mechanism, and then the decoder adopts
the more advanced CapsE model, so the accuracy is further
improved.

V. CONCLUSION
We propose the GAATs model, which applys an attenuated
attention mechanism into the representation of relations and
entities to obtain new embeddings on both entities and rela-
tions. In addition, we use the CapsE as our decoder, avoiding
the loss of features exhibited by the ConvKB. Therefore, our
model takes the diversity of triples into account. An extensive
experiment shows that our method is more effective than the
state-of-the-art methods in link prediction, triple classifica-
tion and relation prediction.

However, our model has a high computational complexity
due to the graph feature extraction, and time cost arising
from representing each triple separately. How to improve the
efficiency of the graph feature extraction is an urgent problem
to be solved. In addition, the temporal and spatial attributes
for dynamic KGs also need to be studied as the next research
goal.
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