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ABSTRACT In this paper, we propose a family of quantum synchronizable codes from repeated-root cyclic
codes and constacyclic codes. This family of quantum synchronizable codes are based on (λ(u + v)|u − v)
construction which is constructed from constacyclic codes. Under this construction, we enrich the varieties
of valid quantum synchronizable codes. We also prove that the obtained quantum synchronizable codes can
achieve maximum synchronization error tolerance. Furthermore, quantum synchronizable codes based on
(λ(u + v)|u − v) construction are shown to be able to have a better capability in correcting bit errors than
those from projective geometry codes.

INDEX TERMS Repeated-root constacyclic codes, quantum synchronizable codes, (λ(u + v)|u − v)
construction.

I. INTRODUCTION
In recent years, quantum computation and quantum commu-
nication have become a hot topic in communication, physics,
and mathematics. Quantum information theory has achieved
unprecedented development. Among them, quantum error
correction, which focuses on dealing with quantum noise, is a
necessary guarantee for the realization of quantum informa-
tion processing in a noisy environment. Typically, quantum
noise is characterized by operators acting on qubits. The most
common error model is a linear combination of the Pauli
operators I , X , Y , and Z operating on each qubit [1]. This
typical error model can be regarded as the quantum version
of additive noise, which is one of the most important and
deeply-studied error models in information theory. Also,mis-
alignment [2] concerning the block structure of a qubit stream
is another type of error in quantum information processing.
Misalignment is the simplest type of synchronization error,
which is different from the additive noise but also crucial.

In classical digital computing and communication, block
synchronization (or frame synchronization) is a challeng-
ing problem to make sure that the receiver can correctly
decode the transmitted information. Classical block synchro-
nization is commonly accomplished by information receiver

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Benevides Da Costa .

or processing equipment continuously monitoring data to
accurately identify the inserted boundary signals of infor-
mation blocks [3], [4], or by using synchronizable error-
correcting codes [5] that can correct both additive noise and
misalignment in block synchronization. However, the for-
mer way does not apply in the quantum domain because
the measurement of qubits usually destroys their contained
quantum information. Many scientists have been working on
a quantum analog of the latter technique.

Fortunately, Fujiwara [2] proposed a coding system, quan-
tum synchronizable error-correcting codes, which can simul-
taneously realize synchronization recovery and Pauli error
correction. In his scheme, a pair of nested dual-containing
cyclic codes are required, both of which promise large min-
imum distances. After that, Fujiwara et al. [6] improved
the known general framework for designing quantum syn-
chronizable codes through a more careful analysis of the
algebraic machinery behind synchronization recovery, and
gave several families of quantum synchronizable codes based
on punctured Reed-Muller codes and their ambient spaces.
Subsequently, quantum synchronizable codes were presented
from finite geometric codes [5], quadratic residue codes [7]
and repeated-root cyclic codes [8]. Furthermore, Luo et al. [9]
provided two new ways of constructing quantum synchroniz-
able codes. One is based on the (u+v|u−v) construction from
cyclic codes and negacyclic codes, and the other is to exploit
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the product construction to produce new cyclic codes from
two cyclic codes with coprime lengths. In the former case,
the obtained quantum synchronizable codes were shown to be
able to provide better performance in correcting Pauli errors
than non-primitive, narrow-sense BCH codes [8], [9], and
achieve the maximum tolerance against misalignment under
certain condition.

In this paper, we expand the results of Luo et al. [9] and
propose a family of quantum synchronizable codes based
on the (λ(u + v)|u − v) construction. This type of quan-
tum synchronizable codes are generated in two steps. First,
we exploit constacyclic codes to generate negacyclic codes
with twice the lengths. And then, we use the obtained nega-
cyclic codes and cyclic codes satisfying the property of nested
dual-containing to generate new cyclic codes. Our quantum
synchronizable codes are derived from the final obtained
cyclic codes. The (λ(u+v)|u−v) construction is deduced from
the (u+v|u−v) construction and appears in negacyclic codes
which are generated by constacyclic codes. We also present
the circumstancewhere the obtained synchronizable quantum
codes can achieve maximum tolerance against misalignment.
In particular, we show that quantum synchronizable codes
derived from cyclic codes and constacyclic codes may have
a better Pauli performance in correcting bit errors than those
from projective geometry codes.

In the next section, we first introduce classical error-
correcting codes and the quantum synchronizable coding
framework. In Section 3, we propose the general formalism of
quantum synchronization codes based on the (λ(u+ v)|u− v)
construction. In Section 4, we use repeated-root cyclic codes
and constacyclic codes to construct quantum synchronizable
codes presented in Section 3 and prove that the obtained quan-
tum codes can reach the maximum tolerance against mis-
alignment. In Section 5, we discuss the minimum distances
of above repeated-root constacyclic codes and give an exam-
ple of quantum synchronizable codes. Finally, we present a
summary of our work in the last section.

II. PRELIMINARIES
Let Fq be a finite field with q = pm a prime power, where p is
the odd prime characteristic of Fq and m is a positive integer.
Denote by F∗q = Fq\{0} the multiplicative group. It is well
known that F∗q is a cyclic group of order q − 1. Let ξ be a
primitive (q− 1)-th root of unity in Fq, then

Fpm = {0, ξ, . . . , ξp
m
−2, ξp

m
−1
= 1}.

For any element α ∈ F∗q, we define ordq(α) as order in the
multiplicative group F∗q.
A classical linear [n, k, d] code C over Fq of length n and

minimum Hamming distance d is a k-dimensional vector
subspace of Fnq, where d = min{wt(c)|c 6= 0, c ∈ C} and
wt(c) is the number of nonzero coordinates of a codeword c.
The code C can be determined by an (n− k)× n parity-check
matrix H , i.e., C = {c ∈ Fnq|HcT = 0}. Accordingly, there
exists a k × n generator matrix G satisfying HGT

= 0. The
dual code C⊥ = {c′ ∈ Fnq|c · c′T = 0,∀c ∈ C} of C is

an [n, n − k] linear code with a parity-check matrix G and
a generator matrix H . We call that C is a self-dual code if and
only if C = C⊥. Besides, C is said to be a self-orthogonal code
if C ⊂ C⊥and a dual-containing code if C⊥ ⊂ C.
Let λ be a nonzero element of Fq. Given an n-tuple

c = (c0, c1, . . . , cn−1) ∈ Fnq, define a λ-constacyclic shift
τλ on Fnq as

τλ(c0, c1, . . . , cn−1) = (λcn−1, c0, c1, . . . , cn−2).

A code C is λ-constacyclic if τλ(C) = C. And a λ-constacyclic
code C is said to be a cyclic code if λ = 1 and a negacyclic
code if λ = −1. Any λ-constacyclic code C of length n
over Fq can be identified as exactly one ideal in the quotient
ring Fq[x]

〈xn−λ〉 , which is generated by a monic polynomial g(x)
of xn − λ. We call the monic polynomial g(x) of degree
n − k as the generator polynomial of C and denote by C =
〈g(x)〉. Let h(x) = xn−λ

g(x) . Then the dual code C⊥ of C
is a λ−1-constacyclic code and has a generator polynomial
h∗(x), where h∗(x) = h(0)−1xdeg h(x)h(x−1) is the reciprocal
polynomial of h(x).
An [[n, k, d]] quantum error-correcting code Q is a

qk -dimensional subspace of a qn-dimensional Hilbert space
(Cq)⊗n, and can correct bit errors and phase errors caused
by Pauli operators of weight less than

⌊
d−1
2

⌋
. For an

(al, ar )− [[n, k]] quantum synchronizable code, it can cor-
rect not only Pauli errors, but block misalignment to the left
by at most al qudits and to the right by at most ar qudits for a
pair of nonnegative integers (al, ar ). Luo et al. [9] exploited
the well-known (u + v|u − v) construction on cyclic codes
and negacyclic codes to get new cyclic codes with twice the
lengths. Then they provided a newway in regard to generating
quantum synchronizable code. Let f (x) be a polynomial over
Fq with f (0) 6= 0. Denote by ord(f (x)) = |{xa mod f (x)|a ∈
N}| the order of the polynomial f (x). The main result is given
as following.
Theorem 1 [9]: Ci = 〈gi(x)〉 be an [n, ki, di] dual-

containing code for i ∈ {1, 2, 3, 4}. Suppose that C1, C2
are cyclic codes with C1 ⊂ C2 and C3, C4 are negacyclic
codes with C3 ⊂ C4. Define the polynomial f (x) to be
the quotient of g1(x)g3(x) divided by g2(x)g4(x). Then for
any pair of nonnegative integers al , ar such that al +
ar < ord(f (x)), there exists an (al, ar ) − [[2n + al +
ar , 2(k1 + k3) − n]] quantum synchronizable code that
can correct up to

⌊
min{2d2,2d4,max{d2,d4}}−1

2

⌋
bit errors and⌊

min{2d1,2d3,max{d1,d3}}−1
2

⌋
phase errors.

Theorem 1 needs a pair of dual-containing cyclic
codes C1, C2 and a pair of dual-containing negacyclic codes
C3, C4 to generate a family of quantum synchronizable
code. The obtained quantum synchronizable code can
achieve the maximum tolerance against misalignment when
ord(f (x)) = 2n. Besides, these quantum codes have a better
capability in correcting Pauli errors because cyclic codes on
(u+ v|u− v) construction have minimum distances no worse
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than or up to twice larger than the component cyclic codes
C1 and C3.

III. THE (λ(u + v )|u − v ) CONSTRUCTION
In this section, we discuss the quantum synchronizable codes
based on the (λ(u + v)|u − v) construction. Under this con-
struction, we are able to obtain new negacyclic codes with
twice the lengths from the component constacyclic codes.
It is required that x2n + 1 = (xn − λ1)(xn − λ2) since
we use an n-length λ1-constacyclic code and an n-length λ2
constacyclic code to generate a 2n-length negacyclic code.
Therefore, the conditions that λ12+1 = 0 and λ2 = −λ1 need
to be met. Some important results about the (λ(u+ v)|u− v)
construction are given in the following theorem.
Theorem 2: Let C1 and C2 be [n, k1] and [n, k2] consta-

cyclic code over Fq. Denote by G1, G2 and H1, H2 the
generator matrices and parity-check matrices of C1 and C2
respectively. And g1(x), g2(x) are the generator polynomials
of C1 and C2 respectively, where g1(x)|xn−λ1, g2(x)|xn−λ2
and λ2 = −λ1, λ12 + 1 = 0. Let λ = λ1. Then the (λ(u +
v)|u− v) construction C = C1 g C2 = {(λ(u+ v)|u− v)|u ∈
C1, v ∈ C2} is a [2n, k1 + k2,min {2d1, 2d2,max {d1, d2}}]
negacyclic code with a generator matrix

G =
(
−λ2G1 G1
λ1G2 −G2

)
, (1)

and a generator polynomial g(x) = g1(x)g2(x). The dual
code C⊥ is a (−λ(u+ v)|u− v) construction of C1⊥ and C2⊥,
i.e., C⊥ = (C1 g C2)⊥ = C1⊥gC2⊥ with the generator matrix

H =
(
−λ2

−1H1 H1
λ1
−1H2 −H2

)
. (2)

Proof: It is easily known that C1gC2 is the row space of
G, andG has rank k1+k2. So C1gC2 is a negacyclic code [10].
Assume that C1gC2 has a generator polynomial g(x)|x2n+1.
Since g is a codeword, g can be written as

g(x) = −λ2ag1 + λ1bg2 + xn(ag1 − bg2)

= λ(ag1 + bg2)+ xn(ag1 − bg2) (3)

for some polynomials a,b. The equality (3) can be rewritten
as g(x) = ag1(xn−λ2)− bg2(xn−λ1). Due to g1(x)|xn−λ1
and g2(x)|xn − λ2, we get g1(x)g2(x)|g(x). Finally, we have

deg(g(x)) = 2n− k1 − k2 = deg(g1(x)g2(x)).

So g(x) = g1(x)g2(x). Suppose that u ∈ C1, v ∈ C2 are
different codewords. If u 6= 0, then wt(λ(u + v), u − v) >
wt(u) > d1. And if u = 0, then wt(λv,−v) = 2d1. As a result,
the code C = C1gC2 based on the (λ(u+v)|u−v) construction
has the minimum distance d = min{2d1, 2d2,max(d1, d2)}.
The properties of the dual code C⊥ can be obtained by using
the same method. �
Remark: Consider the cyclic group F∗q = 〈ξ〉 of order q−1

where ξ is a primitive (q − 1)-th root of unity in Fq, we can
easily know that x2n+1 = (xn−ξ

pm−1
4 )(xn+ξ

pm−1
4 ). That is to

say, two constacyclic codes which can generate a negacyclic

code are ξ
pm−1

4 -constacyclic code and −ξ
pm−1

4 -constacyclic
code respectively. Note that there exists an element λ ∈ Fpm

such that λ = ξ
pm−1

4 if and only if p ≡ 1 mod 4 (any m) or
p ≡ 3 mod 4 (m is even).
Throughout this paper, we assume that p ≡ 1 mod 4

(any m) or p ≡ 3 mod 4 (m is even). Following Theorem 2,
we can now give the construction method of quantum syn-
chronizable code based on (λ(u + v)|u − v) construction as
follows.
Theorem 3: Let Ci = 〈gi(x)〉 be a [2n, ki, di] dual-

containing cyclic code for i ∈ {1, 2}. Let Cj = 〈gj(x)〉 be an
[n, kj, dj] constacyclic code for j ∈ {5, 6, 7, 8}. C5 = 〈g5(x)〉
and C7 = 〈g7(x)〉 are λ-constacyclic codes of length n. C6 =
〈g6(x)〉 and C8 = 〈g8(x)〉 are−λ-constacyclic codes of length
n. Suppose that C1 ⊂ C2, C5 ⊂ C7 and C6 ⊂ C8. Then C3 =
C5gC6, C4 = C7gC8 are negacyclic codes satisfying C3 ⊂ C4.
Denote by d3, d4 the minimum distances of C3, C4 and k3, k4
the dimensions of C3, C4 respectively. Define the polynomial
f (x) = g1(x)g5(x)g6(x)

g2(x)g7(x)g8(x)
. Then for any pair of nonnegative

integers al , ar such that al + ar < ord(f (x)), there exists an
(al, ar )−[[4n+al+ar , 2(k1+k5+k6−2n)]] quantum synchro-
nizable code that can correct up to

⌊
min{2d2,2d4,max{d2,d4}}−1

2

⌋
bit errors and

⌊
min{2d1,2d3,max{d1,d3}}−1

2

⌋
phase errors,

where d3 = min{2d5, 2d6,max{d5, d6}} and d4 =

min{2d7, 2d8,max{d7, d8}}.
Proof: From Theorem 2 we can get the result that

C3 = C5 g C6 = 〈g5(x)g6(x)〉 is a [2n, k5 + k6, d3]
negacyclic code with d3 = min{2d5, 2d6,max{d5, d6}} and
C4 = C7 g C8 = 〈g7(x)g8(x)〉 is a [2n, k7 + k8, d4] with
d4 = min{2d7, 2d8,max{d7, d8}}. It is clear that C3 ⊂ C4
because of C5 ⊂ C7 and C6 ⊂ C8. Then we can get the desired
quantum synchronizable codes by applying C1, C2, C3, C4 to
Theorem 1. �

IV. THE USE OF REPEATED-ROOT CONSTACYCLIC CODE
OVER Fq
In this section, we exploit repeated-root constacyclic codes
and cyclic codes over Fq to construct quantum synchroniz-
able codes. In particular, the maximum tolerance against
misalignment of the obtained quantum synchronizable code
is 4n because the maximum value of ord(f (x)) is 4n. Let
f (x) = g1(x)g5(x)g6(x)

g2(x)g7(x)g8(x)
in Theorem 3. The way of achieving

the maximum tolerance against misalignment is to make
ord( g5(x)g7(x)

) = 4n or ord( g6(x)g8(x)
) = 4n whatever the value of

ord( g1(x)g2(x)
) is.

A. THE USE OF REPEATED-ROOT CONSTACYCLIC CODES
OF LENGTH ps OVER Fq

Wefirst consider the easy case of constacyclic codes of length
ps. Firstly we have x2p

s
+ 1 = (xp

s
− λ)(xp

s
+ λ) with

λ = ξ
pm−1

4 ∈ Fpm . λ is a nonzero element of the field
Fpm , so λ−p

m
= λ−1. By the division algorithm, there exist

nonnegative integers r1, r2 such that s = r1m + r2 and
0 6 r2 6 m− 1. Let λ0 = −λ−p

(r1+1)m−s
= −λ−p

m−r2 . Then
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λ0
ps
= −λ−p

(r1+1)m
= −λ−1. The following lemma gives the

generator polynomial of λ-constacyclic code of length ps.
Lemma 1 [11]: Suppose that C = 〈g(x)〉 ⊂ Fq[x]

〈xps−λ〉
is

a λ-constacyclic code of length ps. There exists a nonzero
element λ0 ∈ F∗q such that λ0p

s
= −λ−1. Then the code C is

precisely the ideal 〈(λ0x + 1)i〉 ⊂ Fq[x]
〈xps−λ〉

, where 0 6 i 6 ps.
Applying Lemma 1 to Theorem 3, we can construct

quantum synchronizable codes from constacyclic codes of
length ps.
Theorem 4: Let Cr = 〈(x − 1)p

s
−εr,1 (x + 1)p

s
−εr,2〉 be a

cyclic code of length 2ps with ε1,1 6 ε2,1, ε1,2 6 ε2,2,
ps

2 6 εr,1, εr,2 6 ps, and r ∈ {1, 2}. Furthermore,
Ci = 〈(λ0x + 1)p

s
−εi〉 and Cj = 〈(−λ0x + 1)p

s
−εj〉 are

λ-constacyclic code and −λ-constacyclic code of length ps

respectively with ps

2 6 εi, εj 6 ps for i ∈ {5, 7} and j ∈ {6, 8},

where λ = ξ
pm−1

4 and λ0p
s
= −λ−1. Assume that ε5 6 ε7

and ε6 6 ε8. If ε7−ε5 > ps−1 or ε8−ε6 > ps−1, then for any
pair of nonnegative integers al , ar such that al + ar < 4ps,
we can construct an (al, ar ) − [[4ps + al + ar , k]] quantum
synchronizable code where k = 2(ε1,1+ε1,2+ε5+ε6−2ps).

Proof: Cr is a dual-containing code since the condi-
tion ps

2 6 εr,1, εr,2 6 ps for r ∈ {1, 2}. By Lemma 1,
λ-constacyclic code Ci has a generator polynomial as follows:

gi(x) = (λ0x + 1)p
s
−εi , i ∈ {5, 7},

with λ0
ps
= −λ−1. Due to λ−1 = −λ, we can get

−λ-constacyclic code Cj has a generator polynomial as
follows:

gj(x) = (−λ0x + 1)p
s
−εj , j ∈ {6, 8}.

It is clear that C3 = C5 g C6 and C4 = C7 g C8 are negacyclic
codes. Furthermore, the fact that C1 ⊂ C2 and C3 ⊂ C4 is
obvious due to the assumption that ε1,1 6 ε2,1, ε1,2 6 ε2,2,
and ε5 6 ε7, ε6 6 ε8. If ε7 − ε5 > ps−1 or ε8 − ε6 > ps−1,
then the order of the polynomial

f (x) =
g1(x)g5(x)g6(x)
g2(x)g7(x)g8(x)

= (x − 1)ε2,1−ε1,1 (x + 1)ε2,2−ε1,2

× (λ0x + 1)ε7−ε5 (−λ0x + 1)ε8−ε6 (4)

is 4ps. By applying above properties to Theorem 3, we can
naturally complete the proof of Theorem 4. �

B. THE USE OF REPEATED-ROOT CONSTACYCLIC CODES
OF LENGTH lps OVER Fq

Now we investigete constacyclic codes of length lps as the
component codes in Theorem 4, where l, p are distinct primes
(the case l = 2 will be discussed later), q = pm and m, s ≥ 1
are positive integers.

For any integer t , denote by Ct the q-cyclotomic coset of
t modulo l over Fq by Ct = {t · qj(mod l)|j = 0, 1, . . .}.
Let γ be a primitive l-th root of unity in the extension field
Fqw , where w = ordl(q) indicates the order of q in Z∗

l
.

Let e = l−1
w . Then the following equality gives the irreducible

factorization of x lp
s
− 1 in Fq[x]:

x lp
s
− 1 = (x l − 1)p

s
=

e∏
t=0

Mt (x)p
s

(5)

whereMt (x) =
∏
i∈Ct

(x − γ i) is the minimal polynomial of γ t

over Fq for 0 6 t 6 e. Denote by M̂t (x) the monic polyno-
mial of Mt (x) dividing its leading coefficient. The following
lemma gives the generator polynomials of λ-constacyclic
codes of length lps.
Lemma 2 [12]: Suppose that C = 〈g(x)〉 ⊂ Fq[x]

〈xlps−λ〉
is a

λ-constacyclic code of length lps. Let w = ordl(q).
(I). If gcd(l, q − 1) = 1, then there exists a unique element
a ∈ F∗q such that alp

s
λ = 1. And we have the generator

polynomial of C as follows

g(x) =
e∏
t=0

M̂t (ax)p
s
−εt . (6)

Especially, if w is odd, the generator polynomial of C can be
written as

g(x) = (x − a−1)p
s
−ε0

e
2∏

t=0

M̂t (ax)p
s
−εt M̂−t (ax)p

s
−ε−t , (7)

where 0 6 εt , ε−t 6 ps for 0 6 t 6 e
2 .

(II). If gcd(l, q− 1) = l, let ζ ∈ Fq be a primitive l-th root of
unity in Fq. One of the following two cases holds:
(i). λ ∈ 〈ξ l〉. Then there exists a unique element b ∈ F∗q such
that blp

s
λ = 1, and the generator polynomial of C is

g(x)= (x−b−1)p
s
−ε0

l−1
2∏

t=1

(x−b−1ζ t )
ps−εt (x−b−1ζ−t )

ps−ε−t
,

(8)

where 0 6 εt , ε−t 6 ps for 0 6 t 6 l−1
2 .

(ii). λ /∈ 〈ξ l〉. A unique integer j with 1 6 j 6 l − 1 and an
element d ∈ F∗q can be found such that d lp

s
λ = ξ jp

s
. Then

the generator polynomial of C is

g(x) = (x − d−lξ j)p
s
−ε, 0 6 ε 6 ps. (9)

Applying Lemma 2 to Theorem 4, we can easily obtain
a family of quantum synchronizable codes that possess the
maximum tolerance against misalignment.
Theorem 5: Let l be an odd prime satisfying gcd(l,

q − 1) = 1. Assume that C1 = 〈g1(x)〉, C2 = 〈g2(x)〉 are
cyclic codes of length 2lps. C5 = 〈g5(x)〉, C7 = 〈g7(x)〉
are λ-constacyclic codes of length lps. C6 = 〈g6(x)〉, C8 =
〈g8(x)〉 are −λ-constacyclic codes of length lps. There exists
a unique element a ∈ F∗q such that alp

s
λ = 1, where λ =

ξ
pm−1

4 . Let w = ordl(q).
(I). If w is even, then the generator polynomial of cyclic code
Cr for r ∈ {1, 2} is

gr (x) =
e∏
t=0

Mt (x)p
s
−εr,t M̂t (−x)p

s
−δr,t , r ∈ {1, 2}, (10)
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with ps

2 6 εr,t , δr,t 6 ps for 0 6 t 6 e. Furthermore,
constacyclic codes Ci, Cj for i ∈ {5, 7} and j ∈ {6, 8} have
generator polynomials

gi(x) =
e∏
t=0

M̂t (ax)p
s
−εi,t , i ∈ {5, 7},

gj(x) =
e∏
t=0

M̂t (−ax)p
s
−εj,t , j ∈ {6, 8}, (11)

respectively with ps

2 6 εi,t , εj,t 6 ps for 0 6 t 6 e. Assume
that

ε1,t 6 ε2,t , δ1,t 6 δ2,t ,

ε5,t 6 ε7,t , ε6,t 6 ε8,t , (12)

for 0 6 t 6 e. If there exists an integer v in the range
0 6 v 6 e such that ε7,v− ε5,v > ps−1 or ε8,v− ε6,v > ps−1,
then for any pair of nonnegative integers al , ar such that
al + ar < 4lps, we can construct an (al, ar )− [[4lps + al +
ar , k]] quantum synchronizable code where

k = 2(
e∑
t=1

(ε1,t + δ1,t + ε5,t + ε6,t )w

+ (ε1,0 + δ1,0 + ε5,0 + ε6,0)− 2lps). (13)

(II). If w is odd, then the generator polynomial of cyclic code
Cr for r ∈ {1, 2} is

gr (x) = (x − 1)p
s
−εr,0 (x + 1)p

s
−δr,0

e
2∏

t=1

[Mt (x)p
s
−εr,t

×M−t (x)p
s
−εr,−t M̂t (x)p

s
−δr,t M̂−t (x)p

s
−δr,−t ],

r ∈ {1, 2},

with ps

2 6 ε1,0, ε2,0 6 ps, ps

2 6 δ1,0, δ2,0 6 ps, ps 6
εr,t + εr,−t , δr,t + δr,−t 6 2ps for 1 6 t 6 e

2 . Furthermore,
constacyclic codes Ci, Cj for i ∈ {5, 7} and j ∈ {6, 8} have
generator polynomials

gi(x)= (x − a−1)p
s
−εi,0

e
2∏

t=0

M̂t (ax)p
s
−εi,t M̂−t (ax)p

s
−εi,−t ,

i ∈ {5, 7},

gj(x)= (x+a−1)p
s
−εj,0

e
2∏

t=0

M̂t (−ax)p
s
−εj,t M̂−t (−ax)p

s
−εj,−t ,

j ∈ {6, 8}, (14)

respectively with ps

2 6 εi,t , εj,t 6 ps, ps 6 εi,t + εi,−t , εj,t +
εj,−t 6 2ps for 1 6 t 6 e

2 , where a
lpsλ = 1. Assume that

ε1,0 6 ε2,0, ε1,t 6 ε2,t , ε1,−t 6 ε2,−t , ε5,0 6 ε7,0,

ε5,t 6 ε7,t , ε6,t 6 ε8,t , δ1,0 6 δ2,0, δ1,t 6 δ2,t ,

δ1,−t 6 δ2,−t , ε6,0 6 ε8,0, ε5,−t 6 ε7,−t , ε6,−t 6 ε8,−t ,

(15)

for 1 6 t 6 e
2 . If there exists an integer v in the range

−
e
2 6 v 6 e

2 such that ε7,v − ε5,v > ps−1 or ε8,v − ε6,v >

ps−1, then for any pair of nonnegative integers al , ar such that
al + ar < 4lps, we can construct an (al, ar )− [[4lps + al +
ar , k]] quantum synchronizable code where

k = 2(
∑

−
e
26t6 e

2 ,t 6=0

(ε1,t + δ1,t + ε1,−t + δ1,−t + ε5,t

+ ε6,t + ε5,−t + ε6,−t )w+ (ε1,0 + δ1,0 + ε5,0 + ε6,0)

− 2lps). (16)

Proof: Assume w is even. We have the factorization

x2lp
s
− 1 = (x2l − 1)p

s
=

e∏
t=0

Mt (x)p
s
M̂t (−x)p

s
. (17)

The generator polynomial of Cr is obvious. It is easy to verify
that Cr is dual-containing code due to the condition that p

s

2 6
εr,t , δr,t 6 ps for 0 6 t 6 e and r ∈ {1, 2}. By Lemma 2(I),
λ-constacyclic code Ci has a generator polynomial as follows

gi(x) =
e∏
t=0

M̂t (ax)p
s
−εi,t , i ∈ {5, 6},

with a unique element a ∈ F∗q such that alp
s
λ = 1, where

ps

2 6 εi,t 6 ps for 0 6 t 6 e. In a similar way, we can know
that −λ-constacyclic code Cj has a generator polynomial as
follows

gj(x) =
e∏
t=0

M̂t (−ax)p
s
−εj,t , j ∈ {6, 8},

with a unique element−a ∈ F∗q such that (−a)lp
s
· (−λ) = 1,

where ps

2 6 εj,t 6 ps for 0 6 t 6 e. Let C = C5 g C6 and
D = C7 g C8. C and D are negacyclic codes by Theorem 2.
Then C and D have generator polynomials

gC(x) =
e∏
t=0

M̂t (ax)p
s
−ε5,t M̂t (−ax)p

s
−ε6,t ,

gD(x) =
e∏
t=0

M̂t (ax)p
s
−ε7,t M̂t (−ax)p

s
−ε8,t , (18)

respectively. C and D are also dual-containing codes due to
the condition that ps

2 6 εi,t , εj,t 6 ps for 0 6 t 6 e.
According to the assumption (12), we get C1 ⊂ C2 and
C ⊂ D. Next we prove the order of f (x) in Theorem 3 is 4n.
Under the assumptions, the polynomial f (x) is

f (x)

=
g1(x)g5(x)g6(x)
g2(x)g7(x)g8(x)

=

e∏
t=0

Mt (x)p
s
−ε1,t M̂t (−x)p

s
−δ1,t M̂t (ax)p

s
−ε5,t M̂t (−ax)p

s
−ε6,t

e∏
t=0

Mt (x)p
s−ε2,t M̂t (−x)p

s−δ2,t M̂t (ax)p
s−ε7,t M̂t (−ax)p

s−ε8,t

=

e∏
t=0

[Mt (x)ε1,t−ε2,t M̂t (−x)δ1,t−δ2,t

× M̂t (ax)ε7,t−ε5,t M̂t (−ax)ε8,t−ε6,t ].
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Pick an integer v in the range 0 6 v 6 e satisfying
ε7,v − ε5,v > ps−1 or ε8,v − ε6,v > ps−1, then ord(f (x))
has a factor ps · ord(M̂v(ax)). It is easily known that
ord(M̂v(ax)) = 4l. We have ord(f (x)) > 4lps. There is also
ord(f (x)) 6 4lps, so we get ord(f (x)) = 4lps. Finally, Cr has
dimension

kr = 2lps − (
e∑
t=1

(ps − εr,t + ps − δr,t )w

+ (ps − εr,0 + ps − δr,0))

=

e∑
t=1

(εr,t + δr,t )w+ (εr,0 + δr,0).

Similarly, C and D have dimensions

kC =
e∑
t=1

(ε5,t + ε6,t )w+ (ε5,0 + ε6,0),

kD =
e∑
t=1

(ε7,t + ε8,t )w+ (ε7,0 + ε8,0),

respectively. Applying the above discussion to Theorem 3,
we can build the quantum synchronizable code with the
desired parameters. For the case that w is odd, we can get
the statement in (II) by taking similar argument of the case
that w is even. �
Theorem 6: Let l be an odd prime satisfying gcd(l,

q − 1) = l. Assume that C1 = 〈g1(x)〉, C2 = 〈g2(x)〉 are
cyclic codes of length 2lps. C5 = 〈g5(x)〉, C7 = 〈g7(x)〉
are λ-constacyclic codes of length lps with λ = ξ

pm−1
4 .

C6 = 〈g6(x)〉, C8 = 〈g8(x)〉 are −λ-constacyclic codes of
length lps. Then cyclic code Cr has a generator polynomial
gr (x) = gr1(x)gr2(x) for r ∈ {1, 2}, where

gr1(x) = (x − 1)p
s
−εr,0

l−1
2∏

t=1

(x − ζ t )p
s
−εr,t (x − ζ−t )p

s
−εr,−t

,

gr2(x) = (x + 1)p
s
−δr,0

l−1
2∏

t=1

(x + ζ t )p
s
−δr,t (x + ζ−t )p

s
−δr,−t

,

(19)

with ps

2 6 ε1,0, ε2,0 6 ps, p
s

2 6 δ1,0, δ2,0 6 ps, ps 6 εr,t +
εr,−t , δr,t + δr,−t 6 2ps for 1 6 t 6 l−1

2 . Furthermore,
constacyclic codes Ci, Cj for i ∈ {5, 7} and j ∈ {6, 8} have
generator polynomials

gi(x) = (x − b−1)p
s
−εi,0

l−1
2∏

t=1

(x − b−1ζ t )
ps−εi,t

× (x − b−1ζ−t )
ps−εi,−t

, i ∈ {5, 7},

gj(x) = (x + b−1)p
s
−εj,0

l−1
2∏

t=1

(x + b−1ζ t )
ps−εj,t

× (x + b−1ζ−t )
ps−εj,−t

, j ∈ {6, 8}, (20)

respectively with ps

2 6 εi,t , εj,t 6 ps and ps 6 εi,t +

εi,−t , εj,t + εj,−t 6 2ps for 0 6 t 6 e, where blp
s
λ = 1.

Assume that

ε1,0 6 ε2,0, ε1,t 6 ε2,t , ε1,−t 6 ε2,−t ,

ε5,0 6 ε7,0, ε5,t 6 ε7,t , ε6,t 6 ε8,t ,

δ1,0 6 δ2,0, δ1,t 6 δ2,t , δ1,−t 6 δ2,−t ,

ε6,0 6 ε8,0, ε5,−t 6 ε7,−t , ε6,−t 6 ε8,−t , (21)

for 1 6 t 6 l−1
2 . If there exists an integer v in the range

−
l−1
2 6 v 6 l−1

2 such that ε7,v−ε5,v > ps−1 or ε8,v−ε6,v >
ps−1, then for any pair of nonnegative integers al , ar such that
al + ar < 4lps, we can construct an (al, ar )− [[4lps + al +
ar , k]] quantum synchronizable code where

k = 2(

l−1
2∑

t=− l−1
2

(ε1,t + δ1,t + ε1,−t + δ1,−t + ε5,t + ε6,t

+ ε5,−t + ε6,−t )w+ (ε1,0 + δ1,0 + ε5,0 + ε6,0)− 2lps).

Proof: Note that q−1l is even, so λ = ξ
pm−1

4 ∈ 〈ξ l〉. Then
taking arguments similar to the proof of Theorem 5, we can
get the results in Theorem 6. �

Now we consider the case of l = 2. Similarly, there exists
a polynomial reduction x4p

s
+ 1 = (x2p

s
− λ)(x2p

s
+ λ) with

λ = ξ
pm−1

4 . Dinh [13] has discussed the generator polynomial
of constacyclic codes of length 2ps. Divide the elements of F∗q
into two disjoint subsets Aodd ∪ Aeven, where

Aodd = {ξ i|1 6 i 6 pm − 1, i is odd},

and

Aeven = {ξ i|1 6 i 6 pm − 1, i is even}.

Obviously, {0}, Aodd and Aeven are disjoint sets. 2ps-length
λ -constacyclic codes can be described clearly as following
lemmas.
Lemma 3 [13]: Suppose that C = 〈g(x)〉 ⊂ Fq[x]

〈xps−λ〉
is a

λ -constacyclic code of length 2ps. Then one of the following
two cases holds:
(I). If λ ∈ Aeven, then there exists a nonzero element
θ0 ∈ F∗q such that θ02p

s
= λ−1 and C is the ideal

〈(θ0x − 1)i(θ0x + 1)j〉 ⊂ Fq[x]
〈x2ps−λ〉

, where 0 6 i, j 6 ps.
(II). If λ ∈ Aodd , then there exists a nonzero element θ1 ∈ F∗q
such that θ1p

s
= −λ. C is the ideal 〈(x2 + θ1)i〉 ⊂

Fq[x]
〈x2ps−λ〉

,
where 0 6 i 6 ps.
Nowwe give Theorem 7 on constructing quantum synchro-

nizable codes from constacyclic codes of length 2ps.
Theorem 7: Assume that C1 = 〈g1(x)〉, C2 = 〈g2(x)〉 are

cyclic codes of length 4ps. C5 = 〈g5(x)〉, C7 = 〈g7(x)〉 are
λ-constacyclic codes of length 2ps with λ = ξ

pm−1
4 . C6 =

〈g6(x)〉, C8 = 〈g8(x)〉 are −λ-constacyclic codes of length
2ps. Then the generator polynomial of cyclic code Cr for r ∈
{1, 2} is

gr (x) = (x − 1)p
s
−εr,1 (x + 1)p

s
−εr,2 (x − λ)p

s
−δr,1

× (x + λ)p
s
−δr,2 , r ∈ {1, 2}. (22)
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The generator polynomials of Ci, Cj, i ∈ {5, 7} and j ∈ {6, 8}
are one of the following two cases:
(I). If p ≡ 1 mod 8 (any m) or p ≡ 3, 5, 7 mod 8 (m is even),
then Ci, Cj have generator polynomials

gi(x) = (θ0x − 1)p
s
−εi,1 (θ0x + 1)p

s
−εi,2 , i ∈ {5, 7},

gj(x) = (θ0−1x − 1)p
s
−εj,1 (θ0−1x + 1)p

s
−εj,2 , j ∈ {6, 8},

(23)

respectively with θ02p
s
= λ−1, where ps

2 6 εi,t , εj,t 6 ps for
t ∈ {1, 2}. Assume that ε5,t 6 ε7,t , ε6,t 6 ε8,t for t ∈ {1, 2}.
If there exists an integer v ∈ {1, 2} such that ε7,v − ε5,v >
ps−1 or ε8,v − ε6,v > ps−1, then for any pair of nonnegative
integers al , ar such that al + ar < 8ps, we can construct an
(al, ar )− [[8ps + al + ar , k]] quantum synchronizable code

where k = 2(
2∑
t=1

(ε1,t + δ1,t + ε5,t + ε6,t )− 4ps).

(II). If p ≡ 5 mod 8 (m is odd), then Ci, Cj have generator
polynomials

gi(x) = (x2 + θ1)p
s
−εi , i ∈ {5, 7},

gj(x) = (x2 + θ1−1)p
s
−εj , j ∈ {6, 8}, (24)

respectively with θ1p
s
= −λ, where ps

2 6 εi, εj 6 ps.
Assume that ε5 6 ε7, ε6 6 ε8. If there exists an integer
v ∈ {1, 2} such that ε7,v − ε5,v > ps−1 or ε8,v − ε6,v > ps−1,
then for any pair of nonnegative integers al , ar such that
al+ar < 8ps, we can construct an (al, ar )−[[8ps+al+ar , k]]

quantum synchronizable code where k = 2(
2∑
t=1

(ε1,t + δ1,t )+

(ε5 + ε6)− 4ps).
Proof: Note that λ ∈ Aeven if p ≡ 1 mod 8 (any m)

or p ≡ 3, 5, 7 mod 8 (m is even), and λ ∈ Aodd if p ≡
5 mod 8 (m is odd). We can get the generator polynomials
of λ-constacyclic codes by Lemma 3. There does not exist
λ-constacyclic codes of length 2ps in other cases of pmodulo
8. Then taking arguments similar to the proof of Theorem 5,
we can obtain the results of Theorem 7. �
From Theorem 4, 5, 6, and 7, we can tell that the quan-

tum synchronizable codes can be derived from cyclic codes
and constacyclic codes. And the conditions that quantum
synchronizable codes reach maximum tolerance against mis-
alignment are proved.

V. THE ERROR-CORRECTING CAPABILITY OF QUANTUM
SYNCHRONIZABLE CODES
In this section, we discuss the error-correcting capability of
quantum synchronizable codes in Section 4. If the consta-
cyclic codes and cyclic codes meet the conditions of theorems
mentioned in Section 4, the the obtained quantum synchro-
nizable codes can achieve maximum tolerance against mis-
alignment. Besides, the component classical codes with large
minimum distances guarantee that quantum synchronizable
codes have great ability in correcting Pauli errors. For sim-
plicity, we only discuss the error-correcting capability against
bit errors. Phase errors can be discussed through the same
method.

Firstly, there is an Fq-algebra isomorphism [12]

ϕa :
Fq[x]
〈x lps − 1〉

→
Fq[x]
〈x lps − λ〉

,

f (x) 7→ f (ax), (25)

where a is a nonzero element of F∗q. Therefore, the mini-
mum distances of lps-length constacyclic codes can be deter-
mined by following the same strategies of cyclic codes.
And Luo et al. [8] have discussed the computation of the
minimum distances of lps-length cyclic codes. Define a set
of corresponding simple-root l-length λ-constacyclic codes
{Ci,v|0 6 v 6 ps − 1} with the generator polynomial

ḡi,v(x) =
e∏
t=0

M̂t (ax)
fv,εi,t , (26)

where fv,εi,t =
{
1, if ps − εi,t > v,
0, otherwise.

Denote by Pv the

Hamming weight of the polynomial (x − 1)v and Pv =
s−1∏
u=0

(vu + 1), where v =
s−1∑
u=0

vupu for 0 6 vu 6 p − 1 and

0 6 u 6 s− 1. Define the set [14]

V = {v =
u−1∑
µ=1

(p− 1)ps−µ + τps−µ−1|1 6 u 6 s,

1 6 τ 6 p− 1} ∪ {0}. (27)

Then the minimum distance d(Ci) of λ-constacyclic code Ci
can be computed by

d(Ci) = min{Pv · d(Ci,v)|v ∈ V }, (28)

where d(Ci,v) is the minimum distance of Ci,v. Therefore,
we are able to convert the computation of d(Ci) into com-
puting min{Pv|v ∈ V } and d(Ci,v). The minimum distance of
−λ-constacyclic code Cj can be discussed similarly.

Let εmin and εmax be the minimum and maximum elements
in the set {ps − εi,t |0 6 t 6 e} respectively. Parameter
d ′ denotes the minimum distance of Ci,v′ , where Pv′ =
min{Pv|v ∈ V , εmin 6 v < εmax}. Parameters 1 6
β, β1, β2 6 p−2, 1 6 µ,µ1, µ2 6 s−1 and 1 6 τ, τ1, τ2 6
p− 1 are integers. Then the minimum distance of lps-length
constacyclic code are listed in Table 1.

From the above, we take 3ps-length constacyclic codes
as an example. Let l = 3 be a prime distinct from p and
gcd(l, q − 1) = 1. Then we have pm ≡ 2 (mod 3). Due
to (25) we can construct a Fq-algebra isomorphism ϕθ :
Fq[x]
〈x3ps−1〉

→
Fq[x]
〈x3ps−λ〉

that maps f (x) to f (θx), where θ ∈ F∗q
such that θ3p

s
λ = 1 [15]. When l = 3 and pm ≡ 2 (mod 3),

3ps-length cyclic code has a generator polynomial g(x) =
(x − 1)p

s
−i1 (x2 + x + 1)p

s
−i2 for 0 6 i1, i2 6 ps. According

to the map ϕθ , the generator polynomials of Ci, Cj are

gi(x) = (x + a)p
s
−εi,1 (x2−ax + a2)p

s
−εi,2 , i ∈ {5, 7},

gj(x) = (x − a)p
s
−εj,1 (x2 + ax + a2)p

s
−εj,2 , j ∈ {6, 8},

(29)
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TABLE 1. The minimum distance of an lps-length constacyclic code Ci = 〈
e∏

t=0
M̂t (ax)p

s−εi,t 〉 with 0 6 εi,t 6 ps for 0 6 t 6 e.

respectively with ps

2 6 εi,1, εi,2, εj,1, εj,2 6 ps. The mini-
mum distances of Ci,v and Cj,v are given as follows

d(Ci,v) =


1, if ps − εi,1 6 v, ps − εi,2 6 v
2, if ps − εi,1 > v, ps − εi,2 6 v
3, if ps − εi,1 6 v, ps − εi,2 > v
∞, if ps − εi,1 > v, ps − εi,2 > v,

(30)

d(Cj,v) =


1, if ps − εj,1 6 v, ps − εj,2 6 v
2, if ps − εj,1 > v, ps − εj,2 6 v
3, if ps − εj,1 6 v, ps − εj,2 > v
∞, if ps − εj,1 > v, ps − εj,2 > v.

(31)

Assume that ps − εi,1 < ps − εi,2 and ps − εj,1 < ps − εj,2,
then there exsits an element v′ ∈ V such that d( Ci,v′ ) =
3 and Pv′ = min{Pv|v ∈ V , ps − εi,1 6 v < ps − εi,2}.
We also can find an element v1′ ∈ V such that d( Cj,v1 ′ ) = 3.
Table 2 lists sample parameters for constacyclic codes Ci, Cj
and negacyclic code Ci g Cj based on the (λ(u + v)|u − v)
construction.

Suppose that Cr is a 6ps-length cyclic code with a generator
polynomial

gr (x) = (x − 1)p
s
−εr,1 (x + 1)p

s
−εr,2 (x2 + x + 1)p

s
−δr,1

× (x2 − x + 1)p
s
−δr,2 , r ∈ {1, 2}. (32)

The minimum distance of a 6ps-length cyclic code be com-
puted using the strategies in [8]. Then the 12ps-length cyclic
code Crg(CigCj) can be determined.We list some parameters
in Table 3.

TABLE 2. Sample parameters for 3ps-length constacyclic codes Ci , Cj
and a 6ps-length negacyclic code Ci g Cj with i ∈ {5,7} and j ∈ {6,8}.

TABLE 3. Sample parameters for a 12ps-length cyclic code Cr g (Ci g Cj )
with r ∈ {1,2}, i ∈ {5,7} and j ∈ {6,8}.

We can know that the constacyclic codes and cyclic codes
in Table 3 meet the conditions of Theorem 5(II). According
to Theorem 5(II), the quantum synchronizable codes from
constacyclic codes and cyclic codes with the parameters
in Table 3 reach maximum tolerance against misalignment.
According to the sample parameters in Table 2 and 3, we can
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TABLE 4. Sample parameters for p-ary projective geometry codes.

tell that it is easy to construct dual-containing constacyclic
codes for a set of parameters. This is because repeated-root
constacyclic codes have their advantageous dual-containing
properties. And due to the strong relation between their mini-
mum distances and those of a corresponding set of simple-
root cyclic codes, we can exactly compute the minimum
distance of constacyclic codes.

Table 4 lists some sample parameters of projective geome-
try codes. By the comparison between Table 3 and 4, we can
tell that if the parameters of repeated-root cyclic codes and
constacyclic codes are chosen properly, then Crg(CigCj) has
larger minimum distance than a projective geometry code of
close length.
Example 1: Taking case 3 in Table 3 for example, we can

use the constacyclic codes and cyclic codes with the parame-
ters of case 3 to construct an (al, ar )− [[1452+al+ar , 466]]
quantum synchronizable code Q1. Q1 can correct at least
up 3 bit errors. Besides, we can construct an (al, ar ) −
[[1464+al+ar , 890]] quantum synchronizable codeQ2 from
a projective geometry code [5], [16] with the parameters of
case 3 in Table 4. Q2 also reach maximum tolerance against
misalignment. AndQ2 can corrects at least up to 1 bit errors.
Comparing Q1 with Q2, we can see that Q1 from cyclic

codes and constacyclic codes can correct more bit errors
thanQ2 from a projective geometry code over the same base
fields of close lengths. In other words, although both of Q1
and Q2 achieve maximum tolerance against misalignment,
the quantum synchronizable codes from cyclic codes and
constacyclic codes may have a better capability in correcting
bit errors than those from projective geometry codes in some
cases.
Example 2: We can use the constacyclic codes and cyclic

codes with the parameters of case 4 in Table 3 to construct an
(al, ar ) − [[3468 + al + ar , 436]] quantum synchronizable
code Q3. Q3 can correct at least up 5 bit errors and 5 phase
errors. However, an (al, ar ) − [[5220 + al + ar , 4609]]
quantum synchronizable codeQ4 from a projective geometry
code with the parameters of case 4 in Table 4 can corrects at
least up to 1 bit errors and 8 phase errors.

According to the above examples, the quantum synchroniz-
able codes from projective geometry codes reduce bit error-
correcting capabilities because the cyclic codes responsible
for bit error detection will have smaller minimum distances
[5]. We use the parameters in Table 3 and construct quantum
synchronizable codes which are listed in Table 5. We can
tell that quantum synchronizable codes from cyclic codes and
constacyclic codes can correct bit errors and phase errors with

TABLE 5. Sample parameters for a 12ps-length cyclic code Cr g (Ci g Cj )
with r ∈ {1,2}, i ∈ {5,7} and j ∈ {6,8}.

a close number. So our quantum synchronizable codes ensure
good performance in both bit errors and phase errors.

VI. CONCLUSION
In this paper, we expand the work of [9] and present
a family of quantum synchronizable codes based on the
(λ(u+v)|u−v) construction. This family of quantum synchro-
nizable codes are derived from cyclic codes and constacyclic
codes. The obtained quantum synchronizable codes can reach
maximum tolerance against misalignment under some condi-
tions. Besides, we precisely compute minimum distance of
the component cyclic codes and constacyclic codes. Some
sample parameters are listed in Table 2 and 3. We also give
the sample parameters of projective geometry codes. By the
comparison between two types of quantum synchronizable
codes, we illustrate that quantum synchronizable codes from
repeated-root codes of length lps are able to have a better per-
formance in correcting bit errors than those from projective
geometry codes in some cases.
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