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ABSTRACT In this paper, we propose an adaptive beamforming algorithm for large uniform linear arrays
(ULAs), where only a nested subarray is utilized to calculate the beamforming coefficients for the original
ULA. In this algorithm, the steering vectors and powers of the signal-of-interest (SOI) and interferences
are firstly estimated using the Capon spatial spectrum and known array structure, and the interference-
plus-noise covariance matrix (INCM) is then constructed. Subsequently, an augmented INCM is formed
via vectorization and spatial smoothing operations. Finally, the beamformer weight vector is determined by
the augmented INCM and the estimated SOI steering vector. Our proposed algorithm exploits the enhanced
degrees of freedom of the nested array, and thus can be applied to a large ULA to reduce the implementation
complexity. Moreover, it fundamentally eliminates the SOI component. Numerical results demonstrate that
the proposed algorithm performs better than the existing approaches.

INDEX TERMS Adaptive beamforming, nested subarray, spatially smoothed matrix (SSM), augmented
INCM (AINCM).

I. INTRODUCTION
In array signal processing, adaptive beamforming is a fun-
damental technology due to wide applications, e.g., in radar,
sonar, wireless communications, cognitive radio networks,
medical imaging [1]–[3]. The minimum variance distortion-
less response (MVDR) beamformer is an optimal adap-
tive filter, which provides outstanding spatial resolution and
interference rejection capability [4]. Nevertheless, the stan-
dard MVDR beamformer is quite sensitive to the mismatch
between the actual steering vector and presumed one, which
is caused by various imperfections such as look direction
errors and local scattering effects. The standard MVDR
beamformer will suffer significant performance deteriora-
tion with steering vector mismatches, especially when the
training data contains the signal-of-interest (SOI). In the
past decades, many robust adaptive beamformers have been
suggested to enhance the robustness of the standard MVDR
beamformer [5]–[37].
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Degrees of freedom (DOFs) is a key factor affecting the
performance of adaptive beamforming. Generally, a higher
number of DOFs means higher spatial resolution and better
interference rejection capability [38]. Traditional adaptive
beamformers are mostly designed for the uniform linear array
(ULA), where the element spacing is not more than half a
wavelength to avoid spatial aliasing. However, the number of
DOFs of ULAs increases linearly as the number of sensors
increases. To enhance the number of DOFs within the ULA
configuration, more sensors are required, thus bringing about
a high complexity that may be impractical or uneconomi-
cal. Fortunately, nonuniform linear arrays (NLAs) provide
an effective solution to this issue [39]. By generating the
difference coarray [40], a NLA can provide a significantly
higher number of DOFs than the traditional ULAs.

The nested array, as a NLA, have attracted intensive atten-
tion for years. It can achieve O(M2) DOFs using only M
physical sensors [41]. In particular, the two-level nested array
can yield a hole-free difference coarray. Recently, lots of
works have been reported on direction-of-arrival (DOA) esti-
mation based on nested arrays [42]–[50]. But only a few
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works on nested array adaptive beamforming are presented.
Nested array adaptive beamforming was firstly proposed
in [38]. The beamformer of [38] is actually the MVDR beam-
former with increasedDOFs, where an augmented covariance
matrix called spatially smoothed matrix (SSM) is constructed
to compute the beamformer weight vector. In [51], another
augmented covariance matrix was constructed for adaptive
beamforming with enhanced DOFs. The new covariance
matrix is obtained by forming a Toeplitz matrix with the
observed signal of the virtual array, but it is essentially
the square root of the SSM [52]. The beamformers of [38]
and [51] do not consider various imperfections such as look
direction error and coherent local scattering, and thus they are
very sensitive to the model mismatch. To tackle this problem,
Yang et al. [53] proposed a robust adaptive beamformer,
where the interference-plus-noise covariance matrix (INCM)
is reconstructed by projecting the SSM into the interference
subspace, while the SOI steering vector is estimated by solv-
ing a convex optimization problem. The algorithm of [53]
is more robust than the methods of [38] and [51] in the
presence of various imperfections. However, its performance
suffers some degradation as compared to the optimal value,
especially at high signal-to-noise ratios (SNRs) because the
SOI component is not thoroughly eliminated. These above-
mentioned methods utilize the SSM or its derivation to design
the adaptive beamformer. However, the SSM needs to take a
large number of samples to converge to a full-rank covariance
matrix. Accordingly, the resulting beamformers have a slow
convergence rate.

In this paper, a novel algorithm based on nested subarray
principles is proposed for adaptive beamforming in large-
scale ULAs. Unlike the traditional schemes, the proposed
algorithm only utilizes a small number of array sensors to
determine the weighted vector of the original ULA. Hence,
the implementation complexity can be significantly reduced.
By constructing an augmented INCM, the proposed algo-
rithm not only exploits the enhanced DOFs of the nested
array, but also fundamentally removes the SOI component.
Therefore, it achieves better performance than the exist-
ing schemes in high SNR regions. Numerical results verify
the advantage of the proposed algorithm over the existing
algorithms.

The rest of this paper is organized as follows. Some neces-
sary preliminaries including signal model and problem back-
ground are described in Section II. An adaptive beamforming
algorithm using nested subarrays is suggested in Section III.
Numerical examples are provided in Section IV. Finally,
conclusions are made in Section V.
Notations: We use bold lower-case and upper-case char-

acters to denote vectors and matrices, respectively. (·)T , (·)∗

and (·)H represent the transpose, complex conjugate and con-
jugate transpose, respectively. E{·} represents the statistical
expectation operator, ‖ · ‖F denotes the Frobenius norm, and
vec(·) stands for the vectorization operator that turns a matrix
into a vector by stacking all columns on top of the another.
[·]i,j denotes the (i, j)th entry of a matrix, and [·]i denotes the

FIGURE 1. The two-level nested array configuration.

ith element of a vector; diag(a) denotes a diagonal matrix that
uses the elements of a as its diagonal elements. Im stands for
the m × m identity matrix, and 0m×n means the m × n zero
matrix. The symbol � denotes the Khatri-Rao product.

II. PRELIMINARIES
A. NESTED ARRAY SIGNAL MODEL AND CONVENTIONAL
ADAPTIVE BEAMFORMING
We consider a M -element nested array consisting of two
concatenated ULAs as shown in Fig. 1. The inner ULA
has M1 elements with spacing d1, and the outer ULA has
M2 elements with spacing d2 = (M1 + 1)d1. The element
spacing d1 is generally set to λ/2, where λ denotes the carrier
wavelength. More accurately, the sensor positions are zid1,
where zi belongs to an integer set S = {zi, i = 1, 2, . . . ,M} =
{0, 1, . . . ,M1− 1,M1, 2(M1+ 1)− 1, . . . ,M2(M1+ 1)− 1}.
Suppose that one SOI and L interference signals impinge on
the nested array from the distinct directions θ1, . . . , θN . The
array observed vector at time instant k is given by

x(k) = xs(k)+ xi(k)+ xn(k) (1)

where xs(k) = a0s0(k), xi(k) =
∑L

l=1 alsl(k), and xn(k)
are the SOI, interference, and noise components, respectively.
Moreover, these components are assumed to be mutually
independent. sl(k) is the lth source signal waveform, and
al = a(θl) is the corresponding steering vector. xn(k) is
assumed to be the additive spatially white Gaussian noise
with zero mean and variance σ 2

n . The steering vector for the
lth source is expressed as

a(θl) =
[
1, ej

2π
λ
z2d1 sin θl , . . . , ej

2π
λ
zMd1 sin θl

]T
. (2)

The beamformer output is given by

y(k) = wHx(k) (3)

where w = [w1, . . . ,wM ]T ∈ CM×1 is the beamformer
weight vector. The output signal-to-interference-plus-noise
ratio (SINR) of the beamformer is defined as

SINR =
σ 2
0 |w

Ha0|2

wHRi+nw
(4)

where σ 2
0 = E{|s0(k)|2} is the SOI power, and Ri+n is the

M ×M INCM, whose definition is given by

Ri+n = E
{
(xi(k)+ xn(k))(xi(k)+ xn(k))H

}
=

L∑
l=1

σ 2
l ala

H
l + σ

2
n IM (5)

where σ 2
l denotes the lth interference power.
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Maximizing the output SINR (4) is equivalent to the mini-
mization problem:

min
w

wHRi+nw s.t. wHa0 = 1, (6)

whose solution is

wopt =
R−1i+na0

aH0 R
−1
i+na0

. (7)

Since the exactRi+n is unavailable in practice, it is usually
replaced by the sample covariance matrix (SCM):

R̂xx =
1
K

K∑
k=1

x(k)xH (k) (8)

where K denotes the number of training snapshots. Then the
resulting beamformer is

wSMI =
R̂−1xx a0

aH0 R̂
−1
xx a0

, (9)

which is the so-called sample matrix inversion (SMI)
beamformer.

B. ADAPTIVE BEAMFORMING WITH ENHANCED DOFS
To exploit the enhanced DOFs of the nested array, some
approaches, such as [51], construct an augmented covariance
matrix using the coarray output, and further generate the
weighted vector of the beamformer. However, the dimension
of the generated weighted vector is more than that of the
physical array. Therefore, the adaptive beamforming with
enhanced DOFs can only be applied to a large array to reduce
the implementation complexity.

The covariance matrix of x(k) is expressed as

Rxx = E{x(k)xH (k)} = A3AH
+ σ 2

n IM (10)

where 3 = E{s(t)sH (t)} = diag([σ 2
0 , σ

2
1 , . . . , σ

2
L ]) is the

signal covariance matrix.
Vectorizing Rxx yields

z = vec(Rxx) = (A∗ � A)p+ σ 2
n
E1n (11)

where p = [σ 2
0 , σ

2
1 , . . . , σ

2
L ]
T , and E1n = [eT1 , e

T
2 , . . . , e

T
M ]T

with ei being a column vector of all zeros except one 1 at
the ith location. The vector z can be regarded as a single
snapshot data from the equivalent signal vector p, and σ 2

n
E1n

is a deterministic noise vector. The distinct rows of A∗ � A
correspond to the manifold of a longer array whose sensor
locations are represented by the difference set of S.
Removing the redundant rows from the vector z and rear-

ranging the remaining rows gives [41]:

z1 = A1p+ σ 2
n Ee
′ (12)

where A1 ∈ C(2M2(M1+1)−1)×(L+1) is a manifold matrix,
which is constructed by removing the repeated rows from
A∗ � A and rearranging the remaining rows, and Ee′ ∈
R(2M2(M1+1)−1)×1 means an all-zero vector except one 1 at
the M2(M1 + 1)th location.

Dividing z1 intoM2(M1 + 1) subvectors, we can construct
the following full-rank matrix [41]:

Rss =
1

M2(M1 + 1)

M2(M1+1)∑
i=1

z1izH1i (13)

where z1i is the ith subvector corresponding to the (M2(M1+

1)− i+ 1)th to (2M2(M1 + 1)− i)th rows of z1.
The matrix Rss can be represented as [41]:

Rss =
1

M2(M1 + 1)
R̃2 (14)

where

R̃ = A113AH
11 + σ

2
n IM̄ (15)

appears the same form as the covariance matrix of the
observed signal from a longer ULA with M2(M1 + 1) ele-
ments, whose manifold matrix is denoted by A11 consisting
of the last M2(M1 + 1) rows of A1. Therefore, the matrix R̃,
also referred to as the SSM, can be used to perform adaptive
beamforming.

Employing the matrix R̃, the adaptive beamformer with
enhanced DOFs is given by [51]:

w =
R̃−1d(θ0)

dH (θ0)R̃−1d(θ0)
(16)

where d(θ0) denotes the SOI steering vector of an equivalent
ULA with M2(M1 + 1) elements. However, the adaptive
beamformer is very sensitive to the model mismatch and has
a slow convergence rate.

III. PROPOSED ALGORITHM
In this section, we utilize the nested array to develop a
new adaptive beamforming algorithm with enhanced DOFs.
Unlike the existing schemes, our algorithm not only exploits
the enhanced DOFs of nested arrays, but also thoroughly
removes the SOI component.

First, we construct the INCM of the nested array via
steering vector and power estimation. With the known array
structure, the steering vectors of the incident signals can be
uniquely determined by their DOAs. When the number of
signals is unknown, we utilize the Capon spatial spectrum to
estimate the DOAs of the SOI and interferences. The Capon
spectrum estimator is [54]:

P̂(θ ) =
1

aH (θ )R̂−1xx a(θ )
(17)

where a(θ ) is the steering vector associated with a direction
θ ∈ [−90◦, 90◦]. From (17), we can get multiple peaks.
Since there may be some spurious peaks, the number of the
peaks is usually greater than the number of sources. Using
the minimum eigenvalue of R̂xx as the threshold, we can
eliminate most of the spurious peaks. Assume there are still
L ′ + 1 peaks above the threshold, we can derive the corre-
sponding DOA estimates, θ̂0, θ̂1, . . . , θ̂L ′ by the positions of
the peaks. Further, we can determine theDOAs of the SOI and
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interferences from different angular sectors. As [18], [53],
we have assumed that2 is the angular sector in which the SOI
lies and 2̄ is the out-of-sector of2. Suppose that θ̂0 is located
at 2, while θ̂1, . . . , θ̂L ′ belong to 2̄. Then, the estimates of
interference steering vectors, a(θ̂1), a(θ̂2), . . . , a(θ̂L ′ ), can be
obtained using the known array geometry and the estimated
DOAs. Additionally, the interference powers can be estimated
as P(θ̂1),P(θ̂2), . . . ,P(θ̂L ′ ).
The INCM of the nested array is reconstructed as

R̂i+n =

L ′∑
l=1

P(θ̂l)a(θ̂l)aH (θ̂l)+ σ̂ 2
n IM (18)

where σ̂ 2
n is the estimate of the noise variance, which is

computed as the minimum eigenvalue of R̂xx.
Again, we vectorize R̂i+n to get the following vector

ŷ = vec(R̂i+n) = (Â∗ � Â)p̂+ σ̂ 2
n
E1n (19)

where

p̂ = [P(θ̂1),P(θ̂2), . . . ,P(θ̂L ′ )]. (20)

Removing the redundant rows from ŷ and rearranging them
to form a new vector ŷ1 expressed as

ŷ1 = Â1p̂+ σ̂ 2
n Ee
′ (21)

where Â1 ∈ C(2M2(M1+1)−1)×L ′ is a manifold matrix corre-
sponding to the virtual ULA.

From the vector ŷ1, we construct the following Toeplitz
matrix [52]:

R̄ =


[ŷ1]M̄ [ŷ1]M̄−1 · · · [ŷ1]1
[ŷ1]M̄+1 [ŷ1]M̄ · · · [ŷ1]2
...

...
. . .

...

[ŷ1]2M̄−1 [ŷ1]2M̄−2 · · · [ŷ1]M̄

 (22)

where M̄ = M2(M1 + 1), and the matrix R̄ is known as the
augmented INCM (AINCM).
Theorem 1: The matrix R̄ can be further expressed as

R̄ = Â113̂ÂH
11 + σ̂

2
n IM̄ . (23)

where

Â11 = [d(θ̂1),d(θ̂2), . . . ,d(θ̂L ′ )], (24)

d(θ̂l) = [v0l , v
1
l , . . . , v

M̄−1
l ]T , (25)

3̂ = diag[P(θ̂1),P(θ̂2), . . . ,P(θ̂L ′ )]. (26)

Proof: According to (22), the matrix R̄ can be written as

R̄ = [J0ŷ1, J1ŷ1, . . . , JM̄−1ŷ1]

= [J0Â1p̂+ J0σ̂ 2
n Ee
′, J1Â1p̂+ J1σ̂ 2

n Ee
′,

. . . , JM̄−1Â1p̂+ JM̄−1σ̂
2
n Ee
′]

= [J0Â1p̂, J1Â1p̂, . . . , JM̄−1Â1p̂]

+ [J0σ̂ 2
n Ee
′, J1σ̂ 2

n Ee
′, . . . , JM̄−1σ̂

2
n Ee
′]

= [J0Â1p̂, J1Â1p̂, . . . , JM̄−1Â1p̂]+ σ̂ 2
n IM̄ (27)

where

Ji = [0M̄×(M̄−1−i), IM̄ , 0M̄×i] (28)

Â1 = [â11, â12, . . . , â1L ′ ] (29)

with

â1l = [v−M̄+1l , v−M̄+2l , . . . , v0l , . . . , v
M̄−1
l ]T . (30)

On the other hand, we have

Â113̂ÂH
11 + σ̂

2
n IM̄ =

L ′∑
l=1

P(θ̂l)d(θ̂l)dH (θ̂l)+ σ̂ 2
n IM̄ . (31)

Therefore, (23) is equivalent to

[J0Â1p̂, J1Â1p̂, . . . , JM̄−1Â1p̂] =
L ′∑
l=1

P(θ̂l)d(θ̂l)dH (θ̂l).

(32)

Namely, we only need to prove:

[J0Â1p̂, J1Â1p̂, . . . , JM̄−1Â1p̂]i,j

=

 L ′∑
l=1

P(θ̂l)d(θ̂l)dH (θ̂l)


i,j

. (33)

The left-hand side of (33) can be expressed as

[J0Â1p̂, J1Â1p̂, . . . , JM̄−1Â1p̂]i,j

=

[
Jj−1Â1p̂

]
i
=

 L ′∑
l=1

P(θ̂l)Jj−1â1l


i

=

 L ′∑
l=1

P(θ̂l)[v
1−j
l , v2−jl , . . . , vM̄−jl ]T


i

=

L ′∑
l=1

P(θ̂l)v
i−j
l (34)

where vl = e−j
2π
λ
d1 sin(θ̂l ).

The right-hand side of (33) can be expressed as L ′∑
l=1

P(θ̂l)d(θ̂l)dH (θ̂l)


i,j

=

L ′∑
l=1

P(θ̂l)[d(θ̂l)dH (θ̂l)]i,j

=

L ′∑
l=1

P(θ̂l)[d(θ̂l)]i[dH (θ̂l)]j

=

L ′∑
l=1

P(θ̂l)v
i−j
l . (35)

Comparing (34) and (35) results in (33). Consequently,
the following equation holds:

R̄ = Â113̂ÂH
11 + σ̂

2
n IM̄ . (36)

�
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Algorithm 1 Proposed Adaptive Beamforming
1: Create the Capon spatial spectrum based on the given

nested subarray.
2: Estimate the DOAs of the SOI and interferences via peak

searching, and derive the steering vectors and powers of
the interferences.

3: Reconstruct the INCM R̂i+n using (18).
4: Vectorize R̂i+n to yield the vector ŷ, remove the redun-

dant rows from ŷ and rearrange the remaining rows to
generate a new vector ŷ1.

5: Construct the AINCM R̄ using (22).
6: Calculate the steering vector d(θ̂0) of an M̄ -element ULA

with the estimated SOI DOA θ̂0.
7: Substitute R̄ and d(θ̂0) into (16) to result in the proposed

beamformer (38).

To design the adaptive beamformer with enhanced DOFs,
we need to consider an M̄ -element equivalent ULA. With the
estimated SOI DOA θ̂0, the SOI steering vector correspond-
ing to the large ULA is given by

d(θ̂0) =
[
1, ej

2π
λ
2d1 sin θ̂0 , . . . , ej

2π
λ
(M̄−1)d1 sin θ̂0

]T
. (37)

Substituting R̄ and d(θ̂0) in (16), we get a new adaptive
beamformer whose weight vector is

wpro =
R̄−1d(θ̂0)

dH (θ̂0)R̄−1d(θ̂0)
. (38)

For clarity, the proposed algorithm is summarized in
Algorithm 1.
Remark 1: Unlike the traditional methods, the proposed

approach is used for implementing low-complexity beam-
forming in large-scale array systems. Specifically, for a large
ULA, our algorithm only selects a small number of sensors
to form a nested subarray, and uses its coarray output to
generate an augmented weighted vector. Then, the generated
augmented weighted vector is applied to the whole ULA to
realize beamforming. By doing so, the full aperture of the
original ULA can be exploited, while the implementation
complexity of beamforming is significantly reduced.
Remark 2: For an M̄ -element ULA, the proposed algorithm

only utilizes M sensors to calculate the beamforming coef-
ficients for the original ULA. The required multiplications
are O(max(M2S,M3)), where S denotes the number of grid
points in the angular sector. By comparison, the traditional
schemes require a complexity of O(max(M̄2S, M̄3)) with
M̄ > M , because all the sensors are utilized to calculate
the beamforming coefficients. Evidently, our algorithm has
a lower complexity than the traditional schemes because it
requires lower dimensional matrix calculations.

IV. NUMERICAL EXAMPLES
In this section, numerical examples are provided to investi-
gate the performance of the proposed algorithm. In all the
examples, we consider a ULA with M = 12 sensors and

FIGURE 2. Correlation coefficients of SCM, SSM and AINCM versus the
number of snapshots.

element spacing λ/2, and choose a two-level nested array
(M1 = M2 = 3) as the sampling subarray of our proposed
beamformer and the beamformers [51], [53]. One SOI is
presumed to arrive at the array from the direction θ0 = 0◦.
Three interferences are assumed to arrive at the array from the
directions −30◦, 30◦ and 45◦, respectively. The INR is fixed
at 30 dB in all examples. The input SNR is fixed at 20 dB
(except the cases where the SNR varies), while the number
of snapshots is set as K = 100 (except the cases where the
number of snapshots varies). For each scenario, 500 Monte
Carlo trials are performed.

A. CONVERGENCE RATES OF COVARIANCE MATRICES
In the first experiment, we examine the convergence rates
of the SCM, SSM and AINCM. To evaluate the similarity
between two matrices, we introduce the following correlation
coefficient:

cor(R̂,R) =
|vecH (R̂)vec(R)|

‖vec(R̂)‖F‖vec(R)‖F
(39)

where R and R̂ denote the true matrix and the estimated
matrix, respectively. Clearly, when cor(R̂,R) is closer to 1,
the similarity between R̂ and R is higher.

Fig. 2 shows the correlation coefficients of the covariance
matrices versus number of snapshots, while Fig. 3 displays
the correlation coefficients of their inverse matrices versus
number of snapshots. It is observed that the convergence rate
of the AINCM is obviously faster than those of the SCM
and the SSM, and the latter two converge to their theoretical
values only when K > 104. On the other hand, we see clearly
from Fig. 3 that the inverse of the AINCM also shows a faster
convergence rate than that of the SCM, and especially that of
the SSM, which still cannot converge to its theoretical value
even when K = 105. It can be attributed to the fact that the
AINCM can be expressed as the covariance matrix form (23),
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FIGURE 3. Correlation coefficients of the inverses of SCM, SSM and
AINCM versus the number of snapshots.

and its model error is only determined by the accuracy of
DOA and power estimates.

B. OUTPUT SINRS OF BEAMFORMERS
In the second experiment, we compare the proposed beam-
former with the following adaptive beamformers: i) Yang
beamformer [53]; ii) SS beamformer [51]; iii) reconstruct-
estimate-based beamformer [18]; iv) worst-case-based beam-
former [7]; v) SMI beamformer. For the beamformers of [18],
[53] and our proposed beamformer, the angular sector of the
SOI is assumed to be 2 = [−5◦, 5◦], while the complement
sector of 2 is 2̄ = [−90◦,−5◦) ∪ (5◦, 90◦]. The factor ε is
set to ε = 0.3M̄ in the worst-case-based beamformer. The
Matlab CVX toolbox [55] is utilized for solving these convex
optimization problems in [7], [18], [53].

1) EXAMPLE 1—EXACTLY KNOWN SIGNAL
STEERING VECTOR
Firstly, we consider the situation where the steering vectors
of the SOI and interferences are accurately known. It is
noteworthy that even in the absence of steering vector mis-
matches, the SOI component contained in the training data
can seriously slow down the convergence rates of adaptive
beamformers. The output SINR of the examined beamform-
ers versus input SNR is shown in Fig. 4, from which we see
that the proposed beamformer achieves almost the same per-
formance as the reconstruct-estimate-based beamformer [18].
The two beamformers provide nearly optimal SINR from -
30 dB to 50 dB and significantly outperform the remaining
beamformers at high SNRs because the SOI component is
thoroughly eliminated. However, the proposed algorithm is
computationally more efficient than [18] because it uses
fewer sensors to calculate the weight vector as [51], [53]. The
output SINR of the beamformers against the snapshot number
is plotted in Fig. 5. It is observed that both the proposed

FIGURE 4. Output SINR versus the SNR at K = 100 and INR = 30 dB. First
example.

FIGURE 5. Output SINR versus the number of snapshots at SNR = 20 dB
and INR = 30 dB. First example.

beamformer and the beamformer of [18] enjoy a much faster
convergence rate than the other beamformers because the
convergence properties of the INCM and the AINCM are
distinctly better than those of the SCM and the SSM.

2) EXAMPLE 2—SIGNAL LOOK DIRECTION MISMATCH
Secondly, the influence of signal look direction error on
performance of the proposed beamformer is examined. The
direction errors of the SOI and the interferences are uniformly
distributed in [−4◦, 4◦]. Namely, the true direction of the
SOI is uniformly distributed in [−4◦, 4◦], and the distribution
intervals of the interferences are [−34◦,−26◦], [26◦, 34◦]
and [41◦, 49◦], respectively. Note that the directions of the
SOI and the interferences vary in each trial while keeping
unchanged from snapshot to snapshot. Fig. 6 depicts the
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FIGURE 6. Output SINR versus the SNR at K = 100 and INR = 30 dB.
Second example.

FIGURE 7. Deviations from optimal SINR versus the SNR at K = 100 and
INR = 30 dB. Second example.

output SINR of the examined beamformers versus SNR. But
there is still a slight gap between some beamformers and
the optimal SINR, as shown in Fig. 7. It is observed that
the proposed beamformer and the reconstruct-estimate-based
beamformer [18] have similar output performance, and both
of them perform better than the remaining beamformers at
high SNRs. Moreover, the proposed beamformer achieves
about 1 dB gain over the beamformer of [18] when the SNR is
more than 0 dB. The output SINR of the examined beamform-
ers against number of snapshots is illustrated in Fig. 8. It can
be seen that the proposed beamformer and the beamformer
of [18] achieve almost the same and fast convergence rate,
while the other beamformers experience a slow convergence
rate.

FIGURE 8. Output SINR versus the number of snapshots at SNR = 20 dB
and INR = 30 dB. Second example.

FIGURE 9. Output SINR versus the SNR at K = 100 and INR = 30 dB. Third
example.

3) EXAMPLE 3—SOI STEERING VECTOR MISMATCH DUE TO
COHERENT LOCAL SCATTERING
Thirdly, the SOI steering vector is affected by coherent local
scattering effects and expressed as [7]:

a0 = p+
4∑

p=1

ejψpa(θp) (40)

where p corresponds to the direct path while a(θp) (p =
1, 2, 3, 4) refers to the coherently scattered paths. The angles
θp (p = 1, 2, 3, 4) are independently and uniformly dis-
tributed in [θ0 − 4◦, θ0 + 4◦] in each trial. The phase param-
eters ψp (p = 1, 2, 3, 4) are independently and uniformly
drawn from [0, 2π ] in each trial. Note that θp and ψp change
from trial to trial while keeping unchanged from snapshot
to snapshot. Fig. 9 demonstrates the output SINR of the
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FIGURE 10. Deviations from optimal SINR versus the SNR at K = 100 and
INR = 30 dB. Third example.

FIGURE 11. Output SINR versus the number of snapshots at SNR = 20 dB
and INR = 30 dB. Third example.

examined beamformers versus the SNR. Their deviations
from the optimal SINR are displayed in Fig. 10. Note that
in this example, the SNR is defined by considering all signal
scattering paths. As it can be observed, the proposed beam-
former and the reconstruct-estimate-based beamformer [18]
achieve almost the same output SINR, and they are superior
to the remaining beamformers. More specifically, when the
SNR is greater than -5 dB, the proposed beamformer per-
forms better than [18] because it eliminates the SOI com-
ponent and gets a more accurate INCM. When the SNR is
greater than -5 dB, there is about 1 dB performance loss
for the beamformer of [18] and our proposed beamformer,
because there may be no obvious peak in 2 for the Capon
spectrum and the presumed DOA is used to derive the SOI
steering vector. The output SINR of the examined beam-
formers against number of snapshots is shown in Fig. 11.

We observe clearly that our proposed beamformer and the
beamformer of [18] show significantly better convergence
performance than other beamformers being compared.

V. CONCLUSION
In this paper, we have developed a new adaptive beamform-
ing approach for large-scale ULAs based on nested subar-
ray principles. Typically, the proposed method is applied
to a large ULA to reduce the implementation complexity.
Compared with the existing methods, our approach not only
exploits the enhanced DOFs of the nested array, but also
thoroughly removes the SOI component. Therefore, its per-
formance is more stable in the presence of various non-ideal
factors. Numerical results show that our proposed approach
significantly outperforms the existing approaches with nested
arrays, and its output SINR is almost equal to the optimal
value across a wide range of SNR.
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