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ABSTRACT Managing congestion in mixed traffic conditions, characterized by heterogeneous and lane-less
traffic, is a challenging task. Traditionally density, defined as the number of vehicles in a road stretch, is used
to quantify congestion. However, direct measurement of density is difficult and hence is usually estimated
from other variables. In this paper, a relationship is derived between traffic density and area occupancy,
a variable that can incorporate heterogeneity and lane-less movement. Using the derived density-area
occupancy relation, a non-continuum macroscopic single state linear time varying model was developed.
Estimation of density was done by using the Kalman filtering technique and corroborated with simulated
density. The need for dynamic estimation is motivated by evaluating the performance of two static estimation
schemes in the presence of uncertainties. Performance was tested for different traffic scenarios such as
congestion and non-recurrent traffic incidents. Further, to improve the estimation accuracy in scenarios
involving transitions in traffic conditions, an adaptive estimator was developed. It was found that the adaptive
estimator provided the best estimation accuracy.

INDEX TERMS Adaptive Kalman filter, area occupancy, heterogeneous traffic, lane-less traffic, traffic
density estimation.

I. INTRODUCTION AND BACKGROUND
Mitigating traffic congestion to enhance the performance
of transportation systems is a major challenge for traffic
engineers globally. Increasing road traffic causes high traffic
demand and the exceeding demand over road capacity results
in traffic congestion. One of the major factors that contribute
to congestion is the lack of infrastructure to meet demand.
Considering the limitations in the expansion and addition of
existing infrastructure, effective management of the available
infrastructure is the most viable option for reducing traffic
congestion. Among the various traffic control mechanisms,
traffic signals are the most widely used ones. However, inad-
equately timed traffic signals are major recurring sources of
traffic congestion, which can be attributed to poor allocation
of green time, poor coordination between adjacent intersec-
tions, and inability to respond to real-time situations. This
necessitates the need for developing more effective methods
for traffic signal control. With the existing infrastructure,
one among the most effective ways to control traffic is to
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assign the signal dynamically depending on the current state
of traffic [1]. However, dynamic traffic control requires the
availability of real-time traffic states, whose direct measure-
ment poses a problem. In this context, the research prob-
lem can be separated into two stages. Dynamic estimation
of the traffic states is to be carried out first to gather the
information required for the control system. Based on this,
a control scheme can be subsequently developed. This paper
focuses on the former for a heterogeneous and lane-less
traffic condition.

The term heterogeneous refers to traffic composed of vehi-
cles of different classes. If the nature of traffic is such that
vehicles occupy any space in the roadway without following
the lanes, it is referred as lane-less traffic. Combined, this
traffic condition is termed as mixed traffic in the present
study. In addition to varying vehicle dimensions, other factors
such as varying vehicle speeds, frequent intersections, and
side roads pose additional challenges. In these circumstances,
developing a model representing the traffic condition and
obtaining the current traffic state for control is difficult. For
characterizing such a traffic, certain spatial and/or tempo-
ral variables are needed. Variables like speed, flow, space
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headway, time headway and/or traffic density, characterize
a typical traffic stream. Out of these, a good indicator of the
level of congestion is traffic density [2], defined as the num-
ber of vehicles occupying a length of roadway [3]. As den-
sity is a variable related over space, its direct measurement
is difficult. One way of overcoming this is to estimate it
from directly measurable variables using suitable models for
dynamic density estimation.

Complex traffic systems can be represented using traffic
flowmodels that characterize and predict future traffic behav-
ior by deriving mathematical relationships between appro-
priate variables. They can be classified into microscopic and
macroscopic traffic models by the level of detail with which
they characterize the behavior of the traffic. Each vehicle
behavior is characterized in microscopic models, and hence
are intensive in terms of data and computational complex-
ity. On the other hand, macroscopic models consider traffic
stream in total and capture the aggregate nature of traffic.
Such models are suitable for representing real-time traffic
characteristics and are pursued in this study. Macroscopic
models can be categorized into either continuum or non-
continuum models.

Macroscopic traffic flow models are mostly based on con-
tinuum models [4]–[6]. However, the above models are not
without deficiencies as suggested by many authors [7], [8].
One of the major criticisms is that even in congested states,
the number of vehicles in a road section does not justify the
continuum assumption. Conversely, non-continuum models
consider traffic as an assembly of dynamic systems with each
representative vehicle as a component system. Considering
the above factors, a macroscopic non-continuum approach is
adopted to estimate density (a discrete variable representing
the number of vehicles in a section) under mixed traffic
conditions.

Reported studies in this area for heterogeneous condi-
tions are limited and discussed below. Wong et al. extended
the Lighthill, Whitham and Richards (LWR) model by
considering heterogeneous drivers to formulate a macro-
scopic multi-class model [9]. Another extension of LWR
model incorporating various vehicle classes was proposed by
Logghe and Immers [10]. A dynamic model was developed
by Tang et al. from the relationship between the micro-
scopic and macroscopic variables for heterogeneous traf-
fic [11]. Arasan and Kosh [12] and Venkatesan et al. [13]
developed microscopic simulation model for heterogeneous
traffic. The principles of Cellular Automata were applied
to model heterogeneous traffic in [14] and [15]. Use of
non-continuum macroscopic models for heterogeneous con-
ditions based on the conservation law for vehicles and the
fundamental relation of traffic flow was reported in the study
by Anand et al. [16]. Models based on vehicle conservation
and a hypothesized constitutive equation was reported by
Padiath et al. [17] and Thankappan et al. [18]. Since the pro-
portion of different vehicles in heterogeneous traffic may
vary with time, a steady-state model may not capture the
traffic characteristics appropriately. However, in majority of

the above studies, steady-state traffic stream models have
been developed empirically under heterogeneous traffic con-
ditions. Most of these studies have incorporated heterogene-
ity of the traffic system by converting various classes of
vehicles into equivalent passenger car unit (PCU). However,
under mixed traffic, determination of exact PCU value for
each type of vehicle is difficult [19]. To address these limi-
tations, a dynamic model that captures lane indiscipline and
heterogeneity with various classes of vehicles needs to be
developed.

From a historical stand point, the estimation and analy-
sis of traffic density is of significant interest in the field
of traffic research. The most common method for mea-
suring traffic density in early days was the photographic
technique [3]. However, it is time consuming and its imple-
mentation in real-time is challenging. Later, three approaches
were reported in the early 1960’s, namely input-output
technique, using fundamental speed-flow relationship and
from percent occupancy [3]. These static estimation schemes
have their own limitations in calculating density, especially
under mixed traffic conditions. These schemes will not
work well in the presence of dynamic disturbances and
hence, dynamic estimation of traffic density is a better
choice.

The Kalman filter [20] is an efficient recursive algo-
rithm for the estimation of states of dynamic systems
from noisy measurements. In a recent survey conducted
by Seo et al. [21], it was reported that for non-continuum
model-based approach, the Kalman Filter and its extended
versions are widely used among the well-known imple-
mentations. Application of Kalman filter for the estima-
tion of traffic density can be traced back from the early
1970’s. In later years, investigations in the field of esti-
mation of traffic density based on Kalman filter increased
and a few recent studies under mixed traffic conditions
are discussed below. In [22], Singh and Li presented esti-
mation of traffic density for multi-lane roadways using a
Markov model approach. A hybrid extended Kalman filter-
ing approach for traffic density estimation along signalized
arterial was reported by Di et al. in [23]. For the estima-
tion of traffic density under heterogeneous traffic, a non-
continuum macroscopic model, based on conservation of
vehicles and a hypothesized constitutive equation was devel-
oped by Thankappan et al. [18]. A data fusion approach using
both location-based and spatial data sources was explained
by Anand et al. in [24] and a nonlinear model, based on
the conservation principle and the fundamental traffic flow
was presented in [25] by Dhivyabharathi et al. In [26],
Bekiaris-liberis et al. developed linear parameter-varying
models derived from the conservation equation with mixed
connected and conventional vehicles. Fulari et al. [27] devel-
oped a data fusion-based estimation scheme by using the
dynamical systems approach. Nantes et al. developed a
model-based methodology to build a real-time traffic pre-
diction model for arterial corridors using data from mul-
tiple sources in [28]. A strip-based approach based on
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density-occupancy relation was proposed by George et al.
in [29].

From the above literature review, it can be observed that
a more generic model needs to be developed that captures
lane indiscipline and heterogeneity. Identifying an appropri-
ate measurable variable sensitive to the dynamic changes in
traffic shall help in formulating the same. In heterogeneous
traffic, varying vehicle dimensions contribute significantly to
lack of lane discipline. Vehicles of varying lengths differ in
the time occupied on a particular length of road. Considering
the absolute roadwidth irrespective of number of lanes, it may
be assumed that, the number of vehicles across the width
of the road can vary according to the width of the vehicle.
A variable that takes care of both these aspects may be better
suited for representing the heterogeneous and lane-less nature
of the traffic. Hence, this paper uses area occupancy [30],
a modified measure of time occupancy, as the output variable.
When a small section of road is considered, area occupancy
can express the amount of time a vehicle having a particular
dimension occupies a given area of that section, whose values
depend on the composition of traffic and the speed of the
vehicles. Thus, area occupancy can capture the heterogeneity
and lane-less nature of the traffic.

The contributions of this paper to the existing literature in
the field of heterogeneous traffic control research are there-
fore the following:
• Area occupancy, a variable that can capture heterogene-
ity and lane indiscipline, was used as measurement to
estimate traffic density.

• Relation between density and area occupancy was
derived from basic traffic flow modeling concepts.

• Estimation of density using a dynamic traffic flow
equation as the state equation and the derived
density-area occupancy relation as the output equation
was implemented.

• Adaptive Kalman filtering technique was used to esti-
mate traffic density using the above equations, to incor-
porate the high variability in the traffic condition under
consideration.

The outline of the paper is as follows. Section II presents
the model formulation that can effectively capture the mixed
traffic characteristics. The details of the extraction of data and
evaluation of the estimation scheme by simulating a selected
study stretch are discussed in Section III. Section IV encom-
passes the estimation scheme using conventional Kalman
filter and quantitative comparisons between the proposed
approach and the strip-based study presented in [29]. A sen-
sitivity study was further done for varying initial density
conditions. The proposed dynamic estimation scheme was
also compared against static estimation schemes for accuracy,
data requirement and computational complexity. In SectionV,
the adaptive capabilities of the estimator for different traffic
scenarios such as congestion and non-recurrent traffic inci-
dents were explored. Two adaptive schemes were developed,
one with a window of fixed size and other with a window of
increasing size, and their performance was evaluated.

II. MODEL FORMULATION
A non-continuum macroscopic model represented in
state-space form was developed to characterize the aggregate
behavior of vehicles. Two sets of equations, namely state
equation and output equation or measurement equation, were
derived. The variable relative flow, defined as the net differ-
ence between the rate of vehicles moving in and moving out
of the section, was the input variable, with traffic density as
the state variable.

In the measurement model, area occupancy, a variable that
can take into account varying vehicle dimensions, was used
as the measure for capturing heterogeneity. Area occupancy
is the proportion of time the set of observed vehicles occupy
the chosen stretch of a roadway [30]. It captures how long a
vehicle of a particular size is moving on a section of road.
Measured over time, it can capture heterogeneity since the
time taken to travel the same distance with the same speed
will vary according to the vehicle lengths. The entire width of
the road is considered as a single unit as it takes into account
the area of the road section occupied by the vehicle. This
helps in addressing the lane indiscipline condition due to the
varying vehicle width.

The state equation that gives the relationship between the
state variable and the input variable was formulated by apply-
ing conservation law for vehicles inside the section. A typical
mid-block road section (bounded by two intersections) was
considered as the study stretch. The rate at which vehicles
move into the section s was taken as qen,s(i,i+1) and the rate
at which vehicles move out of the section as qex,s(i,i+1) in
the interval between the ith and (i + 1)th instants of time.
Considering the vehicle count within the section at ith instant
of time to be Ns(i), the vehicle count inside the section at
(i+ 1)th instant of time, by vehicle conservation is

Ns(i+1) = Ns(i) + h(qen,s(i,i+1) − qex,s(i,i+1)), (1)

where h is the time interval between ith and (i+ 1)th instants
of time and (qen,s(i,i+1) − qex,s(i,i+1)) is the relative flow.
Corresponding density, ρs(i+1) can be written from (1), which
forms the state equation, as

ρs(i+1) = ρs(i) +
h
L
(qen,s(i,i+1) − qex,s(i,i+1)), (2)

where L is the section length.
The percent area occupancy, expressed as the proportion

of time the chosen section of the road is occupied by vehi-
cles [31], is given by

α(i) =

∑Nd
k=0 ak tk(i)
Ah

100, (3)

where tk(i) and ak represents k th vehicle’s detection zone
occupancy time and occupied area of the detection zone in
the interval h respectively, Nd is the number of vehicles
passing over the detector in the interval h, and A is the area
of the detection zone. The output equation relating area occu-
pancy to density was derived by multiplying and dividing (3)

5504 VOLUME 8, 2020



R. George et al.: Area Occupancy-Based Adaptive Density Estimation for Mixed Road Traffic

by Nd as

α(i) =

∑Nd
k=0 ak tk(i)
ANd

Nd
h
100, (4)

whereNd/h is the flow rate, represented as qd(i−1,i) in vehicle
per hour. From fundamental relations of traffic flow,

qd(i−1,i) = ρd(i)Usms(i), (5)

where Usms(i) is the space mean speed.
Assuming the density inside the detector as the representa-

tive of density of the section, the final equation relating area
occupancy and density can be represented as

α(i) =

∑Nd
k=0 ak tk(i)
ANd

Usms(i)ρs(i)100. (6)

The state equation given by (2) and the output equation
given by (6) together represent the state-space model for the
traffic system under study. The stochastic nature of the traffic
was included in the model by adding process disturbance w(i)
in state equation and measurement noise v(i) in measurement
equation, as given by

x(i+1) = ax(i) + bu(i) + w(i),

y(i) = c(i)x(i) + v(i), (7)

where x(i) the state variable is density, u(i) the input variable
is relative flow, and y(i) the output variable is area occupancy.
Here, the variables w(i) and v(i) were considered as normally
distributed zero mean independent, white noise signals with
finite covariance q and r respectively. This represents the
traffic system as a single input single output linear time
varying system with the state parameter a, equal to 1, input
parameter b, equal to h

L and output parameter c(i), varying
with time given as

c(i) =

∑Nd
k=0 ak tk(i)
ANd

Usms(i)100. (8)

III. DATA EXTRACTION
The proposed work is illustrated as a block diagram in Fig. 1.
The relative flow, area occupancy and the variables for obtain-
ing the time varying output parameter c(i) are the data require-
ments in the present study. An urban arterial road along Rajiv
Gandhi Salai in the city of Chennai, India, was identified as
the study stretch, which is a mid-block road section bordered
by two intersections as shown in Fig. 2. It is a six-lane road
having three lanes in each direction. For the purpose of the
current study, three lanes in one direction having widths
of 3.5 m each were selected. The length of the study stretch
L is 1.73 km with 1 km between detector locations A and B,
and 0.73 km between detector locations B and C as shown
in Fig. 2. These were considered separately because of the
presence of a signal near C, which makes traffic conditions
in BC different from AB, which is beyond the influence of
the signal. Figure 3 shows the routine scenario observed on
the study stretch depicting the heterogeneous and lane-less
nature of the traffic.

FIGURE 1. Block diagram of the proposed work.

The study stretch was simulated in a traffic simula-
tion software, VISSIM [32] for generating the required
data. VISSIM is mainly intended for simulating lane disci-
plined and homogeneous traffic observed on European roads.
Hence, the default simulation parameters of the software may
not be suitable for the mixed traffic scenario. However, it can
be calibrated for the traffic under consideration, since it offers
options for left side driving, incorporating different types
of vehicles, varying lane widths, adjusting lateral distance
between vehicles, same lane overtaking and staggered queu-
ing at intersections [24]. A previous study [24] calibrated
the above parameters to represent the traffic condition under
study. With the calibrated model, the identified road stretch
was simulated for different traffic scenarios. A warm-up
period of 15 minutes was provided for each simulation. This
study considered four different classes of vehicles namely
three-wheelers, light motor vehicles, heavy motor vehicles
and two-wheelers. The proportions of the various classes of
vehicles obtained from field along with their standard dimen-
sions [33] are listed in Table 1. Besides these, the inputs
provided toVISSIMbased on field valueswere traffic volume
data for each 15 minute interval and signal control data.
A fixed time signal with 32 s green and 4 s yellow, out
of 100 s cycle time was used for controlling the signal at the
intersection. The simulation was done by varying the input
volume for different scenarios. For each case, the model was
simulated four times with a random seed increment of 5 and
an average value was taken. From simulation, the required
data from upstream and downstream end of the study stretch,
and the simulated density for corroborating the model were
collected. Virtual detectors, each of 10 m length were placed
at locations A, B and C as shown in Fig. 2. Area occupancy,
and time varying parameter c(i), were obtained from this data
by taking a weighted average based on flow through each
detector. The variables tk(i) and Nd required for calculating
area occupancy, and c(i) were taken class wise. The required
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FIGURE 2. Study stretch of the proposed work.

FIGURE 3. Prevalent traffic on the study stretch.

data were extracted from VISSIM for every 100 s, which is
the time interval, h, used in this study.

IV. ESTIMATION SCHEME AND ITS EVALUATION
Four different density estimation schemes, two of which are
static and the other two dynamic, were implemented and com-
pared. The four estimation schemes were named as ES1 to
ES4, with ES1 and ES2 being static schemes, and ES3 and
ES4 being dynamic ones. ES4 is the proposed estimation
scheme in this study. Details of these schemes are discussed
below.
Static Estimation Schemes - ES1 and ES2
The first estimation scheme named ES1 is a standard

approach based on occupancy, which is defined as the time
the vehicle occupies the given roadway. The standard rela-
tionship between density and occupancy [3] given by (9) is
used in this regard:

O(i) = (Lv + Ld )ρ(i)100. (9)

This equation was used to calculate density using the mea-
sured percent occupancy O(i) for a known average vehicle
length Lv and detection zone length Ld . Based on the knowl-
edge of proportion and length of vehicles given in Table 1,
a weighted average vehicle length was calculated.

TABLE 1. Proportion of vehicle and their dimensions under study.

In the second estimation scheme ES2, input-output tech-
nique [3] was used to estimate density. In this technique,
density is estimated with the knowledge of initial count of
vehicles inside the selected road stretch and the number of
vehicles moving in and out of the section over time.
Baseline Dynamic Estimation Scheme - ES3
In ES3, a non-continuum macroscopic single state lin-

ear model developed by George et al. [29] was used. Lane
indiscipline was incorporated by dividing the study stretch
into multiple parallel strips and density was estimated using
Kalman filter. The output variable was time occupancy,
which along with proportion-based weighted average vehicle
length, incorporated heterogeneity.
Proposed Dynamic Estimation Scheme - ES4
In this scheme, the traffic system was modeled as a single

state non-continuum macroscopic linear time varying model
as given by (2) and (6). To take into account heterogeneity
and lane indiscipline, area occupancy, a variable that consid-
ers varying vehicle dimensions, was used for measurement.
Further, lane indiscipline was incorporated by treating whole
of the road width as a single unit without considering traffic
lanes. The system model described with a state equation and
an output equation (7) was used in Kalman filtering technique
to develop a model-based estimation scheme.

A. IMPLEMENTATION AND EVALUATION
The proposed scheme ES4 was implemented using Kalman
filtering technique [20], which is based on the mathematical
model describing the system characteristics, where statistical
properties of the process error and the measurement noise
are taken into consideration. The system model and the state
estimate from the previous time interval are used to predict
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FIGURE 4. Corroboration of the all four density estimation schemes.

the state variables. Measurements are then used to obtain an
updated state estimate. Let x̂+(i+1) denote the updated estimate
of the state at the (i + 1)th instant and x̂−(i+1) denote the
predicted estimate of the state variables at the (i+ 1)thinstant
of time. Let p−(i+1) and p

+

(i+1) respectively denote the predicted
and updated estimation error variance at the (i + 1)th instant
of time. Then the steps in the implementation are as shown
below.

i Prediction step or time update calculates the pre-
dicted state estimate and the predicted estimation error
variance as

x̂−(i+1) = ax̂+(i) + bu(i), (10)

p−(i+1) = ap̂+(i)a+ q. (11)

ii Correction step or measurement update calculates
the Kalman gain, the updated state estimate and the
updated estimation error variance as

K(i+1)= p
−

(i+1)c(i+1)
[
c(i+1)p

−

(i+1)c(i+1) + r
]−1

, (12)

x̂+(i+1)= x̂
−

(i+1) + K(i+1))[z(i+1) − c(i+1)x̂
−

(i+1)], (13)

p+(i+1)= [1− K(i+1)c(i+1)]p
−

(i+1). (14)

The proposed estimation scheme (ES4) was implemented
with an assumed initial density value using the developed
state-space model as in (2) and (6) with the above algorithm.

To evaluate the proposed model-based estimation scheme,
the estimated density was compared with the values obtained
from VISSIM simulation. The traffic density was estimated
by all four estimation schemes using the same input data
and initial density value. In real time situations, data extrac-
tion from loop detectors would include errors. A uniformly
distributed random error in the interval [-2, 0] was added
to the vehicle count to mimic these errors. Signal to noise

ratio of 15 was assumed for the error in occupancy and area
occupancy. The error was assumed to beGaussianwhite noise
sequence with zero mean and standard deviation of σ , com-
puted from the chosen signal to noise ratio. The estimation
accuracy was quantified using Mean Absolute Percentage
Error (MAPE) and Root Mean Square Error (RMSE) as
given by

MAPE =
1
m

m∑
i=1

∣∣ρest(i) − ρsim(i)∣∣
ρsim(i)

100, (15)

RMSE =

√∑m
i=1(ρest(i) − ρsim(i))2

m
, (16)

where ρest(i) and ρsim(i) are the estimated and simulated values
of density in the ith instant of time respectively and m is the
total number of observations.

Figure 4 shows a sample comparison between the esti-
mated density obtained from all four estimation schemes
and simulated values obtained from VISSIM. From Fig. 4,
it can be observed that ES1 is not well suited for character-
izing mixed traffic conditions, while the error in the initial
condition persisted with time for ES2. Table 2 shows the
corresponding MAPE and RMSE values. For all three days,
data were generated for light traffic condition. It can be seen
that the mean MAPE value is around 15 % for ES1 and ES2.
Further improvement in accuracy may not be attainable with
these schemes since static estimation schemes cannot account
for uncertainties and noisy data. Moreover for ES1, the aver-
age vehicle length, Lv, must be known, which is difficult to
determine in mixed traffic condition and for ES2, any error in
the count will cumulate over time. This exercise demonstrated
the need for a dynamic density estimation method.

In the results shown in Fig. 4, it can be observed that
the scheme ES3 and proposed scheme ES4 converged to the
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TABLE 2. MAPE and RMSE for various density estimation methods for three different days.

TABLE 3. Comparison of static and dynamic estimation schemes.

simulated density, unlike in estimation schemes ES1 and ES2,
where the initial error propagated over time. In scheme ES3,
the model had two dynamic parameters namely weighted
average vehicle length and number of parallel paths, which
were taken to be constant for a particular vehicle compo-
sition [29]. Though the estimated density from this method
initially converged to that of the simulated values, it started
diverging later.

ES4, on the other hand, shows consistent performance after
convergence. The performance of the estimation schemes
ES3 and ES4 were evaluated using MAPE and RMSE
for three different days and is also presented in Table 2.
It can be observed that the estimation performance signif-
icantly improved using the proposed dynamic estimation
scheme (ES4). The mean of MAPE values was less than 4 %
with RMSE of 3 veh/km for ES4, which indicates highly
accurate performance of the estimator [34].

In Table 3, an overall comparison between the four
schemes is presented. Data were processed using an Intel R©

CoreTM i7 Processor. It can be seen that the computational
complexity measured in terms of compiling time was better
for static estimation schemes, while accuracy level was higher
for dynamic estimation schemes. When data collection is

considered, ES4 requires class wise collection of the vari-
ables tk(i) and Nd . However, the performance was better for
ES4 compared to the other three schemes.

B. SENSITIVITY STUDY FOR INITIAL DENSITY
The convergence of the proposed estimation scheme ES4 for
varying initial condition of density is analyzed in this section.
The estimation scheme was implemented for initial density
varying from 0 veh/km to 100 veh/km. The estimated density
was compared with the simulated density and the results are
shown in Fig. 5. It can be seen that for all assessed initial
conditions, the estimation scheme converged with conver-
gence time less than 10 minutes. Subsequently, analyses of
the proposed scheme to various traffic scenarios were done
and are discussed in the next section.

V. ADAPTIVITY TO DIFFERENT TRAFFIC SCENARIOS
Traffic conditions in roads are quite unpredictable and
vary due to both recurring and non-recurring conditions.
For instance, an incident may occur causing blockage leading
to increase in density. In addition, there will be variations
in traffic from peak to off-peak. This necessitates checking
whether the estimation scheme can detect such scenarios
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TABLE 4. Test matrix for different scenario.

FIGURE 5. Convergence for different values of initial density.

through appropriate changes in density. Hence, a test matrix
was generated for different scenarios, listing the various
inputs to VISSIM for simulating the network for data gen-
eration as given in Table 4. Different scenarios simulated
varied from light traffic condition to heavy traffic, transition
periods, jam density condition and an incident scenario where
an incident was injected in the study stretch and assumed
to block two lanes for 20 minutes. ES4 was used for the
estimation of density for these scenarios and results obtained
are shown in Table 5. It can be seen that for congested and
transition scenarios, the performance is poor. Here, it has to be
noted that fixed process covariance q and measurement noise
covariance rwere used in the Kalman filter. This result shows
the necessity of an adaptive scheme. Results of scenario 1 are
presented in Fig. 6 to highlight this point further. In this
scenario, 5 hour data including a transition from light traffic
to heavy traffic and vice versa is considered. Starting from the
point of transition from the low-density regime, an increase in
error could be observed for ES4. This may be due to the fact
that the change in noise characteristics was not considered
with changes in scenario. Hence, to take into account these
varying conditions, an adaptive Kalman filter was developed,
as discussed next.

In the Kalman filter, the process covariance q represents
the uncertainty in the process and process model. In this
study, process noise is likely to be small, since the process

TABLE 5. MAPE and RMSE for ES4 estimation scheme for different
scenarios.

FIGURE 6. Corroboration of ES4 scheme for scenario 1 (transition).

model was developed using the vehicle conservation equation
and the input given to the model is expected to be accurate.
However, inaccuracy in both measurement and measurement
equation can be expected to a certain amount. Hence, the filter
wasmade adaptive with fixed q and varying r. In ES4, the pro-
cess disturbance and measurement noise were assumed to be
normally distributed zero mean independent, white noise sig-
nals. The filter was made adaptive by varying r and taking a
non zero mean value for measurement noise. In order to eval-
uate the changing properties of the measurement noise and its
covariance, the predicted state estimate was used to obtain the
residue from the measurement equation in (7). The statistical
properties of measurement noise were recalculated before the
correction step. The residue was calculated for each time step
as the difference between the actual measurement and the
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FIGURE 7. Algorithm for adaptive Kalman filter schemes.

predicted value, given by

res(i+1) = [z(i+1) − c(i+1)x̂
−

(i+1)]. (17)

The quantity v̄(i+1) was calculated as the simple mean of
these residuals and the measurement covariance r(i+1) as the
variance of the residuals as

v̄(i+1) =
1
n

n∑
k=1

res(k),

r(i+1) =
1

n− 1

n∑
k=1

[res(k) − v̄(i+1)]2, (18)

where n is the number of time instants prior to (i+ 1) used in
the process.

In the correction step, the updated state estimate was mod-
ified as

x̂+(i+1)= x̂
−

(i+1)+K(i+1))[z(i+1)−c(i+1)x̂
−

(i+1)−v̄(i+1)]. (19)

Based on the choice of n, two algorithms were developed:
adaptive Kalman filter with a window of fixed size (AKF1)
and adaptive Kalman filter with a window of increasing size
(AKF2). In the fixed window size filter AKF1, the number
of samples (window size) was fixed and at any time step,
the previous n number of samples were taken for calculating
v̄(i+1) and r(i+1). In AKF2, the size of the window increased at
every time step and all previous samples were taken for cal-
culating v̄(i+1) and r(i+1). The proposed algorithms AKF1 and
AKF2 for the estimation of traffic density can be summarized
using the algorithm as in Fig. 7.

A comparison of the three estimation schemes ES4,
AKF1 and AKF2 was done next and the results are

TABLE 6. MAPE and RMSE for various adaptive Kalman estimation
schemes for different scenarios.

discussed here. Performance was evaluated in terms of
MAPE and RMSE and the results obtained are shown
in Table 5 and 6. The proposed adaptive algorithmsAKF1 and
AKF2 can be found to have better performance than ES4.

Further analysis of the performance of the methods was
done to understand the adaptive nature of the Kalman filter.
Figure 8 shows scenario 1, where it can be seen that all the
three estimation schemes initially converged to the simulated
density during low density regime. However, from the point
of transition, ES4 diverged, as clearly observed in Fig. 6.
Being a scheme with fixed noise statistics, having zero mean
and fixed variance, it was not able to capture data character-
istics for transition and change in traffic conditions.

In comparison, the adaptive schemes AKF1 and AKF2 that
estimated the noise statistics for each time interval performed
better as they captured the change in data characteristics.
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FIGURE 8. Performance comparisons under scenario 1 (transition).

FIGURE 9. Performance comparisons under scenario 2 (light traffic).

Figure 9 shows scenario 2 characterized by light traffic
conditions with less data variations, where all the schemes
performed well. In scenario 3, scheme ES4 led to a bias
where the density reached jam density during fully congested
conditions, as observable from Fig. 10. In scenario 4, an inci-
dent was injected for a period of 20 minutes, causing the
blockage of two lanes. This resulted in building up of a queue
in between detectors B and C causing a change in traffic
condition (increase in density). During queue build-up and
release, detectors B and C were congested. The errors in the
measurement model and measurement were well captured
by the adaptive schemes as shown in Fig. 11. The scheme
ES4 with fixed variance resulted in an offset after the incident
was over.

Thus, for transition and congestion scenarios, when the
error in measurement or measurement model can be higher,
ES4 with fixed measurement noise statistics was not able
to capture the variation. The adaptive schemes AKF1 and
AKF2 that estimate the mean and variance of the mea-
surement noise performed better in these cases. In AKF1,
the variations were better captured, where mean and vari-
ance were estimated with the last n observed noise samples
compared to AKF2 where all previous samples were used.
Overall, it can be seen that AKF1 scheme estimated section
density better, especially during the congestion period and
transitions. Further, in AKF2, the window size increases
with time, and hence AKF1 requires lower online data
storage.
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FIGURE 10. Performance comparisons under scenario 3 (jam density).

FIGURE 11. Performance comparisons under scenario 4 (incident).

VI. SUMMARY AND CONCLUSION
Estimation of density is an essential component in the study
of traffic congestion in mixed traffic conditions characterized
by heterogeneous and lane-less traffic. In spite of being a
good indicator of congestion, the on field measurement of
density is rather demanding. Hence, this paper used area
occupancy as a surrogate variable for traffic density estima-
tion, which is capable of considering varying vehicle dimen-
sions as encountered in heterogeneous and lane-less traffic.
Model-based schemes for estimation of density under mixed
traffic conditions were developed by applying the Kalman
filter technique.

The key aspects of the research can be summarized as
follows:
• The paper presents a method to estimate road traffic con-
gestion using density as a measure under mixed traffic
condition.

• The traffic system was characterized using a non-
continuum macroscopic single state linear time varying
model.

• The derived density-area occupancy relation was used to
formulate the output equation that captured the hetero-
geneity and lane indiscipline.

• Corroboration of the estimation scheme with the sim-
ulated density showed an average Mean Absolute Per-
centage Error of less than 4 %, which illustrated an
accurate estimate.

• Sensitivity analyses done for initial conditions showed
the robustness of the scheme.

• When compared with an existing dynamic estimation
scheme and two static estimation schemes, the proposed
one showed better performance.

• Since the proposed scheme was unable to capture the
variations in noise statistics for different scenarios,
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adaptive Kalman filter with fixed window size (AKF1)
and with increasing window size (AKF2) were
developed.

• On performance analysis under various scenarios,
AKF1 outperformed the earlier scheme and AKF2 with
a Mean Absolute Percentage Error of less than 4 %.

Based on the results of the present study, it may be inferred
that the adaptive Kalman filter estimation scheme based on
area occupancy can accurately estimate density under mixed
traffic conditions. The proposed scheme has the potential
for real-time implementation in heterogeneous and lane-less
traffic that shall contribute to the development of appropriate
control schemes.
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