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ABSTRACT A parameterized controller design approach is proposed to solve the problem of multi-
objective control for vehicle active suspension systems by using symbolic computation. The considered
model is a quarter-vehicle model of the active suspension system. The multi-objective robust control
performances include the sprung mass acceleration, suspension deflection, and tire deflection. Based on
dissipative Hamiltonian systems and Lyapunov function, a multi-objective H∞ controller design approach
is developed, which can avoid solving Hamilton-Jacobi-Issacs equations. Then, an algorithm of solving
semi-positive definite polynomial with tuning parameters is proposed by using symbolic computation.
Furthermore, a method of parameter optimization is proposed. Simulations and comparation show that the
control performance is significantly improved comparing with passive controlled systems and existing other
control systems for active suspension systems.

INDEX TERMS Multi-objective control, active suspension system, parameterized controller, symbolic
computation, dissipative Hamiltonian systems.

I. INTRODUCTION
Vehicle suspension system plays a vital role in both the driv-
ing safety and comfort, where the ride comfort and the road-
handling capacity are important in modern vehicles. In order
to meet these vehicle performance requirements, three types
of vehicle suspension systems, including passive [1], [2],
semi-active [3], [4], and active suspensions [5], [6], are
currently being studied and applied in practice in the past
decades. For active suspension control design, more energy
should be added and dissipated by actuators between the
wheel-axle and sprungmass than passive and semi-active sus-
pension control. However, the control performance in active
suspension system is better than passive system and semi-
active suspension system. The active suspension controller
for vehicle system obtains more and more attention [7]–[10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bohui Wang .

The aim of this paper is to improve the ride performance for
the vehicle active suspension system. Generally, acceleration
of sprung mass, suspension stroke, and tire deflection are
the multi-objective performances, which should maintain an
acceptable level as handling measures. There are various
approaches can improve the performance of active suspen-
sion. TheH∞ control of active suspension has obtained much
attention in recent years. In particular, [11], [12] pointed out
that H∞ control method for vehicle active suspension can be
a particularly effective way to manage the tradeoff between
conflicting performances. An approach of H∞ robust control
and method of linear matrix inequality (LMI) optimization
for non-stationary running condition and parameter uncer-
tainty has been proposed in [13]. For the same problems,
[13], [14] proposed an input delay method with sampling
measurements. References [15], [16] studied the H∞ control
for half-vehicle active suspensions with time delay. These
controllers obtained in [13]–[16] were based on LMI. How-
ever, this inequality method has high complexity. A saturated
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adaptive robust control strategy has been proposed in [17]
for system uncertainties and actuator saturation. Based on
accurate models, an adaptive sliding mode fault-tolerant con-
troller was proposed for the active suspension systems in [18].
Reference [19] proposed a sliding-mode control method for
vehicle active suspension system by using Lyapunov stability
theory. However, the multi-objective control problemwas not
considered in [17]-[19]. Vehicle performance control is com-
plex and multi-objective. An adaptive law for multi-objective
suspension control based on the frequency domain was esti-
mated from the road profile [20]. Reference [21] established
the corresponding dynamic systems and transformed them
into the stochastic system for the multi-objective H∞ con-
troller design. By using the magnitude of suspension deflec-
tion function and road disturbance effect estimate, a nonlinear
control for dual object active suspension systems was pro-
posed in [22]. These approaches in [20]–[22] resolved multi-
objective control problems for active suspension systems.
However, they are the control strategy, which proposed only
one fixed controller for active suspension systems. A param-
eterization design method for all stabilizing controllers was
derived for a given plant [23]. However, too many constraints
were required to obtain the controller [23].

For a system, designing a controller to satisfy some desired
performance objectives is a critical thing. To this end, it is
a sophisticated and efficient method to find a parameterized
controller to solve multi-objective control problems. There-
fore, the parameterized controller can provide a wonderful
solution in control theory [24]–[27]. Youla firstly proposed
the idea of parameterizing of stabilizing controllers in a linear
feedback system in [24]. In the system, the state and the
external disturbance are measurable, [25] proposed a family
of nonlinear controllers via state-feedback. Yung extended
the formulas of state-space and a family ofH∞ controllers for
the n-dimensional system in [26]. Reference [27] proposed
a family of reliable controllers via solving the Hamilton-
Jacobi-Issacs (HJI) inequality (or equations). The process
of designing these controllers can be finished by solving a
class of HJI inequalities (or equations), which is very diffi-
cult [24]–[27]. In order to obtain the parameterized controller,
[28] studied the general Hamiltonian system and proposed a
set of parameterized H∞ controllers, which avoided solving
HJI inequalities (or equations) by applying good structure
and clear physical expression of a general Hamiltonian sys-
tem. However, so many hard constraints in controller design
could not even be achieved. A family of robust simultaneous
controllers with tuning parameters for a set of dissipative
Hamiltonian systems has been proposed [29], [30].

In this paper, we propose a multi-objective H∞ parame-
terized controller design approach by Lyapunov function and
symbolic computation for vehicle active suspension systems.
The main features of the proposed parameterized controller
are as follows:

1) The controller can satisfy the multi-objective control
performance for active suspension systems.

FIGURE 1. Quarter-vehicle model.

2) The controller can optimize the robustness by adjusting
parameters’ values through tuning parameters.

3) The controller designmethod can realize easily to avoid
solving HJI inequalities (or equations).

The remainder of this paper is organized as follows.
In section 2, the problem to be addressed is presented.
Section 3 presents some preliminaries and results of con-
troller parameterization, a controller with tuning parameters,
an algorithm for solving parameters and a method for opti-
mization parameters, respectively. Then, a family of param-
eterized controllers is proposed for a quarter-vehicle model
with the active suspension system in Section 4. Some exam-
ples and simulations for illustrating the effectiveness and
feasibility of the multi-objective robust controller are given
in Section 5. Finally, Section 6 concludes this paper.

II. PROBLEM FORMULATION
The quarter-vehicle model used in this paper is as shown
in Fig. 1. Sprung mass ms is the car body and may vary
for loading different passengers and cargo; unsprung mass
mu is the wheel assembly mass; ks and cs represent the
coefficient of stiffness and damping, respectively; kt and ct
stand for the tires’ elasticity coefficient and damping coeffi-
cient, respectively; zs and zu represent the displacements of
ms and mu, respectively; zr denotes the road displacement
of external input; u(t) stands for the input control power
of suspension system. Then, the dynamic equations for the
model as follows:

msz̈s (t) = −ks [zs (t)− zu (t)]− cs [żs (t)− żu (t)]+ u (t)

muz̈u (t) = ks [zs (t)− zu (t)] cs [żs (t)− żu (t)]

−k t [zu (t)− zr (t)]− ct [żu (t)− żr (t)]− u (t)

(1)

We define the following state variable for establishing the
state-space form:
x1 (t) = zs (t)− zu (t), suspension deflection,
x2 (t) = zu (t)− zr (t), tire deflection,
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x3 (t) = żs (t), sprung mass velocity,
x4 (t) = żu (t), unsprung mass velocity,
After choosing the disturbance input ω (t) = żr (t) and the

variables as:

x (t) = [x1 x2 x3 x4]T (2)

The dynamic equations (1) can be expressed as the follow-
ing state-space form:

ẋ (t) = Ax (t)+ B1u (t)+ B2ω (t) (3)

where A =


0 0 1 −1
0 0 0 1
−

ks
ms

0 −
cs
ms

cs
ms

ks
mu
−

kt
mu

cs
mu
−
cs+ct
mu

,

B1 =


0
0
1
ms
−

1
mu

, B2 =


0
−1
0
ct
mu

.
The performances of ride comfort, road holding ability, and

suspension deflection are three main performance criteria in
any vehicle suspension design, which are exactly the multi-
objective of robust control in this paper.

1) As known, the ride comfort and the vehicle body’s
vertical acceleration have a direct relationship. Con-
sequently, the sprung mass acceleration (SMA),
SMA = |ẍ3 (t)|, should be as small as possible.

2) The structural properties of the vehicle active suspen-
sion system impose restrictions the suspension deflec-
tion within rattle space as the limit xrmax , x1 (t) <

xrmax . The definition of relative suspension deflection
RSD = |x1|xrmax

. Therefore, the performance requirement
is RSD < 1.

3) External disturbances caused by road bumps are harm-
ful to safe driving. How to guarantee the uninterrupted
contact between wheels and road for vehicle han-
dling is an extremely important issue. The relative tire
force (RTF) is RTF = |kt ·x2+ct ·ẋ2|

(ms+mu)g
. Therefore, another

performance requirement is that RTF < 1.

III. PARAMETERIZED CONTROLLER DESIGN
A. PRELIMINARIES
Consider the dissipative Hamiltonian system [31]
ẋ = [J (x)− R (x)]∇H (x)+ g1 (x) u (t)+ g2 (x) ω (t)
y = gT2 (x)∇H (x)
z = h (x) gT1 (x)∇H (x)

(4)

where x ∈ Rn, u ∈ Rm and ω ∈ Rs are the state
vector, the controller with parameters and the disturbances,
respectively. J (x) and R (x) are the skew-symmetric matrix
and the positive semi-definite matrix. g1 (x) and g2 (x) are
sufficiently smooth functions with proper order. y∈Rp and
z ∈ Rq are the output and the penalty, respectively. h (x)
is the weight matrix for a specific penalty. The Hamiltonian

function H (x) must be a positive semi-definite polynomial
and has a local minimum at the equilibrium x0 of system, and
∇H (x) = (∂H/∂x) (x).
Assumption 1: The Hessian matrix Hess (H (x0)) > 0 and

H (x) ∈ C2.
Remark 1: From Assumption 1 for the system (4), we can

find Hess (H (x0)) > 0 guarantees that H (x) is strict convex
on some neighborhood of the equilibrium x0 and H (x) ∈ C2

guarantees the existence of Hess (H (x)).
In this paper, the aim of proposing a parameterized con-

troller approach for systems (4) can be described as: for a
givenH∞ disturbance attenuation level γ > 0, we can obtain
a parameterized controller of the form u = α (x) (α (x0) = 0)
such that the L2 gain is not more than γ for the closed-loop
system (from ω to z), and the closed-loop system is locally
asymptotically stable when disturbance ω = 0.
Definition 1: [32] If y (t) = 0 and ω (t) = 0, ∀t≥ 0, then
∇H (x (t)) = 0, ∀t ≥ 0, system (4) is called zero-energy-
gradient (ZEG) observable to y; If y (t) = 0 and ω (t) = 0,
∀t ≥ 0, then lim

t→∞
∇H (x (t)) = 0, system (4) is called ZEG

detectable with respect to y.
Lemma 1: [31] Consider a nonlinear system{

ẋ = f (x)+ g (x) ω, f (x0) = 0
z = h (x)

(5)

where x ∈ Rn, ω∈Rs and z ∈ Rq are the state vector,
the disturbances, and the penalty, respectively. If there exists
a function V (x)≥ 0 (V (x0) = 0) such that HJI inequality(

∂V
∂x

)T
f (x)+

1
2γ 2

(
∂V
∂x

)T
g (x) gT (x)

∂V
∂x

+
1
2
hT (x) h (x) ≤ 0 (6)

holds, it’s indicated that the L2 gain is not more than γ (γ > 0)
for the closed-loop system (5) (from ω to z), i.e.,∫

∞

0
‖z‖2 dt ≤

∫
∞

0
γ 2
‖ω‖2 dt (7)

B. H∞ CONTROLLER DESIGN
An H∞ parameterized controller for the system (4) will be
designed in this section. For simplification, we denote J =
J (x), R = R (x), ∇H = ∇H (x), u = u (t), g1 = g1 (x),
g2 = g2 (x), h = h (x) in this section.
Theorem 1: Assumption 1 holds and system (4) is general-

ized ZEG detectable (when ω = 0) and

R+
1

2γ 2

(
g1gT1−g2g

T
2

)
≥ 0 (8)

∇HT g1α (x, a) ≤ 0 (9)

hold simultaneously (the matrix ∇HT g1α (x, a) is negative
semi-definite and R + 1

2γ 2
(
g1gT1−g2g

T
2

)
is positive semi-

definite). α (x, a) is the item with tuning parameters and a
are the tuning parameters. Then,H∞ control of the system (4)
can be realized by the following controller

u = α (x, a)+ β (x) (10)
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where β (x) = − 1
2

[
hT h+ 1

γ 2
Im
]
gT1∇H , Im is an m × m

identity matrix.
Proof: Consider the candidate Lyapunov function

V (x) = H (x) − c ≥ 0 (c = H (x0)). From Lemma 1 and
controller (10), we have(
∂V
∂x

)T
f (x)+

1
2γ 2

(
∂V
∂x

)T
ggT

(
∂V
∂x

)
+

1
2
zT z

= −∇HTR∇H +∇HT g1u+
1

2γ 2∇H
T g2gT2∇H +

1
2
zT z

= −∇HT
(
R+

1
2
g1hT hgT1 +

1
2γ 2 g1g

T
1

)
∇H

+∇HT g1α (x, a)

+
1

2γ 2∇H
T g2gT2∇H +

1
2
∇HT g1hT hgT1∇H

= −∇HT
(
R+

1
2γ 2

(
g1gT1 − g2g

T
2

))
∇H

+∇HT g1α (x, a)

≤ 0 (11)

which implies the L2 gain of the closed-loop system (4)
controlled by the controller (10) (from ω to z) is bounded by
given prescribed disturbance attenuation value γ . Next, we
prove that the closed-loop system is asymptotically stable at
x0, when ω = 0. From system (4), controller (10) and ω = 0,
it follows that

V̇ (x) =
(
∂V
∂x

)T
[J − R]

(
∂V
∂x

)
+

(
∂V
∂x

)T
g1u

= −∇HTR∇H +∇HT g1

×

[
−
1
2

(
hT h+

1
γ 2 Im

)
gT1∇H + α (x, a)

]
= −∇HT

(
R+

1
2γ 2

(
g1gT1 − g2g

T
2

))
∇H

−
1
2
∇HT g1hT hgT1∇H

−
1

2γ 2∇H
T g2gT2∇H +∇H

T g1α (x, a)

= −∇HT
(
R+

1
2γ 2

(
g1gT1 − g2g

T
2

))
∇H

−
1
2

∥∥∥hgT1∇H∥∥∥2
−

1
2γ 2

∥∥∥gT2∇H∥∥∥2 +∇HT g1α (x, a)≤ 0 (12)

Hence, the closed-loop system converges to the largest
invariant set, which is contained in

S :=
{
x:V̇ (x) = 0

}
⊂

{
x:y = gT2∇H = 0,
z = hgT1∇H = 0,∀t ≥ 0

}
(13)

From Assumption 1 and the generalized ZEG detectable
system (4), we obtain

lim
t→∞
∇H (x (t)) = ∇H

(
lim
t→∞

x (t)
)
= 0 (14)

On the other hand, ∇H (x0) = 0 holds because of the
equilibrium x0 is a local minimum of H (x). So, there exists
a neighborhood of x0, in which ∇H

(
lim
t→∞

x (t)
)
= 0 implies

lim
t→∞

x (t) = x0. Therefore, it holds that the trajectory of

V̇ (x) = 0 is strict convex at the equilibrium point x0. The
closed-loop system (4) is locally asymptotically stable at x0
under controller (10) from the LaSalle invariant principle.
This completes the proof.
Remark 2:
1) Comparedwith the controller proposed in [28], the con-

troller (10) has a much simpler form and is easier to
realize.

2) For the proposed controller, the parameters’ range of
polynomial vector α (x, a) can be obtained by solving
the condition (9).

3) The proposed controller can be applied to general non-
linear systems with the dissipative Hamiltonian realiza-
tion method [33], [34].

C. SOLVING TUNING PARAMETERS
From condition (8), we can obtain a special given distur-
bance attenuation value γ ∗. Let γ≥γ ∗ such that condition (8)
holds. Then we propose an algorithm to find the ranges of
parameters in the controller (10) via solving the parameters of
α (x, a) in condition (9) by using cylindrical algebraic decom-
positions (CAD), which is one method of symbolic computa-
tion [35]. The solving turning parameters (STP) algorithm is
proceeded as follows [29].

STP Algorithm
INPUT: System’s parameters Sys = {xi, n, r,∇H ,

α (x, a)}. //xi is the state variable, n is the number of the
state variable, α (x, a) is the constructed polynomial with
parameters and r is the such polynomial’s highest order, a
is the tuning parameters.

OUTPUT: Tuning parameters’ range U . //U is an empty
set, initially.

The flow diagram of the proposed STP algorithm for con-
dition (9) is outlined in Fig. 2.
Remark 3:
1) Normally, r = 1 is the beginning of the STPAlgorithm,

and if the result is not obtained, r = r + 1 until the
output solution set U can be obtained.

2) The obtained solution set U is the partial solution, not
a complete solution by using CAD.

D. PARAMETER OPTIMIZATION
The parameters optimization will be discussed in the tuning
parameters ranges as follows. For system (5), add the con-
troller and rewrite it,

Ẋ = F (X , µ)+ α (X , µ) (15)

According to Lyapunov Theorem, there must have a pos-
itive definite symmetric matrix P = PT in a stabilized
system by using the controller (10). The fastest stabilization
parameter search problem of the controlled system (15) is
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FIGURE 2. Flow diagram of the proposed STP algorithm.

transformed into the characteristic root of P extreme value
problem. The design steps for the controller parameter opti-
mization method are given below.

Step1. According to the Jacobi matrix at the equilibrium
point of the system, solve the positive define symmetric
matrix P. Suppose JE is the equilibrium of the system, which
can be written at the equilibrium as follows:

Ẋ = JEX (16)

Then it is certainly that existing a positive defined symmet-
ric matrix P and a unit matrix Q, which makes the follows
hold,

V (X) = XTPX , V̇ (X) = −XTQX (17)

where V (X) is the Lyapunov function of the controlled sys-
tem, V̇ (X) = dV (X)

dt . Then according to the linearization of
the system, obtain the following equation,

V̇ (X) =
dV (X)
dt

=
d
(
XTPX

)
dt

= ẊTPX + XTPẊ

XT
(
JTE P+ PJE

)
Ẋ = −XTQX (18)

That is

JTE P+ PJE = −Q (19)

where JE and Q can be obtained from the system (15). The
positive definite symmetric matrices P can be obtained from
formula (19).

Step2. Solve the characteristic equation H (λ) =

det (λI − P). If the time of adjustment for system states is
minimized, it is equivalent to the fastest decay rate of the
system. According to Lyapunov theorem, the decay rate of
the system can be expressed as follows,

η = λ
(
QP−1

)
(20)

Because Q is a unit matrix, considering λ
(
P−1

)
=

1
λ(P) ,

the decay rate of the controlled system to equilibrium point
depends on the characteristic root of P−1. So, the problem
can be solved by solving the characteristic root extremum to
matrix P.
Step3. Solve the extremumproblem ofH (λ) = 0. Because

JE and P include the controller parameters k , letH (λ) = 0 be
the implicit function of λ = H̄ (k). Solve the following equa-
tions for obtaining the fastest convergent control parameters,H (λ) = 0

∂H (λ)
∂k

= 0
(21)

So, we can obtain the optimized tuning parameters for the
proposed controller by solving equations (21).

IV. DESIGN EXAMPLE
In this section, the above formulated problem will be solved
by the Hamiltonian function method. We rewrite the sys-
tem (3) as a dissipative Hamiltonian system, firstly.{
ẋ = (J (x)− R (x))∇H (x)+ g1 (x) u (t)+ g2 (x) ω (t)
z = h (x) gT2 (x)∇H (x)

(22)

where

J (x) =



0 0 1 −1

0 0 0
kt
mu

−1 0 0
cs
ms

1 −
kt
mu

−
cs
ms

0

 ,

R (x) =



0 0 0 0

0 0 0
kt
mu
− 1

ks
ms
− 1 0

cs
ms

0

1−
ks
mu

0 −
cs
ms
−

cs
mu

cs + ct
mu


,

H (x) =
1
2

(
x21 + x

2
2 + x

2
3 + x

2
4

)
,

g1 (x)=
[
0 0

1
ms
−

1
mu

]T
, g2 (x) =

[
0 −1 0

ct
mu

]T
, h (x)

is the weight matrix for a specific penalty.
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From system (22), it is easy to get ∇H (x) |x=0 = 0,
Hess (H (x)) |x=0 = Diag {1, 1, 1, 1} > 0. So, assump-
tion 1 holds.

Then, we check that condition (8) holds for all x and
given γ . From system (22), we have

R (x)+
1

2γ 2

(
g1 (x) gT1 (x)− g2(x) g

T
2 (x)

)

=



0 0 0 0

0 −
1

2γ 2 0
kt
mu
− 1

ks
ms
− 1 0

cs
ms
−

1
2γ 2m2

s
−

1
2γ 2msmu

1−
ks
mu

0 −
cs
ms
−
cs
mu
−

1
2γ 2msmu

cs
mu
+

1
2γ 2m2

u


We assume the specific given disturbance attenuation
value γ ∗ = 0.01.

γ ≥ 0.01 (23)

ensure condition (8) holds.
Then, if system (22) satisfies robustness performance in

H∞ control, condition (9) must hold. The Hamiltonian func-
tionH (x) can be used as candidate Lyapunov function V (x),
i.e., V (x) = H (x). It follows from controller (10) that

u (x) = α (x, a)+ β (x)

= α (x, a)−
1
2

(
h (x)T h (x)+

1
γ 2 Im

)
gT1 (x)∇H (x)

(24)

From system (22), n = 4. Let r = 1, we have

α (x, a) = aixi = a1x1 + a2x2 + a3x3 + a4x4 (25)

where ai (i = 1, 2, 3, 4) are the tuning parameters. From sys-
tem (22), we obtain that ∇H (x) =

[
x1 x2 x3 x4

]T .
Let 1

ms
= b

1
, 1
mu
= b

2
and S = −∇H (x)T g1α (x, a),

we have

S = −a1b1x1x3 + a1b2x1x4 − a2b1x2x3 + a2b2x2x4
−a3b1x23 − (a4b1 − a3b2) x3x4 + a4b2x

2
4 (26)

Rewrite coefficient of S as a quadratic form M :

M =


0 0 −a1b1 −a1b2
0 0 −a2b1 −a2b2
−a1b1 −a2b1 −2a3b1 −a4b1 + a3b2
−a1b2 −a2b2 −a4b1 + a3b2 2a4b2


(27)

As we all know, all principal diagonals of M must be pos-
itive semi-definite. So, we can obtain inequalities B fromM .
From B, we can easy to obtain that a1 = 0,a2 = 0,a3 ≤
0 and a4≥ 0. Substitute a1 and a2 into inequalities B for
simplifying computation, we obtain simplified inequality
−
(
2a3a4b1b2 + a24b

2
2 + a

2
3b

2
1

)
≥ 0. Solving the inequality by

using CAD, we obtain a3 = −
b2
b1
a4. Let = a4. So, we have

U =
{
a1 = 0,a2 = 0,a3 = −

b2
b1
k, a4 = k, k≤ 0

}
(28)

TABLE 1. Quarter-vehicle model parameters.

Substitute U into the controller (10), we obtain a family of
controllers with parameter

u=−
1
2

(
h (x)T h (x)+

1
γ 2 Im

)(
x3
ms
−

x4
mu

)
−
b2
b1
kx3+kx4

(29)

According to the parameter optimization steps above, we can
get the tuning parameter optimization k = 1525 for the
system (22).

V. SIMULATIONS TO VEHICLE ACTIVE SUSPENSION
CONTROL
We will verify our method by some examples and simula-
tions. First, the peak value of the state is the direct reflection
of the state change of the system under external disturbance
and action of the controller. That is the direct embodiment
of the controller’s effect. Then, the root-mean-square (RMS)
values are used to describe the vibrations of the vehicle
body in the vehicle suspension system, especially as the ride
comfort of passengers. Hence, we take the peak value and
RMS to describe the quantitative indexes.

The quarter-vehicle model parameters have the following
values [36] and list in Table 1.

To verify the robustness of the proposed controller,
the fluctuations of the road profile are treated as external
disturbances. The road disturbance can be seen as discrete
events, which are with relatively high intensity and short
duration. The road surface is presented in [36].

zr (t) =


H
2

(
1− cos

(
2πV0
L

t
))

, if 0 ≤t ≤
L
V0

0, if t≥
L
V0

(30)

where H and L are the height and the length of the bump,
respectively. Assume H = 0.1m, L = 10m, and the vehicle
forward velocity is V0 = 45km/h.

A. COMPARISON WITH DIFFERENT PARAMETERS OF
CONTROLLERS
The initial parameters of the system (22) are γ = 1, h (x) =
0.5 and the parameters of the controller are k = 100, k =
1525 (optimization) and k = 3000, respectively. We obtain
the corresponding controllers (31)-(33),

u = −800.00195x3 + 100.0156x4 (31)

u = −12200.00195x3 + 1525.0156x4 (32)

u = −24000.001953x3 + 3000.0156x4 (33)
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FIGURE 3. Road disturbance velocity.

FIGURE 4. Sprung mass acceleration.

FIGURE 5. Sprung mass deflection.

In this case, the sprung mass is assumed to be constant
with ms = 320kg and the vehicle speed is V0 = 45 km/h.
Fig. 3 shows the road disturbance velocity. Fig. 4 and
Fig. 5 show the bump response of the SMA and sprung
mass deflection (SMD) for passive control (dot line blue) and
the controller of parameter values k = 100 (dot-dash line
purple), k = 1525 (solid line red) and k = 3000 (dash line
green) in the active suspension system. The bump response
of the RSD and RTF are shown in Fig. 6 and Fig. 7. Then,
Fig. 8 Shows the active control force for the controller of
different controller parameter values, respectively.

From Fig. 4-Fig. 8, we can clearly see that good bump
response quantities for SMA, SMD, RSD, and RTF can be

FIGURE 6. Relative suspension deflection.

FIGURE 7. Relative tire force.

FIGURE 8. Active control force.

guaranteed by using H∞ parameterized control. The time
back to the equilibrium position of the vehicle system with
active control is less than passive control and the robustness
performance of the vehicle system can be further optimized
through adjusting the values of controller parameter from
k = 100 to k = 3000, where k = 1525 is the better
parameter.

B. COMPARISON ANALYSIS WITH DIFFERENT
PARAMETERS OF VEHICLE
The sprung mass may vary due to changes in passenger or
cargo load and the vehicle speed is the most variable factor.
The different values of the sprung mass and vehicle speed
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TABLE 2. Comparison of peak and rms value for bump response.

FIGURE 9. Sprung mass acceleration.

are considered as ms = 320kg, ms = 480kg and V0 =
30 km/h, V0 = 90 km/h. The controller (32) is considered
in simulations.

To show clearly the comparison results between the dif-
ferent sprung masses and different speeds of the vehicle,
the maximum peak values of the bump responses for SMA,
RSD, and RTF are listed in Table 2.

From Table 2, it can be seen clearly that the effect of
the controller is related to vehicle speed and mass. In the
same circumstances, the proposed control method has better
suspension’s adaptability to the road than the passive sus-
pension control method. With the increase of weight and
constant low speed, the passive control has little change,
while the proposed controller obtains better control effect.
The suspension’s adaptability to road will be reduced with the
increase of speed. However, the proposed controller can still
effectively control the vehicle at high speed V0 = 90 km/h
to meet the three control performances.

C. COMPARISON ANALYSIS WITH EXISTING METHODS
In order to further verify the performance of the proposed
control method, two existing results in [37] and [38] are pre-
sented for the objective of the comparison. The controller (32)
is considered in simulations.

In this case, the sprung mass is assumed to be constant
with ms = 400 kg and the vehicle speed is V0 = 45 km/h.

FIGURE 10. Suspension deflection.

FIGURE 11. Relative suspension deflection.

FIGURE 12. Relative tire force.

Simulation results are shown in Fig. 9- Fig. 13. For different
control strategies, the SMA, SMD, RSD and RTF and active
control force are shown in Fig. 9- Fig. 13, respectively.

As shown in Fig. 9- Fig. 13, the proposed parameter-
ized control can obtain better regulation performance of
body acceleration, and simultaneously satisfy the constraint
requirements than FHC in [37] and LFK in [38].

Table 3 shows the performance results for the proposed
method and existing methods.
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FIGURE 13. Active control force.

TABLE 3. Performance of peak and rms values.

FIGURE 14. Road disturbance velocity.

From Table 3, it can be observed with the parameterized
controller is better than the passive method and the other two
existing methods in multi-objective robust control.

D. DIFFERENT FLUCTUATION OF THE ROAD PROFILE
In order to further verify the robustness of the proposed con-
troller for different fluctuations of the road profile. We take
the road profile from [39], which is described by the follow-
ing equation,

zr (t) =



−0.0592t31 + 0.1332t21 + b (t) , 3.5 ≤t < 5
0.0592t32 + 0.1332t22 + b (t) , 5 ≤ t < 6.5
0.0592t33 − 0.1332t23 + b (t) , 8.5 ≤t < 10
−0.0592t34 − 0.1332t24 + b (t) , 10 ≤ t < 11.5
b (t) , else

(34)

where b (t) = 0.002sin (2π t) + 0.002sin (7.5π t) as the
disturbance. Assume the vehicle forward velocity is V0 =

FIGURE 15. Sprung mass acceleration.

FIGURE 16. Sprung mass deflection.

FIGURE 17. Relative suspension deflection.

45km/h and the quarter-vehicle model parameters are listed
in Table 1. The controller (32) is considered in simulations
for system (22).

Fig. 14 shows the road disturbance velocity. Fig. 15 and
Fig. 16 show the bump response of the SMA and sprung mass
deflection (SMD) for passive control (dot line blue) and the
controller of parameter values k = 1525 (solid line in red) in
the active suspension system. The bump response of the RSD
and RTF are shown in Fig. 17 and Fig. 18.
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FIGURE 18. Relative tire force.

From Fig. 15-Fig. 18, we can clearly see that good bump
response quantities for SMA, SMD, RSD, and RTF can be
guaranteed by using H∞ parameterized control under road
disturbance in Fig. 14.

VI. CONCLUSION
The sprung mass may vary due to changes of passenger
load, cargo, and vehicle speed. In which, the vehicle speed
is the most variable factor. A novel controller with tuning
parameters is proposed to achieve the multi-objective control
performances of providing the ride safe and ride comfort.
The proposed parameterization method uses the Hamiltonian
function method and avoids solving HJI inequalities, thus the
obtained controllers with parameters are easier as compared
to some existing ones. The parameters’ range can be obtained
by the STP Algorithm and optimal parameters for the con-
troller can be obtained by the parameter optimizationmethod,
respectively. Simulations results with two different road pro-
files validate the multi-objective robust control performances
for active suspension vehicles with different sprung masses
and different speeds of the vehicle. A comparison with pas-
sive system and existing methods shows that the proposed
parameterized controller scheme performs better than them
in terms of peak and RMS values.
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