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ABSTRACT In this paper, we propose a physical informed neural network approach for designing the
electromagnetic metamaterial. The approach can be used to deal with various practical problems such as
cloaking, rotators, concentrators, etc. The advantage of this approach is the flexibility that we can deal with
not only the continuous parameters but also the piecewise constants. As our best knowledge, there is no other
faster and much efficient method to deal with these problems. As a byproduct, we propose a method to solve
high frequency Helmholtz equation, which is widely used in physics and engineering. Some benchmark
problems have been solved in numerical tests to verify our method.

INDEX TERMS PINN, activation function, metamaterial design, electromagnetic cloaking, Maxwell’s
equation.

I. INTRODUCTION
Metamaterial is a kind of artificial electromagnetic materials
which can control electromagnetic field in an unconventional
manner. In the last decade, the electromagnetic metamaterials
have experienced a significant development and attracted
much attention among physicists, engineers, and mathemati-
cians [1]–[3]. Their extraordinary properties, such as negative
refraction, ultra refraction, and anomalous dispersion, cannot
be found in nature and have been widely used in medicine,
high-energy physics, andmanufacturing industry, etc. [?], [4]
proposed a spatial transformation method to distort the light
trajectories around a barrier, then the cloaking has been
achieved. The form invariance of Maxwell’s equations play
a big role in this work. This technique has then been used
to design other metamatierials’ properties such as rotators
and concentrators. However, there are many open questions.
For example, whether we can achieve perfect cloaking still
remains unsolved.

Traditional numerical methods, such as finite element
methods, only take care how to solve the PDE efficiently, and
cannot discover the design of the metamaterial for a specific
propose. Optimal control method may solve this problem, but
it will take a lot of time and may not converges. Even for
continuous parameters design problems, the optimal control

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuping He .

method requires complicate 1st order conditions (PDEs) and
very fine mesh, and no guarantee for convergence. Let alone
the piecewise constant problems, which makes a lot of senses
in engineering and manufacturing industry. We therefore
resort to a flexible numerical method to resolve the metama-
terial design problem in practical applications.

The dramatic growth of available data and the evolution of
deep learning [5] revolutionize our understanding of the phys-
ical world in modern application areas such as image recog-
nition [6], drug discovery [7], and bioinformatics [8]. [9]
studied physics informed neural networks (PINNs), which
is a powerful tool for solving partial differential equa-
tions (PDEs) and their inverse problems. After that, several
works have been published to discover more applications.
Although we have many numerical methods to solve a PDE,
it is usually hard to solve inverse problems of PDEs due to
their low regularities and nonlinearities. So this enlighten us
to try PINNs methods for inverse problems of PDEs, and lead
us to the main topic of this paper: the metamaterial design
problems via PINNs approach.

In this paper, we consider a general framework of the meta-
material design problems, including cloaking, rotators, and
concentrators etc. All of them can be widely used in scientific
areas. For example, the fighter airplanes with designed cloak
coating may escape the radar detection. Designing rotators
can help us deal with electromagnetic signal much more flex-
ible and develop application-driven photonic devices. In the
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following sections, we mainly focus on the cloaking and
rotators problems. As our best knowledge, our method now
is the most efficient one to solve these problems with high
flexibility.

In particular, this paper devotes to solve frequency domain
Maxwell’s equation and the metamaterial design problems
by using deep physical informed neural network (DPINN).
The paper is organized as follows: In the second section,
we introduce the DPINN method for solving frequency
domainMaxwell’s equation with high wave number.We have
adopted the idea introduced in [2], [9] but we come up with a
modified activation function to conquer the non-convergence
phenomenon. In the third section, we introduce our model
for the metamaterial design problems. In the forth section,
we show a discrete design for cloaking problem and our
experimental results. We make a conclusion in the last
section.

II. RELATED WORK
A. PHYSICAL INFORMED NEURAL NETWORK FOR
FREQUENCY DOMAIN MAXWELL’S EQUATION
As shown in [9], the PINNs can solved a wide class of
PDEs, including Burger’s equation, Shrödinger’s equation
and Navier-Stokes’ equation and so on. This gives us more
flexibility to study the theoretical and numerical behavior of
PDEs. In this paper, we care about the frequency domain
Maxwell’s equation.

B. FREQUENCY DOMAIN MAXWELL’S EQUATION
Let � ⊂ R2 be a bounded open set. Consider the following
frequency domain Maxwell’s equation on �:

1E + k2E = 0 in �

E = Ew on ∂� (1)

where E(x, y) is the electronic field in frequency domain
depend on spatial variables x and y, k is the wave number and
Ew(x, y) is the given source wave. 1 is the Laplace operator,
which defined by:

1E(x, y) =
∂2

∂x2
E(x, y)+

∂2

∂y2
E(x, y)

We also define the curl operator ∇× which will use below.
For a vector function E = (Ex ,Ey,Ez) in R3,

∇ × E =
(
∂Ez
∂y
−
∂Ey
∂z
,
∂Ex
∂z
−
∂Ez
∂x
,
∂Ey
∂x
−
∂Ex
∂y

)
For a scalar function E(x, y),

∇ × E = ∇ × (0, 0,E) =
(
∂E
∂y
,−
∂E
∂x
, 0
)

Remark 1: The frequency domainMaxwell’s equation can
be written as

∇ × (∇ × E)− k2E = 0

where E = (Ex ,Ey,Ez) is the electronic field. In this paper,
we consider TMz mode, hence Ex = Ey = 0. In this case,

FIGURE 1. Diagram of NN with only 10 neurons in the hidden layers.
In our experiment, we take 100 neurons.

we can reduce this equation to (1). In this section, we only
consider (1) instead of its double curl form.

In the following subsection, we set � = [0, 1]2 and
Ew(x, y) = sin(kx).

C. PINN FOR FREQUENCY DOMAIN MAXWELL’S
EQUATION
As suggested in [2], [9], we use a fully connected neural
network (NN) with 6 layers, where the input layer contains
two neurons denote x and y, output layer contains one neuron
denotes the prediction of E and four hidden layers with 100
neurons each. Actually, in [2], [9] the authors tried different
neural network structures with different number of layers and
neurons. It turns out that when the number of layers and
neurons is increasing, the accuracy is almost increasing.

In detail, let ln denotes the column vector at the nth layer.
Then, we have l1 = (x, y)>, l6 = E and l i are 100×1 column
vectors for i = 2, 3, 4, 5. The mathematical relationship
between each layer is given by

ln+1 = σ (Wnln + bn) n = 1, 2, 3, 4

and

l6 = W5l5 + b5

Here Wn and bn denote the parameters going to be trained
at nth layer. Let ln be a m1 × 1 vector, that is, there are m1
neurons at nth layer, and ln+1 be a m2×1 vector (m2 neurons
at (n+ 1)th layer), then we haveWn is a m2×m1 matrix and
bn be a m2 × 1 vector, which is called bias. σ (·) is a vector
valued function, which is called the activation function. Let
σ (·) : R 7→ R be a real value scalar function, then σ (x) =
(σ (x1), σ (x2), · · · , σ (xn))> where x = (x1, x2, · · · , xn)>.
For the sake of simplicity, we will just call σ (·) as the acti-
vation function because it determines the σ (·) uniquely. The
bn has been initialized by zero vector and Wn has been ini-
tialized by Xavier. Namely, ifWn is an m2×m1 dimensional
matrix, we initialized it by a truncated normal distribution
with mean 0 and variance 2

m1+m2
. See [10] for more detail.

To demonstrate the NN more concretely, we show a diagram
of our NN in Figure 1. Notice that there are only 10 neurons
in the hidden layers at Figure 1. In our experiments, we will
take 100 neurons at each layer as suggested in [9]. We will
also discuss the structure of NN in the following numerical
experiments.

Besides, we shift and scale the input linearly for each layer
to [−1, 1] in order to protect the NN from overfitting and
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gradient vanish and blow up. This is the choice shown in [2],
[9] and the relationship between width as well as number of
neurons for each layer and the accuracy of the result has been
studied thereby. So here we follow their choice.

The mean square error (MSE), or loss function, is given by

MSE = MSEE +MSEf

=
1
NE

NE∑
i=1

|E(x iE , y
i
E )− E

i
|
2
+

1
Nf

Nf∑
i=1

|F(x if , y
i
f )|

2

Here {x iE , y
i
E ,E

i
} denotes the boundary training data of

E(x, y) and {x if , y
i
f } denotes the collocation points for

F(x, y) = 1E + k2E

in �. The E(x, y) in the MSE means the NN predic-
tion at given point (x, y). With the automatic differentia-
tion (AD) technique [11], the partial derivative terms in the
F(x, y) can be computed easily by just calling the function
tf.gradient in Tensorflow. Notice that the output E (or,
l6) is a function of the input x and y, (or, l1) and this function is
parametrized by a set of unknownsWn and bn, n = 1, 2 · · · 5.
And the partial derivative of E is nothing but just apply
the chain rule on the NN with respect to the input x and y
somehow, so it is still a function of x and y and parameterized
by {Wn, bn}5n=1. Therefore, given the training set mentioned
above, MSE is a function of {Wn, bn}5n=1. We then get the
optimization problem from NN: finding {Wn, bn}5n=1 to min-
imize the MSE .

In [2], [9], the activation function σ (s) = sin(s) shows
an excellent behavior that solves all of the PDEs’ problems
thereby. The authors of those two papers mentioned this
activation function works stably. For the frequency domain
Maxwell’s equation, this method works when wave number
is not relative high, i.e., k = 5. However, when we set
k = 11, the result shows as Figure 2. We get this result
by setting NE = 200, Nf = 20000 and train the NN in
5000 iterations by Adam algorithm. After that, we use the
L-BFGS packed in SciPy package continues the optimization
until the absolute value of difference between loss functions
in the consecutive two steps less than 10−16. The points
on the boundary are chosen randomly and the points in the
interior are chosen by Latin hypercube sampling (LHS). All
the computation has been done with Tensorflow 1.13 and
run on Amazon web services (AWS) p3.2xlarge. At the final
step, MSE ≈ 0.5. Once again, how the number of training
sets and training steps impact the accuracy of the result is
still not completely clear. What we can say is that more
training sets lead to a relative high accuracy and less overfit-
ting, or more stable. More experimental detail can be found
in [2], [9].

After investigating the detail of the NN, we found that the
issue is that when k is relatively large, the NN cannot get
close to the trueWn, because their initial values are around 0.
Notice that the input is between [−1, 1], and the activation
function is not in this domain, this probably causes the NN

FIGURE 2. Solution E(x, y ) by setting σ (s) = sin(s), k = 11. Top: Prediction
of NN. Underneath: Exact solution.

FIGURE 3. Solution E(x, y ) by setting σ (s) = sin(πs), k = 11.
Top: Prediction of NN. Underneath: Exact solution.

FIGURE 4. Solution E(x, y ) by setting σ (s) = sin(πs), k = 23.
Top: Prediction of NN. Underneath: Exact solution.

fails to work. If this conjecture is true, we can fix it by using
σ (s) = sin(πs) as it is in s ∈ [−1, 1].We verify this activation
function by the same test setting and the result is shown
in Figure 3. At the final step, MSE ≈ 10−5.

We also try a higher wave number k = 23 and keep
all the other setting same. It turns out that at the final step,
the MSE ≈ 0.1 and the solution is shown in Figure 4. The
solution is not as good as the last test but we suggest that this
can be improved by using more training samples and training
steps.

In the next section, we consider the metamaterial design
problems with wave number no more than 11. Hence, this
activation function is convinced in this case.
Remark 2: As we know, the mathematical foundation of

NN is rare at this time. Hence, the reason that the activation
function σ (s) = sin(s) used in [9] fail to work in the afore-
mentioned test is just a conjecture without any proof and then
verify by computation. Therefore, in this paper, we just accept
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FIGURE 5. Diagram of computational domain.

it ’sloppily’ as it really pass the computational test. The proof
remains a future work.

Other works we want to mention include [5], [12]–[29].

III. METAMATERIAL DESIGN PROBLEMS
In this section, we consider a PINN identification problem
corresponding to the frequency domain Maxwell’s equation.
Consider the equation

∇ × (µ−1r ∇ × E)− k
2εrE = F1 in � \�0

E = Ein on ∂�0

E = Ew on ∂�2 \�1 (2)

in the domain given by Figure 5, where Ew(x, y) is the given
source wave and

F1 =

{
0 in �1

∇ × ∇ × Ew − k20Ew in �2

Here µr and εr are the relative permeability and permittivity
going to design, respectively. Ein(x, y) is a given function.
If Ein(x, y) = 0, we get the cloaking problem and if set
Ein(x, y) as a polar rotation of Ew(x, y), we get the rotator
problem.

Note that if we set εr = 1 and

µr =

(
1 0
0 1

)
we arrive at (1). Our goal in this section is to find a suitable
µr (x, y) and εr (x, y) that satisfy (2). By [30], we can make
the following assumption on µr :

µr =

(
µ1(x, y) µ2(x, y)
µ2(x, y) µ3(x, y)

)
So, our goal now is to find µ1, µ2, µ3 and εr that satisfy (2).
In this section, we set �0 ∪�1 ∪�2 = [−2, 2]2.

A. CLOAKING PROBLEM
In this subsection, we consider cloaking problem Ein(x, y) =
0.We first point out that the PEC condition is usually n×E =
0 on the boundary. But we are working at TMz mode, say,
E = (0, 0,E(x, y)), that is equivalent to E(x, y) = 0 in
our problem. We set our geometry as follow: �0 = {x :
‖x‖R2 ≤ 0.3}, �1 = {x : 0.3 < ‖x‖R2 ≤ 0.6} and

FIGURE 6. Cylindrical cloak, k = 5. (a) Left: E(x, y ). (b) Right: From up left
to down right: µ1, µ2, µ3 and εr .

�2 = {x ∈ [−2, 2]2 : ‖x‖R2 > 0.6}, where ‖ · ‖R2 denotes
the Euclidean norm in R2 and x = (x, y).
To find out a suitable functionµr (x, y) and εr (x, y) that sat-

isfy (2), we setup another NN for them. This NN has almost
same structure to the one solving (1). The only difference is
that the output layer contains four neurons for µ1, µ2, µ3
and εr , respectively.

The cloaking problem is that given a wave source,
we would like to keep it outside the metamaterial which
includes a conductor inside. Based on this, our loss function
reads

MSE = MSEf +MSEc

=
1
Nf

Nf∑
i=1

|g(x if , y
i
f )|

2
+

1
Nc

Nc∑
i=1

|E(x ic, y
i
c)− E

i
in|

2

They satisfy the frequency domain Maxwell’s equation in
the vacuum with the given source as the boundary condition.
The E(x, y) intheMSE means the NN prediction of E at point
(x, y). {x if , y

i
f } denotes the collocation points for

g(x, y) = ∇ × (µ−1r (x, y)∇ × E(x, y))− k2εrE(x, y)

in �1 ∪�2. And {x ic, y
i
c,E

i
in} denotes boundary data at ∂�0,

namely, PEC boundary condition in this test.
We consider k = 5 and set Nf = 20000 and Nc =

1000 and train the NN by 10000 steps. The result is shown
in Figure 6. We predict E(x, y) by using 200000 points in �
as shown in Figure 6 (a). The metamaterial design is shown
in Figure 6 (b). At the final step, the MSE ≈ 10−5. We point
out some flaws of this method. First, as shown in Figure 6 (b),
the patterns ofmetamaterial are almost random, this entail our
result is only a theoretical one instead of practical. Second,
we find that on some regions µi = 0 for i = 1, 2, 3. This
makes the µ−1r has a non desirable behavior, and sometimes
µr even not invertible. But this situation is also happened
in the exact solution of cylindrical cloaking. As suggested
in [30], the polar components of metamaterial for perfect
cloaking reads

εr = µr =
r − R1
r

, εφ = µφ =
r

r − R1

εz = µz =

(
R2

R2 − R1

)2 r − R1
r

where R1 and R2 are the inner and outer radius of the annu-
lar. Hence, we observe that when r → R1, εφ → ∞.
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TABLE 1. Value of loss function for cross-validation with different PINNs’ structures for cloaking problem.

FIGURE 7. Cylindrical rotator, k = 5. (a) Left: E(x, y ). (b) Right: From up
left to down right: µ1, µ2, µ3 and εr .

Nevertheless, these two defects can be conquered by using
piecewise constant design problem. See section IV of
this paper below. Finally, suppose we get a valid solu-
tion µr and εr , then −µr and −εr are also solutions
due to equation (2). This may cause the result unstable
mathematically.

Finally, we study the relationship between the accuracy and
structure of PINNs. As the work shown in [9], we change
the number of layers and neurons for each layer for both
E and permittivity and permeability at the same time. And
then keep all the other settings as the same. After training
the PINNs, we use another set of randomly generated data
with same sample size to do the cross-validation. Since there
is no exact solution of our problem, we show the value of
loss function in table 1. As shown in the table, although
there are few exceptions, when the number of layers and
neurons are increasing, the accuracy is almost increasing.
This fit the results in [2], [9]. To balance the workload and
accuracy, wewill adopt the setting in [9]. That is, 6 layers with
100 neurons with each layers will be used in the numerical
experiments below. In a practical problem, one can choose
different PINNs structure and sample size to balance the
workload, accuracy and capacity of PINNs in the specific
case.

B. ROTATOR
In this subsection, we consider another metamaterial design
problem. Given a source wave on �2, our target now is
rotating the wave by a certain degree. In this subsection,
we set this degree as π2 . We keep all other setting as the same
to the last experiment except for Ein(x, y) = sin(ky). When
k = 5, the result is shown in Figure 7.

As mentioned previously, the activation function σ (s) =
sin(πs) may conquer the relative high wave number diffi-
culty in the frequency domain Maxwell’s equation. Here,
we test it by our metamaterial design for the rotator prob-
lem. We change k = 11, and the results are shown
in Figure 8.

FIGURE 8. Cylindrical rotator, k = 11. (a) Left: E(x, y ). (b) Right: From up
left to down right: µ1, µ2, µ3 and εr .

FIGURE 9. Scatter field of E(x, y ).

We also plot the scatter field to show the error of this
solution in Figure 9. All of the MSE ≈ 10−5 at these two
tests in this section.

Although we adopt the 6 layers and 100 neurons structure,
loss function values with different network structure has been
shown in table 2. Once again, the larger network almost gives
more accuracy.

IV. DISCRETE DESIGN FOR CLOAKING
As mentioned in the previous section, the continuous design
for cloaking metamaterial has many defects. As suggested
in [30], [31], when we approximate the exact solution µr
and εr for cloaking by piecewise constant functions in polar
coordinate, we may get almost cloaking metamaterial. This
enlighten us to design the metamaterial by using piecewise
functions on a certain partition. If this can be done, we may
manufacture this metamaterial and then our result is more
practical. This experiment follow the work in [30]–[34],
which is the benchmark problem in electromagnetic cloaking
area. Namely, we have used almost same geometry to those
work but different sizes.

Let�0 be a disc centered at originwith radius 0.3m, and�1
be an annulus with inner radius 0.3m and outer radius 0.6m.
And we set�0∪�1∪�2 = [−2, 2]m× [−2, 2]m. To design
a piecewise constant metamaterial, we partition the�1 into 8
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TABLE 2. Value of loss function for cross-validation with different PINNs’ structures for rotator problem.

annulus with same thickness, say, (0.6− 0.3)/8 = 0.0375m.
Since the components of µr and εr are piecewise constants
in polar coordinate as in [30], [31], we now transform our
governor equation to polar coordinate:

1
r
∂

∂r

(
r
µφ

∂E
∂r

)
+

1
r2

∂

∂φ

(
1
µr

∂E
∂φ

)
+ k2εzE = F2 in �

E = Ein on ∂�0

E = Ew on ∂�2 \ ∂�1 (3)

where E(r, φ) is the electronic field in polar coordinate and
µφ , µr andεz are the polar components of permittivity and
permeability, respectively. The right hand side term F2 has
been defined as

F2 =


0 in �1
1
r
∂

∂r

(
r
µφ

∂Ew
∂r

)
+

1
r2

∂

∂φ

(
1
µr

∂Ew
∂φ

)
+ k2εzEw

in �2

We choose a P band sinusoidal source wave with frequency
0.23873GHz, and assume the �0 is a perfect electronic con-
ductor. We use the same loss function and NN structure but
just change the input from x and y to r and φ. The bottom
line in this problem is how we recover a sort of piecewise
constant functions by NN? Indeed, we can still predict these
functions by NN and put penalty terms in the loss function
to enforce the desired functions has no variance on each
subdomain. But this obviously add more workload because
we only need one variable on each subdomain but get many
from NN if we do so. Enlightened by [9], we can mimic
the idea of PINN identification. We set only one variable on
each subdomain which is exactly what we need. To elaborate
this idea, we begin with one dimensional piecewise constant
function approximation.

Consider the piecewise constant function f (x) defined as

f (x) =


y0 x ∈ [x0, x1]
y1 x ∈ (x1, x2]
· · ·

yn−1 x ∈ (xn−1, xn]

Let χ[xi,xi+1](x) = χ(xi,xi+1](x) denotes the indicator function
on [xi, xi+1] or (xi, xi+1] and χ̃i(x) the modified sigmoid
function:

χ̃i(x; a) =
1

1+ ea(x−xi)

where a > 0 is the scaling parameter. It follows that

χ[xi,xi+1](x) ≈ χ̃i(x; a)− χ̃i+1(x; a)

TABLE 3. Design of piecewise constant metamaterial (from left to right is
inner to outer layer).

TABLE 4. Piecewise constant metamaterial given by perfect cloaking
formula (from left to right is inner to outer layer).

when a large enough. Hence, we may approximate the f (x)
by using χ̃i(x; a):

f (x) =
n−1∑
i=1

yiχ[xi,xi+1](x)

≈

n−1∑
i=1

yi(χ̃i(x; a)− χ̃i+1(x; a))

=

n−1∑
i=1

(yi − yi−1)χ̃i(x; a)+ y0χ̃0(x; a)− yn−1χ̃n(x; a)

(4)

Back to our metamaterial design problem. We set our
desired functions µφ , µr and εz by using (4), where yis in (4)
are variables in Tensorflow. Take µφ as an example, we set

µφ(r) =
7∑
i=1

(µφ,i − µφ,i−1)χ̃i(r; a)

+ µφ,0χ̃0(r; a)− µφ,7χ̃7(r; a)

where r =
√
x2 + y2. In our experiment, we choose a =

100 × 1r
6 , where 1r is the thickness of the metamaterial.

We set Nf = 30000 and Nc = 1000 and train the NN by
10000 steps. The result is shown in Figure 10. Figure 10
(a) shows the electronic field E(x, y) with piecewise constant
cloaking metamaterial. As shown in the figure, the source
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TABLE 5. Value of loss function for cross-validation with different PINNs’ structures for discrete design cloaking problem.

FIGURE 10. Piecewise constant cloaking, k = 5. (a) Left: E(x, y ) with
metamaterial. (b) Right: E(x, y ) without metamaterial.

FIGURE 11. E(x, y ) by Comsol. Permittivity and permeability are given by
the piecewise constant solution of NN.

wave has been kept in �2. The metamaterial shell �1 ensure
that the wave inside�0 is identically 0. Consequently, we can
put an object with any shape and material in �0 without dis-
turbing the incident wave. That is, the object can be cloaked
in the electromagnetic field. As a comparison, we also put a
solution E(x, y) without any metamaterial in Figure 10 (b).
Namely, in 10 (b), �1 is a conductor with PEC on ∂�1 and
�2 ∪ �3 is vacuum. The result of metamaterial is shown
in Table 3. To assure this result is true, we resolve this model
in Comsol 5.4 by using the metamaterial in Table 3, and the
result is shown in Figure 11. As shown in the figure, the wave
almost keep the same although the little deformation.

We display the result given by the perfect cloaking formula
in Table 4. Comparing Table 1 and Table 2, we know that
the NN gives us a different solution to the perfect cloaking
formula. We also point out that the sign of the metamaterial
still cannot be decided. That is, if µφ , µr and εz is a set of
solution, −µφ , −µr and −εz is also a set of solution.
Similar to the previous two metamaterial design problem,

we show the loss function values with varied network struc-
tures as shown in 5. Again, we find that larger network gives
more accuracy.

V. CONCLUSION
This paper studies the PINN inference problems for the
frequency domain Maxwell’s equation and the identifica-
tion problems for the electromagnetic metamaterial design.

These problems are widely used in physical and engineering
areas. The universal framework of PINN for inference and
identification problems are discussed in [9]. We adopt this
idea and improve the activation function to conquer the high
wave number problems. Additionally, what we recovered are
continuous functions and piecewise constant functions. This
is a new contribution for the application of PINN in practical
problems. Finally, we point out that by using NN methods,
we figure out new solutions which are differ from the ones
in [30]. As those solution pass the test of Comsol, they are
reliable.

We conclude this paper by pointing out some poten-
tial future works. First, we may use our method to solve
metamaterial design problems with more complex domains,
as the examples in [35]. Second, the perfect cloaking design
supposes to absorb the wave from any direction with any
frequency theoretically. However, as we mentioned, the cur-
rent method cannot achieve this. Some physical restrictions
should be added in the loss functions. For example, the
Brewster’s angle may protect the result from reflection.
Finally, we may apply this approach to other electromagnetic
problems in engineering and physics. For example, given
that there is a conductor somewhere in an area, we may use
the sensor’s data to recover the location of the conductor as
well as its geometry probably. This is so-called scattering
problems.
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